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Abstract

Background and purpose

Spared fibers after spinal cord injury (SCI) tend to consist predominantly of subcortical cir-

cuits that are not under volitional (cortical) control. We aim to improve function after SCI by

using targeted physical exercises designed to simultaneously stimulate cortical and spared

subcortical neural circuits.

Methods

Participants with chronic motor-incomplete SCI enrolled in a single-center, prospective inter-

ventional crossover study. Participants underwent 48 sessions each of weight-supported

robotic-assisted treadmill training and a novel combination of balance and fine hand exer-

cises, in randomized order, with a 6-week washout period. Change post-intervention was

measured for lower extremity motor score, soleus H-reflex facilitation; seated balance func-

tion; ambulation; spasticity; and pain.

Results

Only 9 of 21 enrolled participants completed both interventions. Thirteen participants com-

pleted at least one intervention. Although there were no statistically significant differences,

multimodal training tended to increase short-interval H-reflex facilitation, whereas treadmill

training tended to improve dynamic seated balance.

Discussion

The low number of participants who completed both phases of the crossover intervention

limited the power of this study to detect significant effects. Other potential explanations for
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the lack of significant differences with multimodal training could include insufficient engage-

ment of lower extremity motor cortex using skilled upper extremity exercises; and lack of

skill transfer from upright postural stability during multimodal training to seated dynamic bal-

ance during testing. To our knowledge, this is the first published study to report seated pos-

turography outcomes after rehabilitation interventions in individuals with SCI.

Conclusion

In participants with chronic incomplete SCI, a novel mix of multimodal exercises incorporat-

ing balance exercises with skilled upper extremity exercises showed no benefit compared to

an active control program of body weight-supported treadmill training. To improve partici-

pant retention in long-term rehabilitation studies, subsequent trials would benefit from a par-

allel group rather than crossover study design.

Introduction

Most spinal cord injuries (SCI) spare a portion of axonal fibers at the injury level [1,2]. Fibers

of subcortical pathways such as the reticulospinal and propriospinal tracts make up a signifi-

cant portion of spared circuitry that can mediate substantial functional recovery [3,4]. Subcor-

tical circuits connect to many of the same spinal motor neurons to which corticospinal circuits

connect [5–8]. Corticospinal fibers also make collateral connections to reticulospinal and

other descending subcortical circuits [7,9]. Experiments in animals have demonstrated the

potential for alternate or detour connections between cortical, subcortical, and spinal circuits

to mediate recovery after SCI [10–13].

Our group has previously applied targeted physical exercises that are designed to facilitate

detour connectivity by repetitively and simultaneously stimulating cortical and spared subcor-

tical circuits. This multimodal (MM) exercise strategy combines postural tasks (which activate

subcortical circuits) with fine motor tasks (which activate cortical circuits). In animal models

and non-disabled human volunteers, we found that compared with exercises stimulating corti-

cal or spinal circuits alone, MM exercises promoted improved recovery from central nervous

system injury and increased corticospinal neurotransmission [14–16].

Robotic-assisted weight-supported treadmill exercise (TM) is an established form of physi-

cal rehabilitation that is associated with positive clinical outcomes in participants with incom-

plete SCI [17–20]. Treadmill training largely targets spinal locomotor central pattern

generator circuits [21,22]. However, it requires expensive equipment and space that is gener-

ally available only in institutional settings. Based on our earlier findings, we initiated a clinical

trial in humans with chronic SCI designed to compare the effects of our novel multimodal

exercise program to that of treadmill training (TM). We hypothesized that compared with

TM, MM exercises would significantly increase volitional lower extremity motor scores and

corticospinal neurotransmission.

