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ABSTRACT
Identification of errors or anomalous values, collectively considered outliers, assists in exploring 
data or through removing outliers improves statistical analysis. In biomechanics, outlier detection 
methods have explored the ‘shape’ of the entire cycles, although exploring fewer points using a 
‘moving-window’ may be advantageous. Hence, the aim was to develop a moving-window method 
for detecting trials with outliers in intra-participant time-series data. Outliers were detected through 
two stages for the strides (mean 38 cycles) from treadmill running. Cycles were removed in stage 
1 for one-dimensional (spatial) outliers at each time point using the median absolute deviation, 
and in stage 2 for two-dimensional (spatial–temporal) outliers using a moving window standard 
deviation. Significance levels of the t-statistic were used for scaling. Fewer cycles were removed with 
smaller scaling and smaller window size, requiring more stringent scaling at stage 1 (mean 3.5 cycles 
removed for 0.0001 scaling) than at stage 2 (mean 2.6 cycles removed for 0.01 scaling with a window 
size of 1). Settings in the supplied Matlab code should be customised to each data set, and outliers 
assessed to justify whether to retain or remove those cycles. The method is effective in identifying 
trials with outliers in intra-participant time series data.

Introduction

In data, there are often errors or anomalies, which collec-
tively can be known as outliers. With the ever-increasing 
capability of technology, many trials are collected, but 
some of these trials contain errors that may arise from 
participant (e.g. a stumble during treadmill running) or 
experimental sources (e.g. misidentified kinematic mark-
ers). In contrast, some outliers will be anomalies that are 
real values, which could be worth exploring their source 
or assessing whether these rare events are beneficial or 
detrimental to performance. It is appropriate to always 
check for outliers (Osborne and Overbay 2004), and a pri-
mary justification is that regardless of whether the out-
liers are errors or anomalies they can have a substantial 
effect on many statistical analyses of the data. For instance, 
the standard deviation (SD) has a breakdown point of 0, 
which is the proportion of errors whereby the estimator 
still provides a good indication of the original distribution 
(Hampel 1971), and hence, in the presence of a single out-
lier, the SD estimator can provide a non-robust measure 
of variability.

The number of outliers to expect in a data set is 
unknown, although often it is intended that there are none 
or only a few outliers. Quantifying a ‘few’ is not possible, 
as it would depend on the quality and quantity of data, 
and on the research question. The justification to remove 
outliers has many advocates (e.g. Osborne and Overbay 
2004) and opponents (e.g. Orr et al. 1991), and hence, iden-
tification of outliers does not mean any should be deleted 
and the rationale to retain or remove outliers should be 
clearly described.

In essence, an outlier increases the variability in the 
data. Data transformations are often used in time-series 
analyses to reduce variability between trials or between 
participants, which in turn will typically lead to fewer out-
liers. A requirement for many time-series analyses is that 
the data are of the same length, hence data are often time 
normalised when multiple trials are collated to create the 
average trial or to conduct time-series analysis (e.g. vector 
coding, Tepavac and Field-Fote 2001; CI2, Mullineaux 2017; 
and; outlier detection, Sangeux and Polak 2014). On the 
assumption of a ‘typical’ time-series for each participant, 
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approved by the institution’s ethics review committee. 
In summary, data were obtained for six healthy recrea-
tional runners (height 1.72 ± 0.09 m; mass 74 ± 15 kg) 
running at 3.35  m/s (7.5 mph) on an AlterG treadmill 
(P200; AlterG, Fremont, CA, USA) and on a dual-belt 
standard treadmill (TM-09-P; Bertec, Columbus, OH, 
USA). Four-marker rigid-shell clusters on the shanks 
and thighs (Cappozzo et al. 1997) and four markers on 
the foot (heel, lateral posterior, first and fifth metatarsal) 
were captured at 200 Hz via eight cameras (4 × Eagle and 
4 × Eagle-4) and recorded using Cortex software (v2.0; 
Motion Analysis Corporation, Santa Rosa, CA, USA). Three 
30 s conditions were recorded: 40% and 100% of body 
weight on the AlterG treadmill, and normal running on 
the standard treadmill.

