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Abstract

Background: Shotgun proteomics utilizes a database search strategy to compare detected mass spectra to a library
of theoretical spectra derived from reference genome information. As such, the robustness of proteomics results is
contingent upon the completeness and accuracy of the gene annotation in the reference genome. For animal
models of disease where genomic annotation is incomplete, such as non-human primates, proteogenomic
methods can improve the detection of proteins by incorporating transcriptional data from RNA-Seq to improve
proteomics search databases used for peptide spectral matching. Customized search databases derived from RNA-
Seq data are capable of identifying unannotated genetic and splice variants while simultaneously reducing the
number of comparisons to only those transcripts actively expressed in the tissue.

Results: We collected RNA-Seq and proteomic data from 10 vervet monkey liver samples and used the RNA-Seq
data to curate sample-specific search databases which were analyzed in the program Morpheus. We compared
these results against those from a search database generated from the reference vervet genome. A total of 284
previously unannotated splice junctions were predicted by the RNA-Seq data, 92 of which were confirmed by
peptide spectral matches. More than half (53/92) of these unannotated splice variants had orthologs in other non-
human primates, suggesting that failure to match these peptides in the reference analyses likely arose from
incomplete gene model information. The sample-specific databases also identified 101 unique peptides containing
single amino acid substitutions which were missed by the reference database. Because the sample-specific searches
were restricted to actively expressed transcripts, the search databases were smaller, more computationally efficient,
and identified more peptides at the empirically derived 1 % false discovery rate.

Conclusion: Proteogenomic approaches are ideally suited to facilitate the discovery and annotation of proteins in
less widely studies animal models such as non-human primates. We expect that these approaches will help to
improve existing genome annotations of non-human primate species such as vervet.
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Background
Shotgun proteomic approaches employ a database search
strategy to compare experimentally observed mass spectra
to an in silico-generated library of theoretical spectra
derived from gene annotation information of the organ-
ism(s) being studied. The successful matching of peptides
is thus predicated upon the accuracy of the search data-
base being utilized to make these comparisons. The
outcome of proteomics experiments is therefore driven by
the quality and completeness of the genomic information
of the organism being studied. Proteomic studies of genet-
ically well-characterized species such as mice and humans
benefit from robust proteomic search databases and
extensive genome annotations which can account for
known genetic variability such as splice variants and
sequence variation altering the amino acid sequence of
encoded proteins. However, protein identification of other
research model organisms is limited by the quality of
reference genome annotations.
Proteogenomic methods attempt to improve the

search library limitations by leveraging information
about gene transcription to guide the curation of search
databases customized to the tissues of individual organ-
isms. Several groups have demonstrated that transcrip-
tional profiling using massively parallel sequencing
approaches (RNA-Seq) improves the detection of
peptides in proteomics experiments in a wide range of
different species, ranging from microorganisms [1–3]
and plants [4–7] to crustaceans [8], squids [9, 10], honey
bees [11], chicken [12], ground squirrels [13], pig [14],
and sheep [15]. The approach improves peptide assign-
ment primarily in three important ways [16–18].
First, RNA-Seq data reveal sample-specific genetic

sequences which may differ from the reference genome
including nucleotide insertions, deletions, or substitu-
tions. Single nucleotide polymorphisms (SNPs) comprise
the majority of genomic variation within coding exons
of genes, and these genetic variants are divided into two
broad categories; SNPs which change a coding triplet
but do not result in an amino acid substitution are
referred to as synonymous SNPs, while variants which
result in amino acid substitutions are called non-
synonymous SNPs (nsSNPs). The identification and
inclusion of nsSNPs has the potential to improve the
search database annotation because these changes can
alter the chemical properties of the fragmented peptides.
Failure to account for the resultant mass and/or charge
change arising from the amino acid substitutions intro-
duces ambiguity in peptide matching because, unlike
nucleotide sequencing where the base order and frag-
ment size can be directly inferred from the raw data,
proteomic matching of peptides is based solely on the
atomic mass and charge expected to be derived from
enzymatically fragmented proteins.

