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Abstract: Cats are susceptible to a wide range of influenza A viruses (IAV). Furthermore, cats can
serve as an intermediate host, and transfer avian influenza virus (AIV) H7N2 to a veterinarian.
In this report, a novel reassortant influenza virus, designated A/feline/Jiangsu/HWT/2017 (H3N2),
and abbreviated as FIV-HWT-2017, was isolated from nasal swab of a symptomatic cat in Jiangsu
province, China. Sequence analysis indicated that, whilst the other seven genes were most similar to
the avian-origin canine influenza viruses (CIV H3N2) isolated in China, the NS gene was more closely
related to the circulating human influenza virus (H3N2) in the region. Therefore, FIV-HWT-2017 is a
reassortant virus. In addition, some mutations were identified, and they were similar to a distinctive
CIV H3N2 clade. Whether these cats were infected with the reassortant virus was unknown, however,
this random isolation of a reassortant virus indicated that domestic or stray cats were “mixing vessel”
for IAV cannot be ruled out. An enhanced surveillance for novel influenza virus should include pet
and stray cats.

Keywords: novel influenza virus; cats; reassortant

1. Introduction

Influenza A virus infects a wide range of host species, from birds to mammals, and
it exhibits varying degrees of host adaptation [1]. There has been recent increases in
cross-species transmission of H3-subtype avian-origin influenza virus (AIV) to mammalian
species, including pigs, cats, and dogs [2–4]. Cats have recently become a noticeable host
for influenza infections [5–7]. In December 2016, a low pathogenic avian influenza (LPAI)
A (H7N2) virus was identified as the causative source of an outbreak of respiratory illness
in a cat shelter, New York. A veterinarian was infected, possibly a result of occupational
exposure to infected cats. This report highlighted the threat of public health risk by cats
infected with influenza viruses [8]. Of note, after the H3N2-subtype canine influenza
virus (CIV) emerged in South Asia, CIV H3N2 infections in domestic cats were reported
soon after, indicating the susceptibility of and the risk associated with this host species
in the emergence of novel influenza virus [4]. Experimentally infected cats indicated
that felines are aberrant hosts (as are humans and other mammals), with symptoms and
characteristic lung lesions, and by its limited spreading [9,10].

Interspecies transmission of CIV H3N2 to domestic cats in South Korea [4] highlighted
a significant public health risk, as pet cats and dogs come into very contact with humans.
Both cats and dogs have alpha-2,6 and alpha-2,3 receptors in the trachea and lung, they
can serve as intermediate hosts for avian- and mammalian-origin influenza viruses [11,12].
Furthermore, because of their carnivorous behavior, particularly towards birds, cats are at
high risk for AIV infection. These infections provide a condition for mammalian adaptation
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for further interspecies transmission to other mammalian species, including humans. De-
spite the fact that cats had been shown to be susceptible to CIV H3N2 [13] by experimental
transmission, the situation in domestic cats was unknown, particularly in China where the
pet cat population has exploded in recent years.

In this report, we characterized a novel reassortant feline influenza H3N2 virus
which was randomly isolated from a symptomatic cat. Diagnostic mutations—which were
associated with mammalian adaptation—were found. The current COVID-19 pandemic
illustrates the importance of the surveillance of novel respiratory viruses in humans, cats
and other pet animals. Enhanced surveillance should be instituted to prevent emergence
of novel influenza virus or SARS-CoV-2-like viruses to reduce this public health risk.

2. Material and Method
2.1. Virus Isolation

The nasal swab was obtained from a four-month-old female British Shorthair cat
treated by a veterinary clinic in Nanjing, Jiangsu province of China, in March 2017. The
cat exhibited fever, cough, and loss of appetite. After treatment with antibiotics and
interferon-α for two weeks, the cat fully recovered. A follow-up investigation found that
the cat often ventured out and had frequent contact with other stray cats or dogs. Poly-
merase chain reaction (PCR) was performed on the sample to detect common respiratory
infections in cats for feline calicivirus (FCV), feline herpesvirus type 1 (FHV-1) and feline
panleucopenia virus (FPV), using specific primers [14–18]. To isolate the influenza A virus,
the nasal swab was inoculated into 10-day-old specific pathogen-free (SPF) embryonated
chicken eggs. The allantoic fluids were collected at 48 h post-inoculation, and the hemag-
glutination (HA) test was performed using chicken erythrocytes (RBCs) [2]. The isolate
was identified via a hemagglutination inhibition (HI) test [19] with the reference positive
chicken sera according to procedures recommended by the World Organization for Animal
Health (OIE). At the same time, serum samples from early-stage and convalescence of the
index cat were tested. Briefly, 25 µL of serial 2-fold dilutions of the serum were mixed
with four hemagglutinin units (HAU) of virus tested in V-shaped microtiter plates and
kept for 30 min at room temperature. Then, 50 µL of 1.0% chicken RBCs were added to
each well and incubated at room temperature (22 ◦C to 25 ◦C) for 30 min. The HI titer
was expressed as the reciprocal of the highest serum dilution that completely inhibited the
hemagglutination of four HAU of virus.