Data were analysed in Matlab (v2015a; Mathworks, 
Natick, MA). Data were smoothed using a fourth order 
Butterworth filter with a 6  Hz cut-off frequency. Heel-
strike was defined as the maximum forward excursion 
of the toe marker, and each stride from heel-strike to 
subsequent heel-strike of the same leg (0–100% of stride 
time) were extracted and time normalised to 101 time 
points using a cubic spline interpolation. The thigh, 
shank and foot three-dimensional joint coordinate sys-
tems (Grood and Suntay 1983) were calculated. From 
the joint coordinate systems, only angles in the sagittal 
plane were calculated, which were normalised to the 
anatomical standing position (i.e. 0° is angle during 
standing) for knee flexion–extension (negative flexion; 
positive extension) and ankle dorsi-plantar flexion (neg-
ative dorsiflexion; positive plantarflexion). In addition, 
the vertical displacement of the mid-knee virtual marker 
was calculated.

Incorporating both 1D and 2D aspects, a two-stage out-
lier detection method was applied to each participant’s 
data separately in stage 1 and stage 2 described below. 
This was calculated using Matlab code (Appendix 1) that 
outputs the data with the outliers removed, but it also 
provides lists of the trial numbers kept and removed so 
that these trials can be explored to determine if they were 
appropriately removed.

Stage 1 (Equation (1)):

•  Calculate median absolute deviation confidence 
interval (MADCI). At each time-point p, MAD was 
calculated and scaled by multiplying by 1.48 (to 
approximate MAD to the SD) and by tα1 (to scale to 
varying confidence interval sizes using the t-statistic 
to account for the number of cycles);

•  Remove outlier cycles,where a data value in cycle j 
at time point p exceeded the limits of the ‘median at 
p’ ± MADCIp the entire cycle was removed.

this time-normalising should lead to a reduced temporal 
variability and, where the temporal variability is still high, 
rectification or time-warping has been proposed (Kale 
et al. 2003). Where there is spatial variability offset normal-
isations have been demonstrated (Mullineaux et al. 2004), 
many of which are based on parametric assumptions, and 
hence, it can be valuable to remove outliers prior to apply-
ing such modification and other analytical techniques.

There are many methods for identifying outliers, and 
in a review of these, it is concluded that the choice is 
dependent on which is most suitable for the problem 
(Hodge and Austin 2004). Biomechanical data are often 
analysed one-dimensionally (1D; i.e. the spatial aspect). 
For 1D data, as parametric based statistics (e.g. SD) are 
ineffective in detecting outliers, it has been proposed 
outliers are defined as ±2.5 × 1.48 MAD (median absolute 
deviation) away from the median (Leys et al. 2013; where 
1.48 approximates MAD to the SD).

As it is common in biomechanics to collect time-series 
data, these data can be analysed in two dimensions (2D) to 
explore the spatial–temporal components (i.e. visually, the 
variable-time axes of a plot). Two types of 2D outlier detec-
tion methods have been ‘shape’ and ‘window’ based. Shape 
methods explore the entire cycle to assess the fit of the shape 
between all the cycles, which have been applied to biome-
chanical data (e.g. Arribas-Gil and Romo 2014; Sangeux and 
Polak 2014). Window methods explore outliers across fewer 
points in the time series, such as using a moving-window SD 
(mwSD; Brownlees and Gallo 2006), but these have not incor-
porated a criterion component and have not been applied to 
biomechanical data. In biomechanics, multiple trials from a 
single participant provides the basis to create a criterion (e.g. 
median or mean), which could be used in a window based 
method to assess deviations from in identifying outliers.

Identifying 1D and 2D outliers could be achieved in two 
stages. Stage 1 would identify 1D spatial outliers at each 
time-point (e.g. ±α 1.48 MAD, where α is the significance 
level-based scaling factor), and stage 2 would take account 
of the influence of a range of time points on each other to 
identify 2D spatial–temporal outliers (e.g. ±α mwSD). As 
the two stages, and particularly the criterion time series, 
can be susceptible to variability between subjects, such a 
method would only be suitable for intra-participant trials. 
Hence, the purpose of this study was to propose a two-
stage method of detecting trials with single-point outliers 
in intra-participant time-series data.