Methods

Participants

Participants between the ages of 21 and 65 with motor incomplete SCI (as determined by the

International Standards for Neurological Classification of SCI (ISNCSCI)), or volitional

strength of at least 1/5 according to ISNCSCI in two or more key lower extremity muscles,
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with�1 year duration of injury were recruited. Enrollment occurred between February 2013

and May 2016. Initially, only participants with thoracic SCI were included; entry criteria were

later expanded to include participants with injury level between C2-T12 who had at least anti-

gravity strength in the deltoids, biceps, and triceps muscles. Exclusion criteria included signifi-

cant neurological or coronary artery disease, severe osteoporosis, severe joint stiffness, or

excessive risk of transcranial magnetic stimulation (epilepsy, prior intracranial hemorrhage,

amphetamine usage, and other factors that increase seizure risk). A full list of inclusion and

exclusion criteria is provided on ClinicalTrials.gov, where this study was registered (https://

clinicaltrials.gov/ct2/show/NCT01740128). Subjects provided written informed consent. All

procedures and data analysis occurred at the James J. Peters Veterans Affairs Medical Center,

with approval by the Institutional Review Board of the Bronx VA Medical Center Research &

Development Program (151) (Protocol #01407). All applicable institutional and governmental

regulations concerning the ethical use of human volunteers according to the principles of the

Declaration of Helsinki were followed during the course of this research.

Design

This study was a single-group, partially blinded crossover trial (Fig 1). Each phase consisted of

48 sessions of one intervention followed by a washout period of at least 6 weeks. TM or MM

intervention order was randomly assigned using Research Randomizer (www.randomizer.

org). An otherwise unaffiliated staff member revealed the intervention allocation after study

personnel obtained informed consent from each newly enrolled participant. Three to five ses-

sions per week were scheduled. For subject convenience, up to two sessions were performed

during a single visit, with a rest period of at least 30 minutes between sessions. Outcome assess-

ments were performed at baseline and within one week of completing an intervention. An

expert evaluator blinded to intervention assessed the primary clinical outcome (lower extrem-

ity motor score). A follow-up evaluation was planned for 6 weeks after intervention comple-

tion. With expected dropout rate of 25% and effect size of 1 based on prior manuscripts

reporting electrophysiological outcomes [23,24], enrollment of 24 participants was calculated

to provide power�0.83 to reject the null hypothesis on a two-tailed independent-sample t-test

with alpha of 0.05.

Exercises

General. Sessions lasted 30 minutes not including setup, with 1–2 minute rest periods at

least every 10 minutes. Vital signs (brachial cuff blood pressure, heart rate recorded by Dina-

map V100) and rating of perceived exertion (RPE) via the Borg Scale [25] were recorded at

least twice per session. Exercise task difficulty was adjusted as detailed below to achieve a

desired range of RPE between 11 to 15 (out of 20). Study personnel continuously monitored

and frequently questioned participants for any adverse symptoms. Body weight support

(BWS) for both interventions was provided by the overhead harness of the Lokomat system

(Hocoma). BWS was set to 60% of body weight initially, and then gradually reduced as toler-

ated. Note that even subjects with complete paraplegia can passively support 40% or more of

their own body weight in the upright position [26–28]. Several participants who reached inde-

pendent weight support still wore the harness for safety.

Treadmill exercise (TM). Participants walked on a robotic-assisted treadmill (Lokomat,

Hocoma) at initial speeds of 1–1.5 km/h. Speed was gradually increased as tolerated to a maxi-

mum of 3.2 km/h. The Lokomat’s built-in guidance force (amount of assistance to reach a pre-

defined gait kinematic pattern) was also gradually reduced as tolerated. Participants were

reminded to swing their arms while walking.

Multimodal exercises for SCI
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Multimodal exercise (MM). Participants performed simultaneous balance and skilled

upper extremity exercises. In addition to partial body weight support using the Lokomat har-

ness, study personnel provided manual stabilization and perturbation as necessary. Balance
(subcortical) component: Participants’ feet were placed on a semi-spherical balance platform

(Bosu™, 63.5 cm diameter, 23 cm height). Either the flat or convex sides of the balance ball

were utilized as the standing surface, but generally, the flat side was in contact with the feet,

Fig 1. CONSORT flow diagram.

https://doi.org/10.1371/journal.pone.0202130.g001
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and the convex side was in contact with the ground (Fig 2). Participants were instructed to

keep the balance surface as stable as possible. To increase level of difficulty in either orienta-

tion, study personnel manually applied external perturbations to either the balance ball or the

participants’ trunks. Fine upper extremity (corticospinal) component: During balance exercise,

participants performed a variety of skilled arm or hand manipulations, either unimanually or

bimanually. All tasks were designed to require movements that engage corticospinal circuits