Second, RNA-Seq reads can be used to identify splice
junctions (SJs) which characterize mRNA isoforms
absent from the reference gene model. SJs can result
from genetic variation that alters how the spliceosome
interacts with mRNAs, or SJs might arise as a result of
alternative exon usage in tissue- or condition-specific
contexts. RNA-Seq can also detect chimeric RNAs
which arise from gene fusion events. Search databases
that inadequately account for this isoform variability will
fail to accurately identify their translated peptide prod-
ucts, and organisms with incomplete gene model infor-
mation are therefore more susceptible to peptide
misidentification.
Finally, RNA-Seq reads can be used to estimate

transcript abundance. Knowledge of which mRNAs
are expressed can inform how search databases can
be trimmed to minimize multiple testing that occurs
within peptide spectral matching algorithms. As with
any iterative comparison process, the likelihood of
misidentifying peptides increases with the total num-
ber of comparisons made. Experiments which incorp-
orate proteomics results are vulnerable to Type I
error inflation because multiple comparisons are
made first at the peptide spectral matching identifica-
tion stage, and then again in the context of the
experimental condition (e.g. identifying protein abun-
dance differences between case and control groups).
Based on this summary, it is evident that sample-

specific search databases derived from RNA-Seq analyses
from the same tissue sample as the proteomics data
provide an improved search database, as it will include
those peptides mostly likely to be found within the tissue
being sampled, while excluding records derived from
extraneous genomic information. This approach
becomes even more valuable for analyses in samples
from species with poorly annotated genomes [19], for
reasons we discuss below.
Several bioinformatics pipelines have been

described which facilitate the conversion of RNA-Seq
reads into customized peptide databases which can
be used to search mass spectrometry (MS) data. A
well-established approach, developed and described
by Sheynkman et al. [16], leverages the web interface
of the Galaxy bioinformatics project [20] to facilitate
the coordination of independent bioinformatics tools
into a functional, user-generated proteogenomic
workflow. As part of our analysis, we specifically
implemented the proteogenomics approach using the
analysis program Morpheus [21] which is computa-
tionally less demanding than other programs, and
effectively calculates empirical false discovery rates
(FDR) for peptide matches. We utilized this
approach to determine whether RNA-Seq data from
vervet monkey liver samples, a non-human primate
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without a well-characterized and annotated genome,
improves the detection of peptides in vervet liver
proteomic data.
While several non-human primate animal models for

disease have been extensively used for decades, only
recently have the genomes of these organisms begun to be
characterized. The African green monkey, or vervet mon-
key (Chlorocebus aethiops sabeus), is one such example.
The vervet monkey has long been an important model in
AIDS research, as vervets are natural carriers of SIV yet
display no symptoms of illness upon infection [22, 23].
More recently, vervets have provided insight into neuro-
logic [24, 25] and metabolic diseases [26–29]. With the
recent release of the first vervet genome [30], this animal
model is ideally suited to benefit from the expansion of its
genome annotation that proteogenomic approaches can
provide. In this paper, we utilize matched RNA-Seq and
MS data from vervet liver samples to characterize the ver-
vet liver proteome and demonstrate that proteogenomic
methods improve the detection of peptides otherwise
missed by search databases constructed from the current
reference vervet genome annotation.

Methods
Sample collection
All experimental procedures involving animals were
approved and complied with the guidelines of the
Institutional Animal Care and Use Committee of Wake
Forest University Health Sciences and conducted in
AAALAC approved facilities. All animals included in
this study were female vervet/African green monkeys
(Chlorocebus aethiops sabaeus) from the Vervet
Research Colony (VRC) at Wake Forest School of
Medicine. All monkeys were US-colony born within the
VRC, which is a multi-generational, pedigreed, and
genotyped colony originally founded in 1975 by the
University of California Los Angeles, with 57 animals
imported from St. Kitts and Nevis. In early 2008, the
VRC was transferred to Wake Forest School of Medicine
and remains a continuously NIH-supported national
research resource. To obtain the samples reported here,
10 vervet monkeys were sedated with ketamine (15 mg/
kg intramuscularly), intubated, and anesthetized using
isoflurane to facilitate the surgical retrieval of liver tissue
via laparotomy. Liver tissue was immediately frozen in
liquid nitrogen and stored at –80C until analysis.

RNA-Seq
Total RNA was extracted from vervet monkey livers
using the Zymo Direct-zol™ kit (Zymo Research, R2070)
and each sample was subsequently quantified by Qubit
assay (Thermo Fisher, Q32852). RNA-Seq libraries were
prepared from 500 ng of total RNA according to the
Illumina TruSeq stranded mRNA protocol (Illumina,

RS-122-2101), which specifically retains polyadenylated
mRNAs through the use of oligo dT coated magnetic
beads. Sequencing library concentrations were quantified
using the KAPA library quantification kit (Kapa
Biosystems, KK4824). Clusters were generated by cBot
(Illumina), and 2 × 100 base paired-end sequencing
libraries were sequenced using the Illumina HiSeq 2500
with v3 sequencing reagents (Illumina, FC-401-3001).