Methods

The test data were taken from a previous study 
(Mullineaux et al. 2013) where all procedures were 
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where: MADCIp is median absolute deviation confidence 
interval at p; p is time point (i.e. 1 to n); n is total number 
of time points (e.g. n = 101); tα1 is the two-tailed t-statistic 
for given α1 and degrees of freedom (df ) for the number 
of cycles (df = k − 1); α1 is significance level (which can 
be any value between 0 and 1, but 0.01, 0.001 or 0.0001 
were selected as 0.01 is a minimum recommended by Leys 
et al. (2013), and 0.001 and 0.0001 are more stringent levels 
that would lead to fewer outliers being detected of ben-
efit when fewer outliers are expected or desired); 1.48 is a 
constant to approximate the MAD to the SD; j is cycle; k is 
total number of cycles, and; x is variable.

Stage 2 (Equation (2), and expanded in Equation (3)), 
using a moving-window of size b:

•  Pad data. At the start (and end) of each cycle, the 
data were padded by b time points using reflection 
of the first b (and last b) time points. This allows the 
moving window to be calculated for all n points. 
Padding is based on the data trend, and hence, this 
precedes detrending;

•  Detrend data. For each cycle, the mean cycle was 
subtracted to reduce the spatial variability between 
strides;

•  Calculate moving-window confidence interval 
(mwCI). For each time point, with a window of b time 
points either side, the mwCIp was calculated across 
the cycles and scaled by multiplying by tα2 (to scale 
to varying confidence interval sizes using the t-sta-
tistic to account for the number of cycles);

•  Remove outlier cycles. Where a data value in cycle j 
at time point p exceeded the limits of the ‘mean at 
p’ ± mwCIp, the entire cycle was removed.
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t-statistic for given α2 (either 0.01, 0.001 or 0.0001); m is 
index of time point around p, and; b is moving-window size 
(either 0, 1, 2 or 3, equivalent to up to approximately ±3% 
for data time normalised to 101 data points). Where b = 0, 
the SD is calculated for the data at only time point p.

The two-stage outlier detection method was tested for 
all 36 combinations of α1 and α2 (0.01, 0.001 and 0.0001, 
approximating to Z scores of 2.6, 3.3 and 3.9) and b values 
(0, 1, 2 and 3). These were each applied to 108 sets of data, 
which were 6 participants, 2 legs, 3 conditions (40% BW 
and 100% BW on the AlterG treadmill, and 100% BW on 
the standard treadmill) and three variables (ankle angle, 
knee angle, vertical knee displacement).

The data were presented for the angles and displace-
ments separately. Calculations were performed on each 
time point (i.e. p = 1 to 101) and at each stage (raw, stage 
1, stage 2) for all 36 combinations of settings for all 36 
displacement trials and 72 angle trials. First, the normal 
distribution was tested using the Lilliefors test (p > 0.05), 
and the count of the number of time-points at each stage 
that were not-normally distributed was calculated (ideally 
count = 0). Second, the count of the number of cycles at 
each stage was calculated. Third, the descriptive statistics 
of the data at each stage were calculated (means and SD). 
These calculated variables at each setting at Raw to Stage 
1, Raw to Stage 2 and Stage 1 to Stage 2 were compared 
using paired t-tests at a statistical significance level of 
0.05. The data were presented as the means for the raw 
data, then the reductions in these to stage 1 and then the 
further reductions to stage 2. The total number of statisti-
cally significant settings from each stage to the next were 
counted. The raw data for one variable for a single subject, 
which was used to create Figure 1, are provided in the sup-
plementary material to enable researchers to compare the 
results between this and other outlier removal methods.