[29,30]. Tasks were varied every few minutes to maintain participant interest. Tasks included

inserting different-sized coins into slots oriented at different angles; tightening or loosening

screws from a board; picking up playing cards or paper clips off a flat surface; performing a

skilled pegboard task (Lafayette Instruments); guiding a loop over an alarmed irregularly

curved coil; typing numbers on a keypad; threading beads on a string; inserting long-handled

keys into custom slots that required forearm supination; maintaining a ping-pong ball on a

small handheld plastic dish; and others (Fig 2; S5 File).

Fig 2. Multimodal (MM) exercise paradigm. MM involved balance exercises plus simultaneous fractionated hand exercises targeted at the corticospinal tract.

Participants’ feet were placed on either the flat or convex side of a semi-spherical balance platform (Bosu™). To increase challenge, participants were intermittently asked

to perform tandem stance (A), or study personnel applied external perturbations. During balance exercise, participants performed a variety arm or hand manipulations

that involve precision or power movements, such as placing pegs into a grooved pegboard, maintaining a ping-pong ball on a small handheld plastic dish (A); and other

tasks. Tasks were varied every one to three minutes to maintain participant interest. Overhead partial body weight support was provided at all times.

https://doi.org/10.1371/journal.pone.0202130.g002
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Lower extremity motor score (LEMS)

Manual assessment of muscle strength in both legs was performed at 5 key myotomes

(L2 = hip flexion; L3 = knee extension; L4 = ankle dorsiflexion; L5 = toe dorsiflexion;

S1 = ankle plantarflexion) according to the ISNCSCI [31]. Muscles were scored on a scale of 0

to 5, resulting in possible LEMS ranging from 0 to 50.

Berg Balance Scale (BBS)

Most participants were unable to attempt the standing portions of the Berg Scale [32]. There-

fore, the ‘Sitting with back unsupported’ subsection was compared. Participants sat on a cush-

ioned adjustable chair without back support, with hip, knee, and ankle angles at approximately

90 degrees, and arms folded across the chest for up to two minutes.

Computerized posturography

A wooden block (46 cm W x 43 cm L x 31 cm H) was centered on a Smart Equitest (Natus)

force plate, with an overlying foam pad (13 cm thick) for subject comfort and skin protection

[33]. Participants were seated without back support, with hip, knee, and ankle angles at

approximately 90 degrees, and arms folded across the chest. In the Limits of Stability test, par-

ticipants were instructed to shift their center of gravity (represented as an avatar in real time)

toward eight surrounding targets on a computer monitor. Key measures were endpoint and

maximal excursion of the center of gravity (EPE and MXE), and directional control (DCL) of

intended movements. In the Clinical Test of Sensory Integration on Balance, participants were

asked to maintain static upright posture for 10 seconds each under four conditions: 1) arms

crossed over the chest with eyes open; 2) arms over the chest with eyes closed; 3) arms out-

stretched forward with eyes open; 4) arms outstretched forward with eyes closed. Each condi-

tion was tested three times. COP angular displacement in the mediolateral and anteroposterior

planes was averaged over 10 seconds per trial. The primary static outcome measure of sway

velocity represents the difference in average sway (degrees per second) in the eyes-closed ver-

sus the eyes-open arms crossed condition.

Modified Ashworth Scale (mAS)

The mAS was assessed at the knee extensors on both sides using six scoring levels (0,1,1+,

2,3,4), where 0 is defined as no increase in muscle tone and 4 is defined as the affected part

rigid in flexion or extension [34]. For analysis, mAS scores were transformed into a 0–5 scale

and averaged between the left and right legs.

Spinal Cord Injury Spasticity Evaluation Tool (SCI-SET)

This survey was used to evaluate how spasticity impacted a person’s activities of daily living

over the course of the previous 7 days [35].

McGill Pain Questionnaire (short form)

This survey was used to track whether any neural plastic changes resulted in adverse effects on

neuropathic pain [36].

