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Abstract. A variety of cells and cytokines have been shown 
to be involved in the whole process of hypertension. data 
from experimental and clinical studies on hypertension have 
confirmed the key roles of immune cells and inflammation 
in the process. dysfunction of the thymus, which modulates 
the development and maturation of lymphocytes, has been 
shown to be associated with the severity of hypertension. 
Furthermore, gradual atrophy, functional decline or loss of 
the thymus has been revealed to be associated with aging. The 
restoration or enhancement of thymus function via upregula-
tion in the expression of thymus transcription factors forkhead 
box N1 or thymus transplantation may provide an option to halt 
or reverse the pathological process of hypertension. Therefore, 
the thymus may be key in hypertension and associated target 
organ damage, and may provide a novel treatment strategy for 
the clinical management of patients with hypertension in addi-
tion to different commercial drugs. The purpose of this review 
is to summarize and discuss the advances in our understanding 
of the impact of thymus function on hypertension from data 
from animal and human studies, and the potential mechanisms.
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1. Introduction

Hypertension is characterized by the elevation of arterial 
pressure, and can be complicated by damage and metabolic 
changes in the heart, blood vessels, brain, kidney, retina 
and other target organs. It is a multifactorial disease and 
various immune cells and factors have been shown to be 
involved (Fig. 1) (1). There have been increases in the incidence 
and mortality rates of patients with heart and cerebrovascular 
disease; therefore, reducing the incidence and mortality rates 
of heart and cerebrovascular disease in patients with hyperten-
sion is the ultimate goal of antihypertensive therapy. However, 
even when blood pressure is under control, organ damage 
and abnormal metabolism may not be completely resolved, 
which suggests that other mechanisms may be involved in, or 
contribute to, the complex pathological processes of hyperten-
sion and may not be eliminated by current drug strategies. 
Antihypertensive therapy requires the establishment of blood 
pressure control (2). Therefore, it is of clinical and practical 
significance to investigate the mechanism of hypertension.

The thymus, as a key organ in T lymphocyte ontogenesis, 
has been shown to be crucial in optimizing immune system 
function throughout life (3-7), therefore, the pathological 
processes of high blood pressure are considered to be closely 
associated with the thymus. Studies have revealed that the 
thymus exhibits constant atrophy or hypofunction with 
age (8). Fukuda et al (9) suggested that the values of thymus 
weights were lower in Spontaneously hypertensive rats (SHR), 
compared with those in Wistar Kyoto (WKY) rats, when they 
investigated age-related changing in hematological values, 
serum biochemical constituents, and weights of various organs 
in both genders of SHR/Izm, Stroke-prone SHR and WKY/Izm 
rat strains. A previous study by Svendsen et al found that 
the salt-dependent phase of deoxycorticosterone acetate salt 
hypertension did not develop and the decreased perivascular 
infiltration of immune cells following renal infarction was not 
present in athymic ‘nude’ mice. However, if the thymus gland 
was transplanted into these athymic mice, then the capacity 
for developing salt-driven hypertension was restored (10-13). 
Ba et al showed that the thymus transplanted from neonatal 
normotensive Wistar rats to the prehypertensive SHR strain 
delayed the onset of hypertension from 5 to 32 weeks and 
decreased blood pressure in hypertensive adults; it is known 
that the SHR strain has normal blood pressure at birth and 
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gradually develops high blood pressure from ~5 weeks of age, 
reaching maximal levels at ~15-20 weeks of age (14). Therefore, 
the thymus may be involved in the process of hypertension. 
However, the mechanism of thymus function in the process 
of hypertension remains to be fully elucidated. The purpose 
of this review was to summarize and discuss advances in our 
knowledge of hypertensive vascular disease by the effect of 
thymus function on hypertension, with a particular focus on 
the mechanism underlying the effect of thymus function on 
hypertension.

2. Potential role of the thymus in hypertension

Thymus function and inflammatory procedure. The thymus is 
known to be essential in T cell development and maturation. 
The thymus is where the T cell repertoire is generated, and 
where T cells undergo positive and negative selection, leading 
to a wide functional MHc-restricted naïve T cell receptor αβ 
repertoire (15,16). In the development of T cells, they 
migrate within distinct thymus microenvironments, where 
they interact with stromal cells to provide signals crucial to 
the survival, proliferation, differentiation and selection of 
thymocytes (17-19). Naïve T cells can differentiate into helper 
T cells (Th), regulatory T cells (Tregs) and cytotoxic T cells. 
The generation and maturation of the specific T cell lineage 
involves specific and complex processes within the thymus, 
and several signaling pathways are involved in these processes. 
If thymocytes respond spontaneously to these antigens, they 
undergo negative selection, through apoptosis, or into Treg 
lineages (17). It is now well established that Tregs are produced 
via two main pathways in vivo. The majority of functionally 
mature Treg cells are produced in the thymus, where recogni-
tion of self-antigen by certain clones leads to their deviation 
into the thymus-derived forkhead box (Fox)p3+ Treg cell 
lineage (20,21). Th cells can secrete interleukin (IL)-4, IL-17 
and interferon (IFN)-γ. In addition, Tregs can secrete IL-10. 
IL-4 regulates the proliferation of activated B-cells and mast 
cells (22-25). In the absence of vascular tissue, the presence 
of IL4 promotes the substitution of activated macrophages 
into M2 cells and inhibits the activation of classical activated 
macrophage M1 cells. Increased macrophage repair (M2) 
combined with the secretion of IL-10 and transforming 
growth factor (TGF)-β results in a reduction of pathological 
inflammation (26‑28). IL‑17 is involved in the induction and 
regulation of pro‑inflammatory responses. IL‑17 induces the 
production of other cytokines, [IL-6, TGF-β, tumor necrosis 
factor (TNF)-α, granulocyte colony-stimulating factor, gran-
ulocyte-macrophage colony-stimulating factor and IL-1β], 
chemokines (IL-8, growth regulated oncogene-α and mono-
cyte chemoattractant protein-1), and prostaglandin, including 
prostaglandin E2, from fibroblasts, endothelial cells and 
several other cell types (29-33). All of these cytokines, chemo-
kines and inflammatory cells are involved in the inflammatory 
procedure (34,35). By contrast, these factors and cytokines 
also promote the inflammatory response. Therefore, changes 
in thymus function can affect the inflammatory response.

Low‑grade inflammation has been shown to be crucial in the 
pathogenesis of hypertension and involved in several processes 
that promote the development of blood pressure (36-39). 
Inflammatory factors in the process of inflammation can 

cause endothelial damage and activate the renin system, and 
studies have demonstrated that activation of the intrarenal 
renin-angiotensin system (RAS) and endothelial dysfunction 
are important in the development of hypertension (40-42). Nitric 
oxide (NO) and superoxide may cause endothelial dysfunc-
tion in hypertension, and the balance between them may be 
more important than the absolute levels of either alone (43,44). 
Other cross-sectional studies have shown a correlation between 
c-reactive protein (cRP), TNF and IL-6 and essential hyperten-
sion (37,45-47). Elevation of the serum concentrations of cRP 
and cytokines demonstrates that low‑grade inflammation is 
present in hypertension (48,49). The association between cRP 
and systemic hypertension has been established in multiple 
cross-sectional studies, particularly following the emergence of 
the high sensitivity cRP assays capable of detecting levels that 
were earlier considered to be normal (39,50-54). Higher levels 
of cRP may contribute to the development of systemic hyper-
tension by reducing the production of NO in endothelial cells, 
increasing the production of endothelin 1 and leading to 
vasoconstriction (39,55-57).

Evidence suggests that oxidative stress and angiotensin II 
(Ang II) are critical in the pathogenesis of hypertension 
and vascular endothelial dysfunction (43,44,58). Studies 
have shown that Ang II induces severe inflammation and 
activates redox-sensitive genes via the activation of nuclear 
factor (NF)-κB, independent of blood pressure in double trans-
genic rats harboring human renin and human angiotensinogen 
genes (43,59‑61). It is well known that these cells, inflamma-
tory factors and oxidative stress are involved in the process of 
target organ damage, as mentioned above (62-64). The thymus 
may be involved in the process of hypertension and target 
organ damage by regulating the inflammatory reaction.

Thymus function and the immune system. In 1970, Ebringer 
and doyle found that serum immunoglobulin levels were 

Figure 1. Factors involved in hypertension. Various types of cells and 
cytokines and the autonomic nervous system are affected by thymus func-
tion, and may be involved in the process of hypertension and target organ 
damage. Ang II, angiotensin II; ROS, reactive oxygen species; NK, natural 
killer T cell; dc, dendritic cell; APc, antigen-presenting cell; Th, T helper; 
Treg, regulatory T cell; Tc, cytotoxic T cell; IL, interleukin; IFN, interferon; 
cNS, central nervous system; Ras, renin-angiotensin system.
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significantly increased in 30% of patients with hypertension, 
and with the rapid development of clinical immunology, 
increasing evidence has shown that hypertension is always 
accompanied with immune dysfunction and there are immune 
factors involved in the complications of hypertension (65-67). 
Several studies have shown that, in hypertension, T cells can 
cause high blood pressure, vascular disorders and kidney 
disease, and the possible mechanisms include the release of 
cytokines directly affecting vascular and renal function or 
indirectly stimulating cells to release cytokines (68). The 
thymus is an important and essential site for the generation 
and maturation of T cells in vivo, as this microenvironment 
induces and supports lineage commitment, differentiation and 
the survival of thymus-seeding cells.

T cells and their subsets are involved, either directly or 
through the secretion of certain factors, in the process of 
hypertension. The selection of one of the T cells subsets, 
Tregs, in the thymus is essential for preventing autoimmune 
diseases (69). Tregs of the cd4+cd25+FOXP3+ phenotype are 
generated in the thymus, and are critical for the maintenance of 
immune homeostasis and the suppression of naturally occur-
ring self-reactive T cells (70-72). Previously, it was shown 
that changes in the immune system are important in the SHR 
model and other models of hypertension; T cell activation and 
vascular inflammation may contribute to the formation of high 
blood pressure (48,73-76).

There is emerging evidence suggesting that the immune 
response is significant in the pathogenesis of hyperten-
sion (77-79). The classical immune system is considered to 
consist of two parts: Innate and adaptive immunity (77,80-82). 
Innate immune responses mediated by macrophages are 
triggered through toll-like receptors. In animal models of 
hypertension, the infiltration of inflammatory cells from the 
innate immune system, including dendritic cells (dcs), natural 
killer cells and predominantly monocytes/macrophages 
has been documented in the perivascular fat and adventitia 
of blood vessels, and in target organs including the kidney 
and heart (77,83). Various studies have suggested a role for 
macrophages in the pathogenesis of hypertension and vascular 
damage (84-87). Macrophages generate superoxide when 
NAdPH oxidase is activated by Ang II or mineralocorticoids, 
and this may lead to vascular wall remodeling and contribute 
to blood pressure (BP) elevation (49,88). Therefore, the role of 
monocytes/macrophages has been expanded (89-91).

Adaptive immune responses are characterized by activated 
lymphocytes, and interact with innate immunity in the patho-
physiology of cardiovascular disease and hypertension (92-94). 
Several studies have confirmed that T cells and their subsets, 
including effector T lymphocytes and Treg cells, are involved 
in the process of hypertension (95-97). Rodriguez-Iturbe 
and Johnson (98) showed that T lymphocytes contribute 
to renal changes and BP elevation in rodents, which others 
have since confirmed and extended (99). It has been reported 
that T-effector cells that mediate, in part, the pressor effects 
of Ang II are predominantly cd8+ rather than cd4+ (100). 
Studies have shown that immune cells are involved in target 
organ damage caused by hypertension (63,96). Possible mech-
anisms for their involvement in the process of hypertension 
have been investigated previously. The change in thymus func-
tion can affect the function of macrophages and B cells. The 

monocyte-macrophage system is crucial in innate immunity 
and in the initiation of the adaptive immune response (101-103). 
Plasma cells derived from B cells are involved in the humoral 
immune response. In addition, DCs are significant in estab-
lishing self‑tolerance and inducing antigen‑specific immunity 
through their ability to present self-antigens to developing 
T cells in the thymus (104-106). Therefore, the thymus may 
be involved in the process of hypertension via the immune 
system.

Thymus function and the renal system. Inflammation is 
associated with several hypertensive models in the kidney, 
including two-kidney-one-clip hypertension and salt-sensitive 
hypertension (107). T lymphocytes and macrophages infiltrate 
the kidneys in various models of hypertension (108-111). 
changes of thymus function can also affect the function of 
macrophages and T lymphocytes; therefore, changes in thymus 
function can affect kidney function. The effects of RAS acti-
vation on kidney function and its role in hypertension have 
been investigated extensively (112). Here discusses the role of 
immune cells, induced by changes in thymus function in the 
kidney, in hypertension.

As early as 1964, the injection of kidney extract in 
normal rat hypertension confirmed the role of autoimmu-
nity in the renal infarct model (113). It was observed that 
the infiltration of immune-cells and increased activity of 
NF-κB in the kidney occurred at a prehypertensive age and 
progressively increased with age in the SHR model, which 
was inhibited by a broad-spectrum inhibitor, phyrrolidine 
dithiocarbamate (114,115). Other studies have shown that 
hypertension induced by Ang II or high salt can lead to the 
activation of T cells and the subsequent entry of activated 
T cells into the peripheral blood vessels and kidney (96,116). 
Studies have also shown that the cells which accumulate in the 
kidneys and blood vessel release pro‑inflammatory cytokines, 
and promote vasoconstriction and sodium retention, leading to 
high BP (64,96,117,118).

Yang et al (119) found that modulation of NAdPH 
oxidase-derived oxidative stress and immune cell function 
via A3 receptor signaling may be critical mechanisms in 
the development of hypertension and associated target organ 
damage. Their data showed that these changes in the innate 
and adaptive immune systems in A3-/- mice assisted in elimi-
nating pathological changes in the renal and cardiovascular 
systems following uninephrectomy-high salt and protected 
the A3-/- mice from developing hypertension. This finding is 
consistent with previous studies of the role of T cells in renal 
injury and hypertension (63,120).

Thymus function and the autonomic nervous system (ANS). 
The ANS, which is composed of sympathetic and parasym-
pathetic (vagal) innervation of the heart and predominantly 
sympathetic innervation of the vascular system, controls and 
regulates the secretion and activity of various organs, blood 
vessels, smooth muscles and glands, and is involved in the 
endocrine regulation of glucose, fat and fluid, electrolyte 
metabolism, body temperature, sleep and BP (121,122). There 
is evidence that the ANS is key in regulating the immune 
system (123-127), and there is substantial evidence that 
the thymus receives dense sympathetic innervation, which 
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originates from postganglionic neurons in the upper para-
vertebral ganglia of the sympathetic chain, particularly the 
superior cervical and stellate ganglia (128-131). The impor-
tance of the ANS has been recognized to be of main clinical 
and therapeutic significance in the progression of chronic 
cardiovascular disease, primarily as a result of changes in the 
immune system (132-134). Previous studies have shown that 
thymocytes and thymic epithelial cells express functional 
adrenergic receptors (135,136). Norepinephrine (NE) released 
from the sympathetic nervous system (SNS) can influence 
immune responses and innervate the thymus (137,138). 
Thymus involution is associated with increased noradrenergic 
nerve fiber density and NE concentration, accompanied with 
immunosuppression in male rats and mice (139). Several 
studies have also shown that the effect of the SNS on thymic 
cell maturation and development is the outcome of multiple 
interactions between sympathetic and other neurotransmit-
ters and the endocrine system, and may also depend on the 
immunological status of the host, under physiological condi-
tions (22,131,140,141). 

The SNS is also activated in hypertension, influencing renal 
perfusion and oxygenation (142). In the majority of studies in 
humans and animal models of hypertension, drugs and interven-
tions can reduce BP and prolong survival rates by activating the 
parasympathetic nervous system (vagal), by blocking or inhib-
iting the SNS and the RAS (143-149). Early studies have shown 
that experimental lesioning of specific circumventricular organs 
of the forebrain, including the subfornical organ, the anteroven-
tral third ventricle region involving the inferior aspects of the 
lateral terminalis, prevents the formation of several forms of 
experimental high BP (150,151). Increasing evidence indicates 
that the cardiovascular damage caused by overstimulation of the 
SNS and RAS, their α- and β-adrenergic receptors, and Ang II 
AT1 receptors is mediated through proinflammatory activation 
of the immune system (152-155).

Resistant hypertension refers to the case of patient BP 
remaining >140/90 mmHg following the use of a variety of 
antihypertensive drugs (156-158). Traditional treatments 
are not effective, therefore, it is necessary to develop novel 
therapeutic approaches, and highly selective renal denerva-
tion (RdN) is one of these approaches (159-161). RdN, a 
catheter-based approach developed to disrupt the renal sympa-
thetic nerves using radiofrequency energy, is a promising 
therapy for resistant hypertension (142). Studies have shown 
that the efficacy of RDN in different models of hypertension 
requires examination as a method that matches the causal 
mechanisms of the hypertension (161-165). Reported for the 
first time in 2009, the ablation of renal artery denervation 
technology, as a sympathetic nerve and RAS activity non-drug 
block technique, has been successfully applied to the clinical 
treatment of resistant hypertension (166). In a relatively small 
number of patients, the first clinical study showed that this 
technique appeared to be safe and effective (166-168). Systolic 
BP and diastolic BP were reduced by 22/11 and 27/17 mmHg 
at 6 and 12 months post-RdN, respectively, and no serious 
adverse events had occurred at the follow-up at 1 year. 
Worthley et al (169) adopted a single electrode radiofre-
quency ablation catheter for RdN treatment in a prospective, 
multicenter, nonrandomized cohort study, which showed that 
the patient BP was also significantly reduced at 6 months by 

26/10 mmHg, compared with preoperative BP. The early stage 
of the preliminary results of transcatheter renal artery ablation 
treatment technology show it can safely and effectively reduce 
BP levels in patients with resistant hypertension. consequently, 
it is suggested that RdN decreases sympathetic activity and 
may potentially improve renal oxygenation, resulting in altered 
sodium handling by the kidneys and a decrease in peripheral 
vascular resistance, thereby removing the trigger for hyperten-
sion.

Taken together, the ANS may be involved in the process of 
hypertension by regulating the function of the thymus.

3. Aging, thymosin β4 and hypertension

The thymus is the main immune organ capable of generating 
T cells throughout life, and is crucial for the development, 
selection and maintenance of peripheral T cells. It is well 
documented that aging leads to an increase in infection and 
mortality rate, which has a negative impact on the immune 
response. Aging reduces immune function, partly due to thymic 
involution leading to a marked loss of progenitors, epithelial 
cells and differentiating thymocytes, causing a decline in the 
production of naïve T cells by the thymus (170-176).

The thymus transcription factor forkhead box N1 (Foxn1) 
is the most important factor for complete physiological func-
tion of the thymus (174,177-179). With atrophy of the thymus, 
the expression of the thymus aging-associated gene Foxn1 
decreases, which leads to the downregulation of Foxn1 with 
age. Increasing the expression of Foxn1 can improve the func-
tion of the thymus, and even promote regeneration of the thymus 
by increasing the expression of Foxn1 (180). Žuklys et al (181) 
reported that Foxn1 regulates the expression of genes involved 
in antigen processing and thymocyte selection, in addition to 
the transcriptional control of genes involved in the attraction 
and lineage commitment of T cell precursors. Therefore, there 
is evidence to suggest that the thymus Foxn1 may be involved 
in the process of high BP. In previous studies, the atrophy 
of thymus organs in hypertensive mice has been confirmed, 
however, the specific change in thymus function remains to be 
fully elucidated.

Thymosin β4 (Tβ4), a peptide of 43 amino acids first iden-
tified by extraction from the calf thymus, is the most abundant 
member of the highly conserved β-thymosin family (182,183). 
It is part of the thymosin fraction 5, a partially purified thymic 
preparation, which is involved in thymus-dependent lympho-
cyte regulation (184,185). The functions of Tβ4 include the 
involvement of thymus-dependent lymphocyte maturation and 
a variety of cellular processes, including cell migration, chemo-
taxis, maintenance of cell shape and cell division (186-189). It 
is well documented that Tβ4 can prevent inflammation and 
fibrosis, promoting healing in the eye, skin, and heart, and 
can control cell morphogenesis and motility by regulating the 
dynamics of the actin cytoskeleton (190-193). In addition, Tβ4 
can promote repair and reduce late fibrosis in kidney injury, 
and is increased in vascular, tubulointerstitial and myocardial 
fibrosis (194-199). Tβ4 can also enhance endothelial cell 
differentiation and angiogenesis (200).

cavasin et al found that a cytosolic enzyme prolyl 
oligopeptidase (POP) involved in the metabolism of several 
peptidic hormones and neuropeptides is widely distributed 
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in the CNS, peripheral tissues and body fluids, and is respon-
sible for the release of N-acetyl-seryl-aspartyl-lysyl-proline 
(Ac-SdKP) from its precursor Tβ4 (201-205). Ac-SdKP 
can reduce collagen deposition, and reverse inflammation 
and fibrosis in the heart and kidneys when it is chronically 
infused into rats with hypertension and myocardial infarc-
tion (206-211). In addition, decreased endogenous levels of 
Ac‑SDKP promote organ fibrosis, including the vasculature, 
heart and kidneys (1,196,208,212-214). Previous studies have 
shown that oral administration of POP inhibitors significantly 
reduced endogenous levels of Ac-SdKP in the heart and 
kidney in normal rats, and Ac-SdKP assisted in regulating 
collagen protein content, through promoting collagen deposi-
tion, vascular fibrosis and glomerular sclerosis.

According to the above findings and previous studies, it 
appears that the expression of Ang II type 1 receptor-associated 
protein (ATRAP) is downregulated, due to the increase of 
Ang II, resulting in a decline in function of the thymus and 
a decrease in expression of the thymus transcription factor 
Foxn1, causing an imbalance of T cell subsets. ATRAP is a 
transmembrane protein localized in intracellular trafficking 
vesicles and the plasma membrane (215,216). In addition, 
the secretion of thymosin prevents target organ damage and 
fibrosis, which slows or reverses the process of hyperten-
sion. Tβ4 is decomposed into Ac-SdKP under the action 
of POP, which can reduce the damage to the target organ, 
ameliorating or improving BP. Based on the above, a proposed 
mechanism of thymic function involved in the process of 
hypertension has been hypothesized (Fig. 2). The change in 
thymus function provides a novel target for the treatment of 
hypertension.

4. Conclusion and prospects

Inflammatory and immune system mechanisms are crucial 
in the pathophysiology of hypertension and cardiovascular 
disease. T lymphocytes mature in the thymus and are 
important in the inflammatory response and the immune 
response, which can induce hypertension. The important 
mechanism for regulating the inflammatory response involves 
tissue and circulating leukocytes and macrophages. T lympho-
cytes are involved in the pathogenesis of hypertensive vascular 
remodeling. An imbalance between Tregs and T effector 
lymphocytes may be the cause of elevated BP and the progres-
sion of vascular damage.

T lymphocytes and macrophages infiltrate the kidneys in 
various models of hypertension. The aggregation of inflamma-
tory factors, complement and immune response in the kidney 
and renal vascular injury can cause hypertension. The ANS 
is involved in the process of hypertension by modulating the 
immune response.

Based on previous studies, the changes in thymus function 
appear to have an effect on the process of hypertension. The 
proposed mechanism underlying the involvement of the 
thymus in the process of hypertension is as follows: Ang II may 
affect the function of the thymus and expression of the thymus 
transcription factor Foxn1 through the downregulated expres-
sion of ATRAP, and then affect the balance of T lymphocytes, 
which causes endothelial dysfunction and target organ damage, 
including fibrosis, thereby leading to hypertension.

In conclusion, novel data increasingly suggests the potential 
for novel targets involved in thymus function for therapeutic 
intervention to modify the course and reduce events in 
cardiovascular disease and hypertension, as evidence has 
increasingly implicated thymus-related mechanisms. Further 
investigations on the changes of thymus function are likely to 
assist in the development of novel therapeutic targets that may 
improve outcomes in hypertension and cardiovascular disease, 
and assist in identifying novel approaches for the treatment of 
hypertension and vascular disease.
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