Results

An example data set that contains both one-dimensional 
and two-dimensional outliers are illustrated (Figure 1(a)). 
This trial contains a high number of outliers, and although 
there are no extreme values, some of the one-dimen-
sional outliers maybe errors. For example, the 1D-outlier 
trial (indicated in Figure 1(a)) at the end of the stride 
that increases in contrast to all the other trials decreas-
ing maybe an error from inaccurate toe-off detection. 
Following stage 1 with α1  =  0.0001, eight cycles were 
removed (Figure 1(b)). Following stage 2 with α2 = 0.01 
and b = 1, one further cycle that was unrepresentative of 
the remaining general time series was removed (Figure 
1(c)). The remaining cycles’ mean scores possess almost the 
same mean as the raw data, and although two of the 36 
settings for the mean angle data did reduce significantly 
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of 38.2 cycles reduced by 3.5 cycles and the SD of 11.9° 
reduced by 9.7°. Regardless of such a large reduction in 
SD, this change was not statistically significant (p > 0.05). 
Owing to the normal distribution violation, the statistical 
significance testing of a paired t-test in this instance was 
also unable to detect such a large mean change of the SD 
being statistically significant for all three settings of α1 for 
raw to stage 1 comparisons. This problem also exists in 
comparing the raw to stage 2 data, where there were no 
overall statistical significant reductions in SD. In contrast, 
from stage 1 to stage 2, the SD reduced by only 0.4° or less, 
and yet 22 of the 36 combinations of settings with these 
small SD reductions were statistically significant (p < 0.05).

With the displacement data, raw to stage 1 for all three 
α1 settings resulted in SD reductions of between 0.002 and 
0.003 m that were statistically significant (p < 0.05). This 
statistical significance for small changes emphasises the 
data had fewer extreme outliers. At stage 2, SD reductions 
were less than 0.001 m, yet for 12 of the 36 settings these 
small reductions were statistically significant (p < 0.05).

Discussion

This study describes a method to detect spatial (stage 1) 
and spatial–temporal (stage 2) outliers that exist at single 
points along the time series of intra-participant data. For 
stage 1, in previous research, it is recommended to use a 
scale factor of 2.5 (Leys et al. 2013), which approximates to 

(p < 0.05), these two reductions were in the presence of 
multiple severe outliers. The maximum mean changes 
were 1.3° and  <0.001 m. The principal changes were in 
the normal distribution and variability of the data (Table 
1 and Table 2). For the same α2, greater b typically resulted 
in a larger reduction in the count of outliers and SD of the 
data, but the values were small (maximum changes of 0.3 
count; 0.03°; <0.001 m).

In assessing the distribution of the data at each of the 
101 time point, ideally there would be 0 not-normally dis-
tributed. With respect to the angles data, the mean num-
ber of data points that were not-normally distributed was 
22.6 (raw) that reduced by between 8.1 and 16.0 (stage 1), 
and by a further 0–0.4 depending on the combination of 
setting used (stage 2).

The variability of the data reduced substantially in both 
the angles and displacement data. Firstly with the angles 
data, for the 36 combination of settings, between 3.5 and 
12.3 cycles were removed from the mean of 38.2 cycles 
across the 72 angle trials. From the most stringent settings 
(i.e. α1 and α2 = 0.0001, and moving-window size of b = 3) 
to the most lenient (i.e. α1 and α2 = 0.01, and moving-win-
dow size of b = 0), the variability reduced similar amounts 
at stage 1 and reduced less at stage 2. Similar results were 
found for the 36 displacement trials.

In reviewing the angle data in more detail, there are clear 
outliers. With the most stringent setting of α1 = 0.0001 at 
stage 1, which is least likely to remove data, the raw mean 

Figure 1. Ankle plantar-dorsi flexion angle for one participant on a standard treadmill running at 3.35 m/s: (a) before, (b), after stage 1 
(b; α1 = 0.0001) and (c) after stage 2 (α2 = 0.01; b = 1) of a two-stage outlier removal method. The data were the right ankle from heel 
strike (0%) to heel strike (100%). The stance phase is approximately 0–40%. A potential spatial (*) and spatial–temporal (**) outliers are 
indicated, which are removed, and the number of cycles at each stage are indicated (k). The cycles that were deleted are listed here for 
stage 1 (3, 4, 5, 10, 26, 27, 41, 42) and stage 2 (11), which correspond to the column numbers in the supplementary material used to 
create this figure, to facilitate comparison with other outlier detection methods.
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only a few trials being removed, which can be achieved 
by adjusting the α1, α2 and b settings based on the spe-
cific situation each time. As mentioned previously, a ‘few’ 
cannot be defined and researchers need to justify what is 
an appropriate number of outliers to remove with each 
data set.

There are cautions in using any outlier detection 
method. Nevertheless, the data do emphasise that outli-
ers exist, which have a large effect on the data. The angle 
data clearly obtained outliers which were errors, which 
was observed by visual inspection of the plots and the 
numerical results. For instance, the SD of 11.9° reduced 
to 2.2° for α1  =  0.0001 following removal of a mean of 
3.5 cycles at stage 1, yet this SD reduction was not statis-
tically significant. In the presence of outliers, particularly 

a Z-score for α = 0.01. In this study, rather than the Z-score 
the t-statistic is proposed that accounts for the number of 
cycles in the degrees of freedom (df ), and the scale factor, 
for example, for α = 0.01 for df = 37 is tα = 2.7. Still, using 
t for α1 = 0.01 at stage 1 results in a mean of 12.3 cycles 
being identified, which is problematic. As a minimum, it 
is suggested t for α1 = 0.0001 is used in stage 1 and that 
it is advisable to inspect the data by comparing pre- and 
post-plots to determine if appropriate cycles have been 
removed. The desired outcome would be to identify all 
error outliers that should be removed and assuming nor-
mally distributed data that none or a few anomaly outliers 
identified that should only be removed if appropriately 
justified. Separating these two forms of outliers is diffi-
cult, hence as a compromise the method should result in 

Table 1. Reduction in number of cycles, variability and normal distribution of lower limb angle data before (Raw) and after a two-stage 
time-series outlier removal method (stage 1 and stage 2).

Notes: The data are for six participants × 3 conditions × 2 sides × 2 angles; stage 1 has three sets of statistical significance levels (α1 = 0.01, 0.001 and 0.0001), all 
presented; stage 2 has 36 sets of α1, α2 (0.01, 0.001 and 0.0001) and moving-window size (b = 0, 1, 2, and 3) but only four sets covering the least to most strin-
gent combinations are presented; statistical significance (Sig) indicated as no (N; p > 0.05) or yes (Y; p < 0.05), and the numbers indicate the total of the three 
sets (stage 1) or 36 combinations of sets (stage 1 to stage 2, and raw to stage 2) that were statistically significant.

Stage Settings Cycles (count) SD (°) Normal (count)

α1 α2 b Mean Mean Mean 

Raw 38.2 11.9 22.6

Reduction Sig Reduction Sig Reduction Sig
Stage 1 0.01 12.3 Y 10.3 N 16.0 Y

0.001 6.0 Y 10.0 N 13.0 Y
0.0001 3.5 Y 9.7 N 10.6 Y
3 sets 3 0 3

Stage 1 to 2 0.01 0.01 0 0.5 Y 0.2 Y 0.4 N
0.001 0.001 1 <0.1 N <0.1 Y 0.1 N

0.0001 0.01 1 2.6 Y 0.4 Y 1.3 Y
0.0001 0.0001 3 0 N <0.1 N 0 N
36 sets 17 22 5

Raw to 2 36 sets 36 0 36

Table 2. Reduction in number of cycles, variability and normal distribution of knee vertical displacement data before (Raw) and after a 
two-stage time-series outlier removal method (stage 1 and stage 2).

Notes: These data are for six participants × 3 conditions × 2 sides; stage 1 has three sets of statistical significance levels (α1  =  0.01, 0.001 and 0.0001), all present-
ed; stage 2 has 36 sets of α1, α2 (0.01, 0.001 and 0.0001) and moving-window size (b  =  0, 1, 2 and 3) but only four sets covering the least to most stringent 
combinations are presented; statistical significance (Sig) indicated as no (N; p > 0.05) or yes (Y; p  <  0.05), and the numbers indicate the total of the three sets 
(stage 1) or 36 combinations of sets (stage 1 to stage 2, and raw to stage 2) that were statistically significant.

Stage Settings Cycles (count) SD (°) Normal (count)

α1 α2 b Mean Mean Mean

Raw 38.4 0.01 19.1

Reduction Sig Reduction Sig Reduction Sig
Stage 1 0.01 11.3 Y 0.003 Y 13.9 Y

0.001 5.3 Y 0.002 Y 10.4 Y
0.0001 3.0 Y 0.002 Y 8.1 Y
3 sets 3 3 3

Stage 1 to 2 0.01 0.01 0 0.3 Y <0.001 Y 0.1 N
0.001 0.001 1 <0.1 N <0.001 N 0 N

0.0001 0.01 1 2.2 Y <0.001 Y 1.3 Y
0.0001 0.0001 3 0 N 0 N 0 N
36 sets 12 12 6

Raw to 2 36 sets 36 36 36
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system used here to create joint angles), and hence, it is 
recommended outlier identification is performed on all 
created variables.

As stage 1 of the method is based on a non-parametric 
statistic, it is less susceptible to distribution assumptions, 
but as stage 2 is based on a parametric statistic, there is a 
greater need to consider the number of trials required. In a 
technique exploring the bivariate plots of intra-participant 
data (Mullineaux 2017), it is recommended that a mini-
mum of 10 trials are used as this leads to a sufficiently low 
bias between the actual area and ellipse quantified area 
(Jackson et al. 2011). Given the complexity of assessing 
how many trials are required in biomechanical research, 
and independently of the number of subjects as appli-
cable to this situation on intra-participant data, for typ-
ical simulation criteria a total of 9 ± 8 trials are required 
(mean  ±  95% confidence intervals; Forrester 2015). 
Consequently, it is proposed there is no set minimum, 
although approximately nine trials might be advisable to 
use for this outlier detection method.

The primary benefit of applying an outlier detection 
method is to remove data containing errors (e.g. incor-
rectly identified markers). It may also remove anomaly 
or unusual trials that might represent natural variation. 
Removing both types of outliers will lead to improved 
distributions, such as the normal distribution necessary 
for subsequent analyses. In contrast, research where 
the variability is explored such as in studying reliability 
or functional-variability (e.g. Preatoni et al. 2013), then 
removing ‘unusual’ trials maybe detrimental to the prin-
ciples of the research. Nevertheless, many of the analyses 
in reliability and functional-variability research are under-
pinned by the normal-distribution assumption, or the 
more complex analyses include first and second deriva-
tives that would magnify the difference from the group. 
Hence, it is proposed that outliers should be removed to 
lead to more robust and valid analyses in applying more 
complex analyses. The outlier method resulted in only 
small and non-significant changes to the mean values, 
and both large and small significant changes to the SD 
values.

Conclusions

This study describes an outlier detection method, which 
has been demonstrated to identify outliers in both raw (i.e. 
displacement) and calculated data (i.e. angles). Potentially 
outliers detected in the raw data will improve the calcu-
lated data, but as it is important to improve the normal dis-
tribution on the data that is analysed, it is recommended 
that outliers are also detected, and potentially removed, 
on the calculated data. The improvement in the normal 
distribution found is valuable, as this is an assumption 

for small samples sizes, the SD is misrepresentative of the 
spread of the data. Indeed, this emphasises the need for 
stage 1 to be based on a method that does not use para-
metric based assumptions, such as the SD, as it would not 
detect outliers. Hence, the stage-1 equation based on the 
non-parametric-based MAD was appropriate.

Following the removal of outliers at stage 1, less strin-
gent settings at stage 2 can be used. Even with α2 = 0.01 
and moving window of b  =  1, fewer than a mean of 
0.5 cycles were identified. Although fewer cycles were 
removed, it is proposed stage 2 is important in detect-
ing two-dimensional outliers, such as small time shifts in 
the data, which may impact upon subsequent analyses 
and interpretation. Time shifts can be removed through 
other techniques such as rectification (Kale et al. 2003), 
but instead of transforming data where there are small 
temporal differences the outlier-detection method might 
provide a simpler solution to correcting temporal outliers. 
This solution to removing outliers may be valuable for both 
the researcher and practitioner as the data analysis would 
be simpler, and the average of the remaining cycles would 
provide a more valid representation of the ‘typical’ move-
ment rather than being a distorted or ‘mythical average’ of 
the movement (Dufek et al. 1995).

The primary assumptions in the method proposed are 
that the cycles possess similar patterns (at stage 1 and 
stage 2) and a normal distribution (only at stage 2). Stage 
1 is less susceptible to similarity of cycles, but in stage 2 
where features such as subtle differences in local maxima, 
varying gradients, or cycle patterns that are offset from the 
group, the larger moving window will result in identifica-
tion of slightly more outliers. Hence, the more varied the 
data the smaller the moving-window size that should be 
used in stage 2. Stage 1 is not underpinned by the nor-
mality distribution, although it leads to improving this 
distribution which is necessary as stage 2 uses the mean 
and SD that needs to more closely meet this assumption 
of normality. In general, the method is restricted to similar 
trials that would be likely from intra-participant data. Data 
with greater variability should be corrected for by using 
more stringent criteria (i.e. smaller α), which would lead to 
the identification of fewer outliers.

The pre-processing of the data can reduce the presence 
of outliers. The sample data used here were smoothed that 
may reduce spatial-outliers, and the time normalisation 
may reduce temporal outliers. In addition, the outlier cal-
culation method includes an offset normalisation, which 
may reduce spatial outliers. These processes can be omit-
ted if it is considered more beneficial to the research pro-
cess. Further, although outliers may not exist in raw data 
(e.g. displacement), they may exist in calculated data from 
either multiplication of errors in combining raw data or 
through the specific method used (e.g. joint coordinate 
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vol 2688. Berlin: Springer; p. 706–714. doi:10.1007/3-540-
44887-X_82.

Leys C, Ley C, Klein O, Bernard P, Licata L. 2013. Detecting 
outliers: do not use standard deviation around the mean, use 
absolute deviation around the median. J Exp Soc Psychol. 
49:764–766. doi:10.1016/j.jesp.2013.03.013.

Mullineaux DR, Clayton HM, Gnagey LM. 2004. Effects of offset-
normalizing techniques on variability in motion analysis 
data. J Appl Biomech. 20:177–184. doi:10.1123/jab.20.2.177.

Mullineaux DR, Jeon K, Hanaki-Martin S, Cunningham TJ, Shapiro 
R. 2013. Gait kinematics and variability during normal and 
unweighted treadmill running. In: Shiang T-Y, Ho W-H, Chenfu 
Huang P, Tsai C-L, editors. Proceedings of the 31st Conference 
of the International Society of Biomechanics in Sports; Jul 
7–11; Taipei (Taiwan): National Taiwan Normal University. 
https://ojs.ub.uni-konstanz.de/cpa/article/view/5552/5046.

Mullineaux DR. 2017. CI2 for creating and comparing 
confidence-intervals for time-series bivariate plots. Gait 
Posture. 23:367–373. doi:10.1016/j.gaitpost.2016.12.028.

Orr JM, Sackett PR, Dubois CLZ. 1991. Outlier detection 
and treatment in I/O psychology: a survey. Pers Psychol. 
 44(3):473–486. doi:10.1111/j.1744-6570.1991.tb02401.x.

Osborne JW, Overbay A. 2004. The power of outliers (and why 
researchers should always check for them). Pract Assess Res 
Eval. 9:6. https://pareonline.net/getvn.asp?v=9&n=6.

Preatoni E, Hamill J, Harrison AJ, Hayes K, Van Emmerik RE, 
Wilson C, Rodano R. 2013. Movement variability and skills 
monitoring in sports. Sports Biomech. 12:69–92. doi:10.108
0/14763141.2012.738700.

Sangeux M, Polak J. 2014. A simple method to choose the most 
representative stride and detect outliers. Gait Posture. 41: 
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underpinning the valid use of many analytical and statis-
tical techniques. Even if there are known errors, and a few 
likely anomalies that it is desirable to remove for statistical 
reasons, it is cautioned that more stringent settings should 
be used (e.g. α1 ≤ 0.0001 at stage 1) particularly where 
research is concerned with reliability or functional–varia-
bility themes. Whichever settings are used, these should 
be individualised to the specific data set so that only a 
few outliers are detected, where the appropriate number 
is judged by the researcher, and only then delete outli-
ers if they are apparent and justified. The Matlab code 
provided identifies the trials that are detected as outli-
ers so that they can be explored. If, for instance, there are 
many outliers and the data are not normally distributed 
this may suggest keeping all the trials and changing the 
subsequent analysis to a non-parametric based approach. 
Further, alternative outlier removal methods may be more 
appropriate, and the raw data from Figure 1 is provided 
in the supplementary material to enable different outlier 
removal methods to be compared. In summary, the two-
stage outlier detection method is effective in identifying 
trials with single-point outliers in intra-participant time- 
series data.
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Appendix 1

function [x2D,trialskept1,trialskept2]=ts2Doutlier(xraw,b,alpha1,alpha2) 
% input: xraw data over time in rows (all equal length); k trials in columns
% input: b is moving-window size, e.g. 0 or 1 or 2 or 3
% input: alpha1,alpha2 p values for 1D,2D stages (e.g. 0.0001,0.01)
% output: x2D is x with 1D and 2D outliers removed
% output: trialskept1 & 2 is list of trial numbers kept after stages 1 & both 1and 2
% toolboxes required: image (padarray; std2); statistics (mad; tinv)
% Mullineaux DR, Irwin G. 2017. Error and anomaly detection for intra-participant time-series data.  

% Int Biomech. 4:28–35. doi:https://doi.org/10.1080/23335432.2017.1348913
[n,k]=size(xraw); %n number time points; k number of trials
trialskept2 = 1:k; %numbered list of k trials, to keep record of trials kept
x1D = xraw; %create x after 1D outliers removed (temporary as copy of xraw)
%==========================================================================
% 1D outlier: identify and remove columns/trials with any 1D outliers
t1 = abs(tinv(alpha1/2,k-1)); %2-tailed t-statistic for alpha1 and k-1 df
for p = 1:n % loop through each point p
 xloop = x1D(p,:); % temporary x for the loop
 medianpj = nanmedian(xloop); % median at point p for all j = 1:k trials
 MADCI = t1*1.4826*mad(xloop,1); %MAD CI (1.4826 makes MAD~ = 1SD)
  lower = medianpj-MADCI; % lower and upper limits
  upper = medianpj+MADCI; % below find outliers outside limits …
 x1D(p,xloop<=lower | xloop>=upper)=NaN; % … and replace with NaN
end 
nanCt = sum(isnan(x1D),1); % sum NaNs in each column
trialskept2(:,nanCt>0)=[]; %reduce list of trials to trial numbers kept
trialskept1 = trialskept2; %reduce list of trials to trial numbers kept
x1D(:,nanCt>0)=[]; % removes columns with any NaNs (outliers) to leave x1D
%==========================================================================
% 2D outlier detection; start with padding data by b samples at each end
xpad=padarray(x1D,b,’symmetric’); %temporary x padded using reflection 
[nb,k2]=size(xpad); %rows is pb = n + 2*b; columns is k2<=k (trials for x1D)
% ———- % detrend data (by removing mean cycle)
xpadmean=mean(xpad,2); % create mean cycle
xpadmean=repmat(xpadmean,1,k2); % make matrix same size as xpad
xpaddetrended=xpad-xpadmean; % remove mean cycle from all cycles
% ———- % create moving SD for all (i.e. 1 column)
xpadmwSD=nan(nb,1); % create correct size matrix with NaNs
for m=b+1:n+b % loop to incorporate moving-window index m (j index in std2)
 startm=m-b; % start row of index m
 endm=m+b; % end row of index m
 xpadmwSD(m,1)=std2(xpaddetrended(startm:endm,:)); % calculate moving SD
end %m index for rows in loop; j index for columns accounted by std2
% ———- % remove padding (before removing outliers in next section)
startr=1+b; % start row of original data (then add n-1 to get end)
xmean=xpadmean(startr:startr+n-1,:); % mean of x1D
mwSD=xpadmwSD(startr:startr+n-1,:); % movingSD for x1D
mwSD=repmat(mwSD,1,k2); % make mwSD matrix same size as x1D
x2D=x1D; %create x after 2D outliers removed (temporary as copy of x1D)
% ———- % remove 2D outliers outside lower/upper limits
t2=abs(tinv(alpha2/2,k2-1)); %2-tailed t-statistic for alpha2 and k2-1 df
mwCI=t2*mwSD; %scale SD to give moving-window CI
lower=xmean-mwCI; upper=xmean+mwCI;% lower and upper limits
 x2D(x2D<=lower | x2D>=upper)=NaN; % find outliers and replace with NaN
nanCt = sum(isnan(x2D),1); % sum NaNs in each column
trialskept2(:,nanCt > 0)=[]; %reduce list of trials to trial numbers kept
x2D(:,nanCt>0)=[]; % removes columns with any NaNs (outliers) to leave x2D
%==========================================================================
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