Gait speed and seated step test

The 10-meter walk test was administered using standard measures (walk at maximal safe

speed, with or without assistive devices; 2-meter lead-in; average of three repetitions). For the
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PLOS ONE | https://doi.org/10.1371/journal.pone.0202130 August 9, 2018 6 / 17

https://doi.org/10.1371/journal.pone.0202130


10-second seated step test [37], participants were seated with their hips and knees flexed to 90

degrees, then asked to lift one foot entirely off the ground and place it back down again. The

average number of steps taken during three 10-second trials with each foot was recorded.

Surface EMG

Adhesive snap dual surface electrodes (Natus) were applied to the bellies of the tibialis anterior

and soleus muscles. Recordings were collected using a Viking Select system (Natus) or a

Motion Lab Systems system with wired electrodes. Samples were acquired at a rate of 5,000

Hz. Adverse events during electrophysiological testing were collected with a questionnaire

developed by an international expert consensus panel on TMS safety [38].

Peripheral responses

Responses to external stimulation were recorded in the resting supine position, with the knees

resting on a foam roll and the ankles in neutral position. Electrical stimuli were delivered

using a Grass S88 dual-output stimulator (Natus) or a DS7A stimulator (Digitimer). The pero-

neal nerve was stimulated at the fibular head with 0.2 ms pulses at supramaximal intensity to

define the tibialis anterior (TA) maximal compound motor action potential (Mmax) as well as

to elicit F-waves in the antidromic orientation. The tibial nerve was stimulated in the popliteal

fossa with 1.0 ms pulses at a range of intensities to determine the threshold and slope of the H-

reflex recruitment curve, and the maximal soleus M-wave amplitude (Mmax). A minimum of

5 seconds elapsed between each tibial nerve pulse.

Transcranial magnetic stimulation

A MagPro system (Magventure) with 80mm winged coil (D-B80) was centered over the leg

motor cortex hotspot for maximal tibialis anterior response (usually 2 cm lateral to the vertex).

The coil was maintained in position with a multijointed mechanical arm (MagVenture). Sub-

jects wore a white cloth TMS cap. The ‘hotspot’ was marked in permanent ink on the cap,

which was carefully repositioned and reused for each subject across testing sessions. Assessors

vigilantly checked coil, cap, and head positioning during testing. Resting motor threshold

(RMT) was determined as the percent of maximal stimulator output required to elicit a poten-

tial of at least 25μV in 5 out of 10 repetitions. The 25μV rather than 50μV threshold was used

due to the inherently lower capability to evoke responses in the leg muscles in comparison to

hand muscles. Motor evoked potential (MEP) amplitudes were averaged across 5 repetitions

per intensity. To account for changes in electrode placement and conductance over different

testing sessions, MEPs were normalized to that session’s peripherally evoked Mmax [39].

Soleus H-reflex facilitation by transcranial magnetic stimulation

H-reflex stimuli were delivered via surface electrodes in the popliteal fossa with intensity set to

elicit an H-reflex of 10–20% of Mmax [40]. TMS pulses were delivered at 80–90% of tibialis

anterior resting motor threshold (or 80–90% of maximum stimulator output if TA RMT was

unobtainable), at interstimulus intervals (ISI) of 0–120 ms prior to the H-reflex stimulus. Sets

of ISI combinations were delivered in pseudorandom order. A minimum of 10 seconds

elapsed between each pulse. Participants were instructed to mentally focus on plantarflexing

the targeted ankle during H-reflex facilitation assessment. TMS-conditioned soleus H-reflex

amplitude (average over 5 repetitions) was compared to unconditioned H-reflex amplitude to

determine the percent facilitation at each ISI. Results at ISI between 0 and 20 ms were grouped

into ‘short-interval facilitation’, whereas results at ISI between 60–120 ms were grouped into

Multimodal exercises for SCI
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‘long-interval facilitation’ [41]. H-reflex amplitudes were averaged between both legs within

each subject, except for two participants who had elicitable H-reflexes on only one side.

Statistics

The a priori primary clinical outcome was post-intervention change in lower extremity motor

score. The intended a priori primary neurophysiological outcome was post-intervention

change in the amplitude of the tibialis anterior motor evoked potential (TA MEP). However,

only two participants demonstrated consistent TA MEPs at baseline. Therefore, soleus H-

reflex facilitation was employed as the primary neurophysiological outcome measure. Due to

the small sample size, median and interquartile range are reported for all outcomes. The data

were analyzed using linear mixed modeling with intervention (TM vs MM; a repeated measure

factor) and order (TM-first or MM-first; a between-subjects factor) modeled as fixed effects.

The dependent variable was the change score (post—pre) for the respective measurements.

The underlying covariance structure was compound symmetry.

Missing values for specific outcome tests (highlighted in S4 File) were not imputed. Carry-

over effect among participants who completed both intervention phases was tested by sub-

tracting changes during the second intervention from changes during the first intervention for

each subject, then performing an unpaired t-test between subjects who performed TM first

and subjects who performed MM first. Significance (including Bonferroni correction) was set

at p<0.025 for primary outcomes and p<0.005 for secondary outcomes. Post hoc power calcu-

lations for the outcomes of short-interval H-reflex facilitation and lower extremity motor

score were calculated from the fixed effects of Intervention using G�Power version 3.1.9.3.

Microsoft Excel, IBM SPSS, and the lme4 package in R statistical software were used for all

other analyses.

Results

21 of a planned 24 participants were enrolled between February 2013 and May 2016. Enroll-

ment completed when funding expired. Only 13 participants completed at least one interven-

tion phase of the study, and 9 completed both phases of the study (Fig 1). We report data from

participants who completed at least one intervention (demographics detailed in Table 1). One

subject was found after study entry to have copper-deficient myeloneuropathy rather than a

discrete spinal injury, so his data was not included. One subject who had been classified as

motor incomplete SCI in another research study within our center was reclassified as motor-

complete SCI after enrolling in our study. However, due to the presence of three other subjects

with baseline LEMS of three or less in the small subject sample, he was retained in our study.

There were no serious adverse events during the study. Several participants reported mild

adverse events such as lightheadedness or skin abrasions.

All outcomes are summarized in Table 2. No statistically significant differences between or

within interventions were found for any outcome. Raw data and statistical tabulations are

detailed in S4 File.

Lower extremity motor score

Participants had a wide range of LEMS at baseline (0–44). After TM, three participants dem-

onstrated improvement in LEMS, three showed no change, and four deteriorated. After MM,

three participants demonstrated improvement in LEMS, three showed no change, and three

deteriorated (Fig 3). One post-MM participant completed all post-testing except for the

INSCSCI examination. There was no significant difference in the rates or degree of LEMS

improvement between the two interventions. The post-hoc observed power was 0.051.
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Soleus H-reflex facilitation

After TM, three participants demonstrated an increase in short—interval facilitation (inter-

stimulus interval 0–20 ms), and five showed a decrease. After MM, five participants

Table 1. Subject demographic characteristics.

MF Age Trauma/NT DOI Level AIS Interventions

F 36 NT 18 T2 C MM

M 45 T 5.5 T8 A TM, MM

M 50 NT 1 T9 C TM, MM

M 23 T 4 T10 D TM, MM

M 46 T 23 T4 C MM, TM

M 41 T 1 T8 C MM

M 42 T 4 T1 B TM, MM

F 37 T 11 T11 C TM

M 40 T 4 C6 D TM

M 51 T 16 C8 D MM, TM

M 29 T 2.5 C8 C MM, TM

F 44 T 5 T10 C MM, TM

M = male. F = female. T = traumatic. NT = non-traumatic. DOI = duration of injury (years). AIS = ASIA Impairment Scale. TM = treadmill intervention.

MM = multimodal intervention. Subjects completed 48 sessions of the listed intervention(s). Interventions are listed in order of completion.

https://doi.org/10.1371/journal.pone.0202130.t001

Table 2. Intervention effects on study endpoints.

LEMS Short

Facil

Long

Facil

Berg

S3

Sway EPE MXE DCL mAsh 10

MWT

Seated

Steps

SCI-SET SD AD

Post TM n 10 8 8 8 9 9 9 9 9 3 4 6 7 7

Median 0.0 -5.9 -2.1 0.0 0.0 8.9 5.1 9.0 0.0 0.1 -1.3 -0.5 0.0 0.0

IQR -2.0,

0.8

-13.8,2.4 -11.2,5.0 0.0, 0.0 -0.1,

0.2

-5.1,

17.1

1.8,

23.8

-1.4,

18.5

-0.5,

0.0

0.1,0.2 -2.4, -1.1 -1.0, 0.0 -2.0,

0.0

-0.0,

0.0

MM n 9 7 7 10 10 10 10 10 5 1 4 7 9 9

Median 0.0 2.4 -6.7 0.0 -0.2 2.3 1.6 -0.4 0.0 0.0 3.3 0.0 0.0 0.0

IQR -2.0,

2.0

-0.6, 12.1 -27.8, 2.0 0.0, 0.0 -0.3,

0.0

-1.2,

12.3

-3.2,

8.5

-2.4, 1.8 0.0, 0.1 0.0, 0.0 2.0, 4.6 -4.0, 9.0 0.0, 4.0 0.0, 1.0

6

Wk

TM n 7 6 8 8 8 8 6 3 3 5 6 6

Median 0.0 0.0 0.1 0.7 -3.1 1.5 0.0 0.1 1.3 5.0 0.0 0.0

IQR -1.0,

1.5

0.0, 0.0 -0.2,

0.3

-4.9, 9.3 -5.0,

8.3

0.2, 5.2 -0.4,

0.0

0.0, 0.2 0.8, 2.7 3.0, 7.0 -0.8,

1.5

-0.8,

0.0

MM n 6 6 6 6 6 6 4 1 2 4 5 5

Median 0.0 0.0 -0.3 11.3 3.6 4.9 -0.3 0.0 1.7 3.0 -2.0 0.0

IQR -1.5,

0.0

0.0, 0.8 -0.5,

-0.1

3.4,

13.8

1.4, 7.5 1.5, 8.3 -0.8,

0.0

0.0, 0.0 1.3, 2.1 -3.3, 9.0 -3.0,

0.0

0.0, 0.0

No statistically significant differences between or within interventions were found for any outcome. Post = immediately post-intervention. 6 Wk = 6-week follow-up.

TM = treadmill intervention. MM = multimodal intervention. n = number of subjects completing assessment. IQR = interquartile range. LEMS = lower extremity motor

score. Short Facil = soleus H-reflex facilitation by subthreshold TMS between 0–20 ms interstimulus interval. Long Facil = soleus H-reflex facilitation by subthreshold

TMS at 60 ms or more interstimulus interval. Berg S3 = score on the “Sitting with back unsupported subsection of Berg Balance Scale”. Sway = postural sway during

upright sitting in eyes-closed relative to eyes-open condition. EPE = endpoint excursion. MXE = maximal excursion. DCL = directional control. mAsh = modified

Ashworth. 10MWT = 10-meter walk test (m/s). SCI-SET = Spinal Cord Injury Spasticity Evaluation Tool. SD = sensory domain of McGill Pain Questionnaire.

AD = affective domain of McGill Pain Questionnaire.

https://doi.org/10.1371/journal.pone.0202130.t002
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demonstrated an increase in short-interval facilitation, and two showed a decrease (Fig 4).

There was no statistically significant difference in the degree of H-reflex facilitation change

between the two interventions, although MM tended to result in larger improvement than TM

in short-interval facilitation (p = 0.053 before Bonferroni correction). The post-hoc observed

power was 0.211.

Secondary outcomes

Seated balance. Most participants were able to sit independently at baseline, achieving the

highest possible score on the Sitting unsupported portion of the Berg Scale, thereby establish-

ing a ceiling effect. Computerized posturography assessments were more sensitive for

Fig 3. Change in Lower Extremity Motor Score (LEMS). Pre- and post-intervention data shown for each subject. A, Multimodal;

B, Treadmill. Red lines indicate subjects with baseline ASIA Impairment Scale (AIS) Grade D. Green lines indicate subjects with

baseline AIS Grade C. Blue line indicates subject with baseline AIS Grade B. Black line indicates subject with baseline AIS Grade A

(and significant zone of partial preservation).

https://doi.org/10.1371/journal.pone.0202130.g003
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detecting change after intervention [33]. Contrary to our hypothesis, dynamic seated reaching

tests, especially maximal excursion and directional control, showed a slight trend (p value 0.26

and 0.29, respectively, before Bonferroni correction) toward more improvement after TM

than MM.