Conversion of RNA-Seq data to customized peptide
databases in galaxy-P
Methods for converting the RNA-Seq reads into search-
able protein databases have been extensively described
previously [16, 31, 32]. We adapted these approaches
within Galaxy-P to create sample-specific search
databases for each of the 10 vervet monkey liver
samples, using the reference vervet monkey genome
(ChlSab1.1) as the basis for the sequence alignments.
General overviews of each component of the database
construction, along with URLs pointing to the specific
workflows with the Galaxy toolshed, are outlined below.
Upon completion of the three workflows for each RNA-
Seq sample, the records from the three pipelines were
concatenated to create a completed sample-specific
search database for each of the 10 animals in the study.

Single amino acid variant (SAV) database construction
and workflow
Within the SAV workflow, RNA-Seq reads from one
sample are aligned to the vervet reference genome using
Tophat [33], single nucleotide variant calls are made
using SAMtools [34], and the subset of identified SNPs
which reside within exons are subsequently annotated
using SnpEff [35]. A tool developed within Galaxy-P
called “SNPeff to Peptide Fasta” is used to convert the
nucleotide sequences into the expected corresponding
amino acid sequences. The complete workflow can be
found here: http://toolshed.g2.bx.psu.edu/view/galaxyp/
proteomics_rnaseq_sap_db_workflow.

Splice junction (SJ) database construction and workflow
The SJ workflow begins by aligning the RNA-Seq reads to
the reference vervet genome as well as the Ensembl gene
models for the species. The coordinates of all the detected
junctions are compared between the two, and only those
junctions mapping to the reference genome but not the
Ensembl gene model are retained for the SJ annotation.
The Galaxy-P program “Translate BED sequences” is used
to convert the SJs identified by the RNA-Seq reads into
the corresponding polypeptide sequences. Full details are
available here: http://toolshed.g2.bx.psu.edu/view/galaxyp/
proteomics_rnaseq_splice_db_workflow.
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Transcript abundance-based database reduction workflow
In order to reduce the records of proteins based on tran-
script abundance, RNA-Seq data is quantified by RSEM
[36] within the Galaxy-P framework. Quantitative values
are normalized and output in transcripts per million
(TPM). Text manipulation tools in Galaxy concatenate
the protein FASTA data with the transcript identifiers and
TPM values, and all records where the values are less than
one TPM are excluded from the search database, in
accordance with our standard RNA-Seq quality control
procedures. Including transcripts with lower abundance
increases false-positive alignments, and would require val-
idation through deep sequencing to confirm the presence
of the transcript. The workflow repository with the Galaxy
toolshed is listed here: http://toolshed.g2.bx.psu.edu/view/
galaxyp/proteomics_rnaseq_reduced_db_workflow.

MS-based proteomics
Proteins were extracted from liver tissue using RIPA
lysis buffer, and separated on 4–12% gradient Bis-Tris
gel. Three gel slices were excised and each was reduced
with 10 mM DTT for 30 min at room temperature and
alkylated with 55 mM iodoacetamide in 100 mM ammo-
nium bicarbonate for 30 min at room temperature. The
gel pieces were subsequently washed with ultrapure
100 mM ammonium bicarbonate, dehydrated with 100%
acetonitrile, and dried by Speedvac for 2–3 min.
Samples were then digested with trypsin (Promega,

V5280) at 37 °C overnight. Formic acid (1%) was added to
the trypsinized samples to quench the proteolysis, and the
peptides were desalted and concentrated using C18

ZipTips (Millipore, Z720046-960EA). HPLC separation
was performed on a 15 cm column of 3 μm diameter
which was packed in house with C18 beads. Peptides were
loaded onto the column at a flow rate of 400 nl/min for
3 h and MS data were acquired by a data dependent
scanning on the Thermo Scientific Orbitrap Elite mass
spectrometer utilizing a default top 15 method.
Raw mass spectrometry (MS) files were subse-

quently analyzed in the program Morpheus [21]. The
following settings were used in all searches: Assumed
Precursor Charge States, Minimum = 2; Assumed
Precursor Charge States, Maximum = 4; MS/MS Peak
Filtering, Maximum Number of Peaks = 400; MS/MS
Analysis, