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Abstract. A variety of cells and cytokines have been shown
to be involved in the whole process of hypertension. Data
from experimental and clinical studies on hypertension have
confirmed the key roles of immune cells and inflammation
in the process. Dysfunction of the thymus, which modulates
the development and maturation of lymphocytes, has been
shown to be associated with the severity of hypertension.
Furthermore, gradual atrophy, functional decline or loss of
the thymus has been revealed to be associated with aging. The
restoration or enhancement of thymus function via upregula-
tion in the expression of thymus transcription factors forkhead
box N1 or thymus transplantation may provide an option to halt
or reverse the pathological process of hypertension. Therefore,
the thymus may be key in hypertension and associated target
organ damage, and may provide a novel treatment strategy for
the clinical management of patients with hypertension in addi-
tion to different commercial drugs. The purpose of this review
is to summarize and discuss the advances in our understanding
of the impact of thymus function on hypertension from data
from animal and human studies, and the potential mechanisms.
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1. Introduction

Hypertension is characterized by the elevation of arterial
pressure, and can be complicated by damage and metabolic
changes in the heart, blood vessels, brain, kidney, retina
and other target organs. It is a multifactorial disease and
various immune cells and factors have been shown to be
involved (Fig. 1) (1). There have been increases in the incidence
and mortality rates of patients with heart and cerebrovascular
disease; therefore, reducing the incidence and mortality rates
of heart and cerebrovascular disease in patients with hyperten-
sion is the ultimate goal of antihypertensive therapy. However,
even when blood pressure is under control, organ damage
and abnormal metabolism may not be completely resolved,
which suggests that other mechanisms may be involved in, or
contribute to, the complex pathological processes of hyperten-
sion and may not be eliminated by current drug strategies.
Antihypertensive therapy requires the establishment of blood
pressure control (2). Therefore, it is of clinical and practical
significance to investigate the mechanism of hypertension.
The thymus, as a key organ in T lymphocyte ontogenesis,
has been shown to be crucial in optimizing immune system
function throughout life (3-7), therefore, the pathological
processes of high blood pressure are considered to be closely
associated with the thymus. Studies have revealed that the
thymus exhibits constant atrophy or hypofunction with
age (8). Fukuda er al (9) suggested that the values of thymus
weights were lower in Spontaneously hypertensive rats (SHR),
compared with those in Wistar Kyoto (WKY) rats, when they
investigated age-related changing in hematological values,
serum biochemical constituents, and weights of various organs
in both genders of SHR/Izm, Stroke-prone SHR and WKY/Izm
rat strains. A previous study by Svendsen et al found that
the salt-dependent phase of deoxycorticosterone acetate salt
hypertension did not develop and the decreased perivascular
infiltration of immune cells following renal infarction was not
present in athymic ‘nude’ mice. However, if the thymus gland
was transplanted into these athymic mice, then the capacity
for developing salt-driven hypertension was restored (10-13).
Ba et al showed that the thymus transplanted from neonatal
normotensive Wistar rats to the prehypertensive SHR strain
delayed the onset of hypertension from 5 to 32 weeks and
decreased blood pressure in hypertensive adults; it is known
that the SHR strain has normal blood pressure at birth and
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gradually develops high blood pressure from ~5 weeks of age,
reaching maximal levels at ~15-20 weeks of age (14). Therefore,
the thymus may be involved in the process of hypertension.
However, the mechanism of thymus function in the process
of hypertension remains to be fully elucidated. The purpose
of this review was to summarize and discuss advances in our
knowledge of hypertensive vascular disease by the effect of
thymus function on hypertension, with a particular focus on
the mechanism underlying the effect of thymus function on
hypertension.

2. Potential role of the thymus in hypertension

Thymus function and inflammatory procedure. The thymus is
known to be essential in T cell development and maturation.
The thymus is where the T cell repertoire is generated, and
where T cells undergo positive and negative selection, leading
to a wide functional MHC-restricted naive T cell receptor of3
repertoire (15,16). In the development of T cells, they
migrate within distinct thymus microenvironments, where
they interact with stromal cells to provide signals crucial to
the survival, proliferation, differentiation and selection of
thymocytes (17-19). Naive T cells can differentiate into helper
T cells (Th), regulatory T cells (Tregs) and cytotoxic T cells.
The generation and maturation of the specific T cell lineage
involves specific and complex processes within the thymus,
and several signaling pathways are involved in these processes.
If thymocytes respond spontaneously to these antigens, they
undergo negative selection, through apoptosis, or into Treg
lineages (17). It is now well established that Tregs are produced
via two main pathways in vivo. The majority of functionally
mature Treg cells are produced in the thymus, where recogni-
tion of self-antigen by certain clones leads to their deviation
into the thymus-derived forkhead box (Fox)p3* Treg cell
lineage (20,21). Th cells can secrete interleukin (IL)-4, IL-17
and interferon (IFN)-v. In addition, Tregs can secrete 1L-10.
IL-4 regulates the proliferation of activated B-cells and mast
cells (22-25). In the absence of vascular tissue, the presence
of IL4 promotes the substitution of activated macrophages
into M2 cells and inhibits the activation of classical activated
macrophage M1 cells. Increased macrophage repair (M2)
combined with the secretion of IL-10 and transforming
growth factor (TGF)-f results in a reduction of pathological
inflammation (26-28). IL-17 is involved in the induction and
regulation of pro-inflammatory responses. IL-17 induces the
production of other cytokines, [IL-6, TGF-f3, tumor necrosis
factor (TNF)-a, granulocyte colony-stimulating factor, gran-
ulocyte-macrophage colony-stimulating factor and IL-1f],
chemokines (IL-8, growth regulated oncogene-o and mono-
cyte chemoattractant protein-1), and prostaglandin, including
prostaglandin E2, from fibroblasts, endothelial cells and
several other cell types (29-33). All of these cytokines, chemo-
kines and inflammatory cells are involved in the inflammatory
procedure (34,35). By contrast, these factors and cytokines
also promote the inflammatory response. Therefore, changes
in thymus function can affect the inflammatory response.
Low-grade inflammation has been shown to be crucial in the
pathogenesis of hypertension and involved in several processes
that promote the development of blood pressure (36-39).
Inflammatory factors in the process of inflammation can
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Figure 1. Factors involved in hypertension. Various types of cells and
cytokines and the autonomic nervous system are affected by thymus func-
tion, and may be involved in the process of hypertension and target organ
damage. Ang II, angiotensin II; ROS, reactive oxygen species; NK, natural
killer T cell; DC, dendritic cell; APC, antigen-presenting cell; Th, T helper;
Treg, regulatory T cell; Tc, cytotoxic T cell; IL, interleukin; IFN, interferon;
CNS, central nervous system; Ras, renin-angiotensin system.

cause endothelial damage and activate the renin system, and
studies have demonstrated that activation of the intrarenal
renin-angiotensin system (RAS) and endothelial dysfunction
are important in the development of hypertension (40-42). Nitric
oxide (NO) and superoxide may cause endothelial dysfunc-
tion in hypertension, and the balance between them may be
more important than the absolute levels of either alone (43,44).
Other cross-sectional studies have shown a correlation between
C-reactive protein (CRP), TNF and IL-6 and essential hyperten-
sion (37,45-47). Elevation of the serum concentrations of CRP
and cytokines demonstrates that low-grade inflammation is
present in hypertension (48,49). The association between CRP
and systemic hypertension has been established in multiple
cross-sectional studies, particularly following the emergence of
the high sensitivity CRP assays capable of detecting levels that
were earlier considered to be normal (39,50-54). Higher levels
of CRP may contribute to the development of systemic hyper-
tension by reducing the production of NO in endothelial cells,
increasing the production of endothelin 1 and leading to
vasoconstriction (39,55-57).

Evidence suggests that oxidative stress and angiotensin II
(Ang II) are critical in the pathogenesis of hypertension
and vascular endothelial dysfunction (43,44,58). Studies
have shown that Ang II induces severe inflammation and
activates redox-sensitive genes via the activation of nuclear
factor (NF)-«B, independent of blood pressure in double trans-
genic rats harboring human renin and human angiotensinogen
genes (43,59-61). It is well known that these cells, inflamma-
tory factors and oxidative stress are involved in the process of
target organ damage, as mentioned above (62-64). The thymus
may be involved in the process of hypertension and target
organ damage by regulating the inflammatory reaction.

Thymus function and the immune system. In 1970, Ebringer
and Doyle found that serum immunoglobulin levels were
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significantly increased in 30% of patients with hypertension,
and with the rapid development of clinical immunology,
increasing evidence has shown that hypertension is always
accompanied with immune dysfunction and there are immune
factors involved in the complications of hypertension (65-67).
Several studies have shown that, in hypertension, T cells can
cause high blood pressure, vascular disorders and kidney
disease, and the possible mechanisms include the release of
cytokines directly affecting vascular and renal function or
indirectly stimulating cells to release cytokines (68). The
thymus is an important and essential site for the generation
and maturation of T cells in vivo, as this microenvironment
induces and supports lineage commitment, differentiation and
the survival of thymus-seeding cells.

T cells and their subsets are involved, either directly or
through the secretion of certain factors, in the process of
hypertension. The selection of one of the T cells subsets,
Tregs, in the thymus is essential for preventing autoimmune
diseases (69). Tregs of the CD4*CD25*FOXP3* phenotype are
generated in the thymus, and are critical for the maintenance of
immune homeostasis and the suppression of naturally occur-
ring self-reactive T cells (70-72). Previously, it was shown
that changes in the immune system are important in the SHR
model and other models of hypertension; T cell activation and
vascular inflammation may contribute to the formation of high
blood pressure (48,73-76).

There is emerging evidence suggesting that the immune
response is significant in the pathogenesis of hyperten-
sion (77-79). The classical immune system is considered to
consist of two parts: Innate and adaptive immunity (77,80-82).
Innate immune responses mediated by macrophages are
triggered through toll-like receptors. In animal models of
hypertension, the infiltration of inflammatory cells from the
innate immune system, including dendritic cells (DCs), natural
killer cells and predominantly monocytes/macrophages
has been documented in the perivascular fat and adventitia
of blood vessels, and in target organs including the kidney
and heart (77,83). Various studies have suggested a role for
macrophages in the pathogenesis of hypertension and vascular
damage (84-87). Macrophages generate superoxide when
NADPH oxidase is activated by Ang II or mineralocorticoids,
and this may lead to vascular wall remodeling and contribute
to blood pressure (BP) elevation (49,88). Therefore, the role of
monocytes/macrophages has been expanded (89-91).

Adaptive immune responses are characterized by activated
lymphocytes, and interact with innate immunity in the patho-
physiology of cardiovascular disease and hypertension (92-94).
Several studies have confirmed that T cells and their subsets,
including effector T lymphocytes and Treg cells, are involved
in the process of hypertension (95-97). Rodriguez-Iturbe
and Johnson (98) showed that T lymphocytes contribute
to renal changes and BP elevation in rodents, which others
have since confirmed and extended (99). It has been reported
that T-effector cells that mediate, in part, the pressor effects
of Ang II are predominantly CD8* rather than CD4* (100).
Studies have shown that immune cells are involved in target
organ damage caused by hypertension (63,96). Possible mech-
anisms for their involvement in the process of hypertension
have been investigated previously. The change in thymus func-
tion can affect the function of macrophages and B cells. The

monocyte-macrophage system is crucial in innate immunity
and in the initiation of the adaptive immune response (101-103).
Plasma cells derived from B cells are involved in the humoral
immune response. In addition, DCs are significant in estab-
lishing self-tolerance and inducing antigen-specific immunity
through their ability to present self-antigens to developing
T cells in the thymus (104-106). Therefore, the thymus may
be involved in the process of hypertension via the immune
system.

Thymus function and the renal system. Inflammation is
associated with several hypertensive models in the kidney,
including two-kidney-one-clip hypertension and salt-sensitive
hypertension (107). T lymphocytes and macrophages infiltrate
the kidneys in various models of hypertension (108-111).
Changes of thymus function can also affect the function of
macrophages and T lymphocytes; therefore, changes in thymus
function can affect kidney function. The effects of RAS acti-
vation on kidney function and its role in hypertension have
been investigated extensively (112). Here discusses the role of
immune cells, induced by changes in thymus function in the
kidney, in hypertension.

As early as 1964, the injection of kidney extract in
normal rat hypertension confirmed the role of autoimmu-
nity in the renal infarct model (113). It was observed that
the infiltration of immune-cells and increased activity of
NF-«B in the kidney occurred at a prehypertensive age and
progressively increased with age in the SHR model, which
was inhibited by a broad-spectrum inhibitor, phyrrolidine
dithiocarbamate (114,115). Other studies have shown that
hypertension induced by Ang II or high salt can lead to the
activation of T cells and the subsequent entry of activated
T cells into the peripheral blood vessels and kidney (96,116).
Studies have also shown that the cells which accumulate in the
kidneys and blood vessel release pro-inflammatory cytokines,
and promote vasoconstriction and sodium retention, leading to
high BP (64,96,117,118).

Yang et al (119) found that modulation of NADPH
oxidase-derived oxidative stress and immune cell function
via A3 receptor signaling may be critical mechanisms in
the development of hypertension and associated target organ
damage. Their data showed that these changes in the innate
and adaptive immune systems in A3” mice assisted in elimi-
nating pathological changes in the renal and cardiovascular
systems following uninephrectomy-high salt and protected
the A3” mice from developing hypertension. This finding is
consistent with previous studies of the role of T cells in renal
injury and hypertension (63,120).

Thymus function and the autonomic nervous system (ANS).
The ANS, which is composed of sympathetic and parasym-
pathetic (vagal) innervation of the heart and predominantly
sympathetic innervation of the vascular system, controls and
regulates the secretion and activity of various organs, blood
vessels, smooth muscles and glands, and is involved in the
endocrine regulation of glucose, fat and fluid, electrolyte
metabolism, body temperature, sleep and BP (121,122). There
is evidence that the ANS is key in regulating the immune
system (123-127), and there is substantial evidence that
the thymus receives dense sympathetic innervation, which
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originates from postganglionic neurons in the upper para-
vertebral ganglia of the sympathetic chain, particularly the
superior cervical and stellate ganglia (128-131). The impor-
tance of the ANS has been recognized to be of main clinical
and therapeutic significance in the progression of chronic
cardiovascular disease, primarily as a result of changes in the
immune system (132-134). Previous studies have shown that
thymocytes and thymic epithelial cells express functional
adrenergic receptors (135,136). Norepinephrine (NE) released
from the sympathetic nervous system (SNS) can influence
immune responses and innervate the thymus (137,138).
Thymus involution is associated with increased noradrenergic
nerve fiber density and NE concentration, accompanied with
immunosuppression in male rats and mice (139). Several
studies have also shown that the effect of the SNS on thymic
cell maturation and development is the outcome of multiple
interactions between sympathetic and other neurotransmit-
ters and the endocrine system, and may also depend on the
immunological status of the host, under physiological condi-
tions (22,131,140,141).

The SNS is also activated in hypertension, influencing renal
perfusion and oxygenation (142). In the majority of studies in
humans and animal models of hypertension, drugs and interven-
tions can reduce BP and prolong survival rates by activating the
parasympathetic nervous system (vagal), by blocking or inhib-
iting the SNS and the RAS (143-149). Early studies have shown
that experimental lesioning of specific circumventricular organs
of the forebrain, including the subfornical organ, the anteroven-
tral third ventricle region involving the inferior aspects of the
lateral terminalis, prevents the formation of several forms of
experimental high BP (150,151). Increasing evidence indicates
that the cardiovascular damage caused by overstimulation of the
SNS and RAS, their a- and B-adrenergic receptors, and Ang 11
AT1 receptors is mediated through proinflammatory activation
of the immune system (152-155).

Resistant hypertension refers to the case of patient BP
remaining >140/90 mmHg following the use of a variety of
antihypertensive drugs (156-158). Traditional treatments
are not effective, therefore, it is necessary to develop novel
therapeutic approaches, and highly selective renal denerva-
tion (RDN) is one of these approaches (159-161). RDN, a
catheter-based approach developed to disrupt the renal sympa-
thetic nerves using radiofrequency energy, is a promising
therapy for resistant hypertension (142). Studies have shown
that the efficacy of RDN in different models of hypertension
requires examination as a method that matches the causal
mechanisms of the hypertension (161-165). Reported for the
first time in 2009, the ablation of renal artery denervation
technology, as a sympathetic nerve and RAS activity non-drug
block technique, has been successfully applied to the clinical
treatment of resistant hypertension (166). In a relatively small
number of patients, the first clinical study showed that this
technique appeared to be safe and effective (166-168). Systolic
BP and diastolic BP were reduced by 22/11 and 27/17 mmHg
at 6 and 12 months post-RDN, respectively, and no serious
adverse events had occurred at the follow-up at 1 year.
Worthley er al (169) adopted a single electrode radiofre-
quency ablation catheter for RDN treatment in a prospective,
multicenter, nonrandomized cohort study, which showed that
the patient BP was also significantly reduced at 6 months by

26/10 mmHg, compared with preoperative BP. The early stage
of the preliminary results of transcatheter renal artery ablation
treatment technology show it can safely and effectively reduce
BP levels in patients with resistant hypertension. Consequently,
it is suggested that RDN decreases sympathetic activity and
may potentially improve renal oxygenation, resulting in altered
sodium handling by the kidneys and a decrease in peripheral
vascular resistance, thereby removing the trigger for hyperten-
sion.

Taken together, the ANS may be involved in the process of
hypertension by regulating the function of the thymus.

3. Aging, thymosin 4 and hypertension

The thymus is the main immune organ capable of generating
T cells throughout life, and is crucial for the development,
selection and maintenance of peripheral T cells. It is well
documented that aging leads to an increase in infection and
mortality rate, which has a negative impact on the immune
response. Aging reduces immune function, partly due to thymic
involution leading to a marked loss of progenitors, epithelial
cells and differentiating thymocytes, causing a decline in the
production of naive T cells by the thymus (170-176).

The thymus transcription factor forkhead box N1 (Foxnl)
is the most important factor for complete physiological func-
tion of the thymus (174,177-179). With atrophy of the thymus,
the expression of the thymus aging-associated gene Foxnl
decreases, which leads to the downregulation of Foxnl with
age. Increasing the expression of Foxnl can improve the func-
tion of the thymus, and even promote regeneration of the thymus
by increasing the expression of Foxnl (180). Zuklys er al (181)
reported that Foxnl regulates the expression of genes involved
in antigen processing and thymocyte selection, in addition to
the transcriptional control of genes involved in the attraction
and lineage commitment of T cell precursors. Therefore, there
is evidence to suggest that the thymus Foxnl may be involved
in the process of high BP. In previous studies, the atrophy
of thymus organs in hypertensive mice has been confirmed,
however, the specific change in thymus function remains to be
fully elucidated.

Thymosin $4 (TR4), a peptide of 43 amino acids first iden-
tified by extraction from the calf thymus, is the most abundant
member of the highly conserved p-thymosin family (182,183).
It is part of the thymosin fraction 5, a partially purified thymic
preparation, which is involved in thymus-dependent lympho-
cyte regulation (184,185). The functions of TP4 include the
involvement of thymus-dependent lymphocyte maturation and
avariety of cellular processes, including cell migration, chemo-
taxis, maintenance of cell shape and cell division (186-189). It
is well documented that T4 can prevent inflammation and
fibrosis, promoting healing in the eye, skin, and heart, and
can control cell morphogenesis and motility by regulating the
dynamics of the actin cytoskeleton (190-193). In addition, T34
can promote repair and reduce late fibrosis in kidney injury,
and is increased in vascular, tubulointerstitial and myocardial
fibrosis (194-199). T4 can also enhance endothelial cell
differentiation and angiogenesis (200).

Cavasin et al found that a cytosolic enzyme prolyl
oligopeptidase (POP) involved in the metabolism of several
peptidic hormones and neuropeptides is widely distributed
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in the CNS, peripheral tissues and body fluids, and is respon-
sible for the release of N-acetyl-seryl-aspartyl-lysyl-proline
(Ac-SDKP) from its precursor T4 (201-205). Ac-SDKP
can reduce collagen deposition, and reverse inflammation
and fibrosis in the heart and kidneys when it is chronically
infused into rats with hypertension and myocardial infarc-
tion (206-211). In addition, decreased endogenous levels of
Ac-SDKP promote organ fibrosis, including the vasculature,
heart and kidneys (1,196,208,212-214). Previous studies have
shown that oral administration of POP inhibitors significantly
reduced endogenous levels of Ac-SDKP in the heart and
kidney in normal rats, and Ac-SDKP assisted in regulating
collagen protein content, through promoting collagen deposi-
tion, vascular fibrosis and glomerular sclerosis.

According to the above findings and previous studies, it
appears that the expression of Ang Il type 1 receptor-associated
protein (ATRAP) is downregulated, due to the increase of
Ang II, resulting in a decline in function of the thymus and
a decrease in expression of the thymus transcription factor
Foxnl, causing an imbalance of T cell subsets. ATRAP is a
transmembrane protein localized in intracellular trafficking
vesicles and the plasma membrane (215,216). In addition,
the secretion of thymosin prevents target organ damage and
fibrosis, which slows or reverses the process of hyperten-
sion. TP4 is decomposed into Ac-SDKP under the action
of POP, which can reduce the damage to the target organ,
ameliorating or improving BP. Based on the above, a proposed
mechanism of thymic function involved in the process of
hypertension has been hypothesized (Fig. 2). The change in
thymus function provides a novel target for the treatment of
hypertension.

4. Conclusion and prospects

Inflammatory and immune system mechanisms are crucial
in the pathophysiology of hypertension and cardiovascular
disease. T lymphocytes mature in the thymus and are
important in the inflammatory response and the immune
response, which can induce hypertension. The important
mechanism for regulating the inflammatory response involves
tissue and circulating leukocytes and macrophages. T lympho-
cytes are involved in the pathogenesis of hypertensive vascular
remodeling. An imbalance between Tregs and T effector
lymphocytes may be the cause of elevated BP and the progres-
sion of vascular damage.

T lymphocytes and macrophages infiltrate the kidneys in
various models of hypertension. The aggregation of inflamma-
tory factors, complement and immune response in the kidney
and renal vascular injury can cause hypertension. The ANS
is involved in the process of hypertension by modulating the
immune response.

Based on previous studies, the changes in thymus function
appear to have an effect on the process of hypertension. The
proposed mechanism underlying the involvement of the
thymus in the process of hypertension is as follows: Ang II may
affect the function of the thymus and expression of the thymus
transcription factor Foxnl through the downregulated expres-
sion of ATRAP, and then affect the balance of T lymphocytes,
which causes endothelial dysfunction and target organ damage,
including fibrosis, thereby leading to hypertension.
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Figure 2. Role of the thymus in hypertension and target organ damage.
Thymus dysfunction leads to the imbalance of T cell subsets and a
change in the secretion of T4, thereby aggravating the progression of
hypertension and target organ damage, in addition to other cardiovascular
events. T4, thymosin f4; Ang II, angiotensin II; ATRAP, Ang II type 1
receptor-associated protein; Foxnl, forkhead box N1; POP, prolyl oligopep-
tidase; Ac-SDKP, N-acetyl-seryl-aspartyl-lysyl-proline; Th, T helper; Tc,
cytotoxic T cell; Tregs, regulatory T cells.

In conclusion, novel data increasingly suggests the potential
for novel targets involved in thymus function for therapeutic
intervention to modify the course and reduce events in
cardiovascular disease and hypertension, as evidence has
increasingly implicated thymus-related mechanisms. Further
investigations on the changes of thymus function are likely to
assist in the development of novel therapeutic targets that may
improve outcomes in hypertension and cardiovascular disease,
and assist in identifying novel approaches for the treatment of
hypertension and vascular disease.
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