2.2. RT-PCR, Sequencing and Analysis of Sequences

Viral RNA was extracted using Trizol reagent (Invitrogen, Carlsbad, CA, USA). RNA
concentrations were measured by a spectrophotometer (260 nm/280 nm), followed by gen-
eration of cDNA with Reverse-transcription Kit (TaKaRa, Dalian, China) using a universal
12bp primers (AGCAAAAGCAGG). PCR amplification was performed using universal
primers for influenza A virus [20]. PCR products were cloned into pMD-18T (TaKaRa)
and sequenced. The Seqman program was used to compile and analyze the sequences.
The nucleotide sequences of the isolate and the reference viruses were added into the
MegAlign program and conducted the ClustalW analysis to generate the homology be-
tween the isolate and the reference viruses. Maximum-likelihood (ML) phylogenetic trees
were generated using the IQ-TREE v 2.1.2 with automatic model selection functionality
to select most suitable nucleotide substitution model [21,22]. The bootstrap values were
set at 1000 bootstrap replicates. The sequences of the virus were submitted to GenBank
(Accession numbers: OK357996-OK358003)
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3. Results
3.1. Virus Isolation

The nasal swab did not cause cytopathic effects (CPE) until the fourth passage on
CRFK cells, and PCR results were negative for FCV, FHV-1 and FPV (data not shown).
After the nasal swab was inoculated into SPF embryonated chicken eggs for 48 h, the
allantoic fluids were assayed by agglutination of chicken RBCs in a HA text. Additionally,
hemagglutination-inhibition (HAI) assay with specific antisera determined that it was a
H3 subtype influenza virus. This virus was designated as A/feline/Jiangsu/HWT/2017
(H3N2) (FIV-HWT), and it was selected for further characterization. The HI test of the sera
in early-stage and convalescence of the index cats were positive against H3N2 FIV-HWT,
hence establishing the etiology.

3.2. Nucleotide Sequencing and Phylogenetic Analysis

A total of eight gene segments from strain FIV-HWT were amplified by RT-PCR
using the universal primers for influenza A virus, followed by cloning into pMD-18T
for sequencing.

The homologous sequences for each segment were aligned by basic alignment search
tool (BLAST, http://blast.ncbi.nlm.nih.gov/Blast.cgi. (accessed on 11 September 2021,
for verification)). Analysis showed that all of the gene segments, except NS, displayed a
close relationship to CIV H3N2 from China, and the nucleotide sequence identity ranged
from 98.1–99.8%, as shown in Table 1. The NS gene was highly related to that of human
influenza A virus, A/Victoria/55/2015(H3N2), with a similarity of 99.42% (Table 1). The
highest nucleotide sequence similarities between the isolate and the FIVs from Korea was
97.8% for the HA, 97.2% for the NA, 97.2% for the PB1, 97.8% for the PB2, 98.3% for the PA,
99.5% for the NP, 98.5% for the M and 97.4% for the NS.

Table 1. Influenza A viruses with the highest nucleotide sequence identity to the HWT isolate.

Gene Nucleotide Sequence
Compared Identity (%) Virus Designation GenBank

Accession Number

PB2 2280 98.6 A/canine/Guangdong/12/2012 (H3N2) KF826944
PB1 2274 98.1 A/canine/Guangdong/12/2012 (H3N2) KF826945

PA 2151 98.7 A/canine/Guangdong/12/2012 (H3N2)
A/canine/Heilongjiang/L1/2013(H3N2)

KF826946
KF042275

HA 1701 98.2 A/canine/Nanjing/11/2012 (H3N2) KF322105
NP 1497 99.8 A/canine/Guangdong/05/2011 (H3N2) JX414247
NA 1417 98.7 A/canine/Nanjing/11/2012(H3N2) KF322106
M 982 99.0 A/canine/Guangdong/12/2012(H3N2) KF826950
NS 838 99.42 A/Victoria/55/2015(H3N2) CY253950

Phylogenetic analysis revealed that the eight gene segments were clustered very
closely to those of CIV H3N2 circulating in Guangdong, Jiangsu, and Heilongjiang, between
2006 and 2013 (Figure 2). The HA (Figure 2A) and NA (Figure 2B) were closely related to
those of A/canine/Nanjing/11/2012 (H3N2), and the PB2 (Figure 2A), PB1 (Figure 2B),
PA (Figure 2C) were also closely to the Guangdong CIV H3N2. However, the NS (Figure 2F)
was more closely related to human virus A/Victoria/55/2015 (H3N2). The phylogenetic
results demonstrated that FIV-HWT was probably originated from CIV H3N2, but as a
reassortant with the NS from human influenza virus H3N2.

Viruses isolated in the present study has the cleavage site for HA2 to be PERQTRGLL,
with a single 332L compared to 332F for the reference sequences (Table 2). This amino
acid sequence is characteristic of LPAI. For the HA, with Q226 and G228 at its receptor
binding sites (Table 2), suggesting that this virus preferentially binds to avian-like NeuAca2,
3-Gal receptors [23]. Of note, the antigenic sites are conserved among the CIVs (data not
shown). Comparing to the deduced amino acid sequences of the NA protein of the FIVs,
an inserting of three amino acids (KEI) was detected at position 75–77 (Table 2). The
effect of this insertion is unclear. For drug-resistance, diagnostic amino acid residues such
as 119E, 222I, 274H, and 292R were present in the NA (Table 2), suggesting sensitivity to

http://blast.ncbi.nlm.nih.gov/Blast.cgi
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neuraminidase inhibitors. The amino acid residues from other FIVs and CIVs at positions 26,
27, 30 and 31 in the M2 protein were L, V, A, and S, respectively. To date, for the influenza
viruses examined, 31N was only present in A/feline/Guangdong/1/2012 (H3N2) (Table 2),
suggesting a reduction in the sensitivity to amantadine and rimantadine [24]. However, A31I
was not found in any isolates from China. In addition, FIV-HWT-2017 has the conserved 627E
and 701D in PB2 (Table 2), suggesting a low virulence for mice and humans.

Table 2. Molecular analysis of the deduced amino acid sequences of the A/feline/Jiangsu/HWT/2017 (H3N2) with
reference strains.

HA NA M2 PB2

Strains
Cleavage Site Receptor Binding

Sites Insertion Oseltamivir-Resistant
Amino Acids

Amantadine Resistant
Amino Acids

Virulence
Determinant

324–332 226 228 75–77 119 222 274 292 26 27 30 31 627

F-JS-17 PERQTRGLL Q G KEI E I H R L V A S E
F-Kor-10 PERQTRGLF Q G - - - E I H R L V A S E

F-Kor-FY-10 PERQTRGLF Q G - - - E I H R L V A S E
F-HLJ-14 PERQTRGLF Q G KEI E I H R L V A S E
F-GD-11 PEKQTRGLF Q G - - - E I H R L V A S E
F-GD-12 PEKQTRGLF Q G - - - E I H R L V A N E
C-GX-12 PEKQTRGLF Q G - - - E I H R L V A S E
D-JS-04 PEKQTRGLF Q G - - - E I H R L V A S E

Can-NJ-12 PERQTRGLF Q G KEI E I H R no no no no no
Can-GD-12 PERQTRGLF Q G - - - E I H R L V A S E
Can-HLJ-13 PERQTRGLF Q G KEI E I H R L V A S E
Can-Kor-15 PERQTRGLF Q G - - - E I H R L I A S E
Can-USA-16 PERQTRGLF Q G - - - E I H R L I A S E

F-JS-17: A/Feline/Jiangsu/HWT/2017(H3N2); F-Kor-10: A/feline/Korea/01/2010(H3N2); F-Kor-FY-10: A/feline/Korea/FY028/2010 (H3N2);
F-HLJ-14: A/feline/Heilongjiang/ZH/2014; F-GD-11: A/feline/Guangdong/1/2011(H3N2); F-GD-12: A/feline/Guangdong/1/2012 (H3N2);
C-GX-12:A/chicken/Guangxi/125C8/2012; D-JS-04:A/duck/Jiangsu/26/2004; Can-NJ-12:A/canine/Nanjing/11/2012; Can-GD-
12:A/canine/Guangdong/12/2012; Can-HLJ-13:A/canine/Heilongjiang/L1/2013; Can-Kor-15: A/canine/Korea/S3001/2015;
Can-USA-16:A/canine/Wisconsin/19137/2016. no: no sequence. - - -: no insertion.
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Figure 2. Phylogenetic trees of the internal gene segments of the H3N2 influenza viruses. The trees were created by the
maxi-mum-likelihood (ML) with a bootstrap value of 1000 replicates (shown for each node). Viruses isolated in the present
study are labeled with red dot and other isolates from cats are labeled with yellow rhombus. The isolates from canine are
labeled with blue violet rhombus. Branches of different colors represent different lineages. (A–F) Phylogenetic tree for PB1,
PB2, PA, NP, MP, and NS, respectively. Scale Bar: Nucleotide substitutions per site.

4. Discussion

It has been documented that several RNA viruses had cross-species as “spillover” from
domestic and wild animals to humans through cross-species transmission, resulting in the
most notorious emerging zoonotic diseases, as represented by SARS-CoV-2 and influenza
viruses [25–27]. Furthermore, the ability of rapid evolution with frequent recombination
renders RNA viruses a significant public health risk [28,29]. The identification of a CIV
H3N2 infection in cats was unsurprising, as a 2005 report describing tigers in Thailand fed
with poultry contaminated by H5N1 became sick and died of the infection [30]. Reports
of infection in cats by various subtypes of avian and mammalian influenza virus (AIV
H5N1, H5N6, H7N2, pandemic H1N1, and CIV H3N2) have recently increased [8,31–35].
Furthermore, since both α-2,3- and α-2,6-sialic acid-receptors are present in the epithelial
cells at the respiratory tracts and gastrointestinal tracts, cats are susceptible to natural and
experimental influenza virus infections [4]. However, most of above reports of interspecies
infections were sporadic. Possibly, these viruses were not able to sustain in cats because of
inefficient transmission.

The situation regarding CIV H3N2 infection in domestic and stray cats remained
unknown. In this study, we had isolated and characterized a novel reassortant feline
influenza virus from CIV H3N2 from a symptomatic pet cat. Phylogenetic and molecular
characteristics of this isolate had shown that this virus is closely related to CIV H3N2
circulating in China, but the NS1 gene was from human influenza A virus, most closely
related to A/Victoria/55/2015 (H3N2). There was no more than 3% divergence in the
nucleotide and the amino acid sequences among the HA and NA genes of all tested strains.
Of note, a CIV H3N2 isolate from a cat had several non-synonymous substitutions to that
of CIV H3N2 [4], but there were no more than 2% divergence in its genes. These results
may suggest that these sequences were highly conserved, probably a result of antigenic
pressure, despite the host range shift by this interspecies transmission.

The ML tree (Figure 2) also showed that these seven viral genes (PB2, PB1, PA, HA,
NP, NA, M) isolated from this symptomatic pet cat were almost identical to those of the
canine influenza H3N2 virus. In the previous study, the G186V, G225D and Q226L/I
substitutions of the HA gene were the major contributors to the high-affinity binding of this
virus to human receptors, which preferentially bind to α2,6-linked sialic acids (SA). This
shift in receptor binding increases the likelihood of upper-respiratory-tract transmission [9].
A signifier of highly pathogenic avian influenza virus (HPAI) is a polybasic (basic amino acid
residues RKRT) cleavage site in the HA protein [36]. This site, along with amino acid sequence
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analysis of the PB2, HA, NA, and M gene of CIV H3N2 isolated from dogs and cats, and from
this reassortant virus, were not found. Furthermore, given the evidence of transmission between
infected cats and humans [8], this public health risk should not be overlooked.

Of note, despite the limitation of current report that only one isolate was identified
so far, the fact that the human NS gene was included in this reassortant is significant. The
NS gene had been shown to play a significant role in the virulence [37,38] by modulating
cytokines [39], specifically as an antagonist to alpha-interferon. Whether this novel virus,
FIV-HWT-2017, has increased virulence by interfering the host immune response remains
to be determined. Furthermore, the number of pet cats in this region significantly increased
in the past decades. Moreover, as companion animals, cats have a special status in modern
human life. The high frequency of close interactions between cats and dogs presents a high
for multiple cross-species virus transmission.

Previous reports had indicated that CIV H3N2 had established as an enzootic infection
in dogs from eastern provinces of China. With this host species expanding into cats, consid-
ering that China had been known as an “epicenter” for the emergence of novel influenza
viruses, enhanced surveillance is warranted. We are currently conducting serological
survey to evaluate the extent of CIV H3N2 as well as FIV-HWT infection in dogs and cats
from this region. Furthermore, pets had been reported infected with SARS-CoV-2, due
to the close and frequent contact with humans, their potential role in influenza virus and
SARS-CoV-2 should be further investigated.

5. Conclusions

We have shown molecular evidence for a reassortant feline influenza virus derived
from CIV H3N2 and from human H3N2. Given the proximity to humans as pets, and
their unique behavior towards birds, cats may play a more significant role in the ecology
of influenza virus, and as potential mixing vehicle for interspecies transmission and the
generation of novel influenza virus with pandemic potential.
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