Spasticity. After TM, five participants demonstrated no change in knee extensor mAsh,

and four showed a decrease. After MM, three participants demonstrated no change in mAsh,

and 2 showed an increase. The SCI-SET survey was initiated partway through the study, so

Fig 4. Change in short-interval (0–20 ms) soleus H-reflex facilitation by subthreshold transcranial magnetic stimulation. Pre- and post-

intervention data shown for each subject. A, Multimodal; B, Treadmill. Red lines indicate subjects with baseline ASIA Impairment Scale (AIS)

Grade D. Green lines indicate subjects with baseline AIS Grade C. Blue line indicates subject with baseline AIS Grade B. Black line indicates subject

with baseline AIS Grade A (and significant zone of partial preservation).

https://doi.org/10.1371/journal.pone.0202130.g004
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fewer subjects completed pre- and post-testing. SCI-SET score changes were minimal on the

individual and group level.

McGill Pain Questionnaire (short form). Median sensory and affective domain scores

did not change after either intervention.

Gait speed and seated step test. Data was successfully collected from only a few partici-

pants with ambulatory capability and is shown in Table 2. After TM, one of four subjects

increased the number of seated steps. After MM, four of four subjects increased the number of

seated steps. However, these results did not reach statistical significance (step test p = 0.076

before Bonferroni correction).

Effects of order and carryover. Of the eight included subjects who completed both phases

of the study, four each performed TM first or MM first. Order, included as a between-subjects

factor in the multilevel analysis of variance, did not significantly affect any primary or second-

ary outcome. Carryover effect (defined as change during the second intervention subtracted

from change during the first intervention within each subject) for primary outcomes was com-

pared using unpaired t-tests between subjects who performed TM first and subjects who per-

formed MM first. There were no statistically significant carryover effects.

Discussion

Our novel targeted approach aims to improve the specificity and efficacy of exercise rehabilita-

tion by simultaneously activating corticospinal and subcortical circuits. The corticospinal tract

makes collateral connections with subcortical pathways as it passes through the brainstem.

Subcortical circuits are often spared after SCI [3]. Based on our prior studies, we speculated

that repetitive, synchronized activation of cortical and subcortical circuits through physical

exercises could improve recovery by strengthening collateral corticobulbar synapses that could

mediate functional detour connections between cortical and spared spinal circuits [6,13,42].

We tested a multimodal exercise paradigm combining fine hand tasks with postural stabili-

zation exercises. Hand tasks such as the ones used in this study require fractionated finger

movements and forearm supination, which activate corticospinal circuits [9,43]. Postural

instability activates multiple subcortical areas, including reticulospinal, vestibulospinal, pro-

priospinal, basal ganglia, and cerebellar pathways [44,45]. The MM regimen does not require a

treadmill, robotic exoskeleton, or extensive manual assistance–therefore, MM would be sim-

pler and less expensive than body weight-supported treadmill training to implement as a treat-

ment modality.

In a small population with chronic incomplete SCI, we did not observe a significant differ-

ence in any outcome between MM and TM training in a 48-session crossover study. Although

TM training (with manual or robotic assistance) has repeatedly been shown to improve step-

ping and locomotor function in individuals with chronic SCI, it has not been proven superior

to other forms of physical rehabilitation, and its effects on lower extremity motor score have

been mixed [17,46–51]. Treadmill training targets spinal locomotor central pattern generator

circuits more strongly than corticospinal circuits [21,22], although cortical circuits may also be

modulated [52,53]. The skilled tasks incorporated into MM training, though focused on the

upper extremities, likely activated lower extremity neural circuits as well [54]. Regardless,

there was a higher degree of participant dropout and variability than expected in this study,

leading to changes that did not reach significance for either intervention.

The originally intended primary neurophysiological outcome was tibialis anterior motor

evoked potential amplitude (TA MEP). TA MEP depends largely on residual intact corticosp-

inal circuits. However, only two participants had clear TA MEPs at baseline, far fewer than

had been anticipated. Therefore, soleus H-reflex facilitation was analyzed as the primary
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neurophysiological outcome. H-reflex facilitation by subthreshold TMS depends on both

direct and indirect connections between cortical and spinal motor neurons [40,41,55]. Facilita-

tion mediated by subthreshold TMS pulses within 20 ms prior to tibial nerve H-reflex pulses

(‘short-interval’) likely occurs through direct corticospinal circuits, whereas facilitation medi-

ated by TMS pulses 60–120 ms prior to tibial nerve pulses (‘long-interval’) likely occurs

through polysynaptic circuits involving brainstem and spinal pathways [41,44,56].

A trend toward greater H-reflex facilitation was observed in the short-interval window after

MM versus TM training (median 2.4% vs -5.9%), consistent with corticospinal facilitation.

These data are comparable to our previous results in non-disabled volunteers demonstrating

that one session of MM exercise increased short-interval H-reflex facilitation by 6.2% ± 4.0%,

whereas one session of TM exercise decreased short-interval facilitation by 1.4% ± 3.8% [16].

Although we did not observe similar changes in long-interval H-reflex facilitation in the cur-

rent study, those results were much more variable, possibly due to differences in degree of

sparing of subcortical pathways among our subjects [40,41].

We know of no other published studies that have reported seated posturography outcomes

after rehabilitation interventions in individuals with SCI. MM training did not lead to signifi-

cantly greater improvement in seated balance performance than TM training did, despite

upright postural exercises being incorporated into the MM regimen. Weight-supported tread-

mill training itself has been shown to improve both gait and clinical balance outcomes [57–

59]. We speculate that either upright postural instability during MM training does not transfer

efficiently to seated dynamic balance skills, or that simultaneous performance of fine upper

extremity tasks interferes with learning or retention of seated dynamic balance skills.

This study has multiple limitations. Participants were more severely impaired than antici-

pated, making it difficult or impossible to collect data on several of the outcomes. More signifi-

cantly, fewer than the anticipated number of participants completed the study interventions,

limiting the power of this study to detect a difference or to conclusively establish equivalence

between the interventions. Including the 6-week washout period, full study participation

required at least 30 weeks per subject, which proved burdensome for subjects to maintain,

mostly due to transportation issues. In some cases, participants participated in inconsistent

numbers of sessions per week, potentially diluting effects of intervention. In others, partici-

pants dropped out of the crossover study after completing only a single intervention. This

incomplete crossover dataset necessitated a more complicated multilevel statistical analysis,

and increased the risk of both Type 1 and Type 2 error. Furthermore, despite attempts to push

participants toward the ‘Hard’ level of exertion on the Borg Rating of Perceived Exertion, sub-

jects ranged across a broader range from fairly light (RPE 11) to hard (RPE 15) exertion.

Incorporating lessons from this study should lead to improved yield from future studies–

given the prolonged course of each intervention, a parallel-group design, though requiring

more subjects, would improve subject retention and simplify statistical analysis. Confirming

presence and stability of baseline values across two rather than one screening visit would

reduce variability. Finally, we speculate that synergy between cortical and brainstem signaling

to the legs may be facilitated by combining balance exercises with concurrent skilled lower
rather than upper extremity exercises. The participants in our study did not generally have the

ability to perform skilled lower extremity movements, but perhaps motor imagery may be a

mechanism to implement this type of approach [60].

Conclusion

In participants with chronic incomplete SCI, 48 sessions of a multimodal exercise rehabilita-

tion program incorporating balance exercises with skilled upper extremity exercises showed
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no benefit compared to 48 sessions of body weight-supported treadmill training. The small

number of participants that completed both phases of the crossover intervention limited the

power of this study to detect significant effects. Whether a combination of exercises simulta-

neously stimulating cortical and subcortical circuits may improve rehabilitation in persons

with SCI or other neurological conditions remains undetermined.
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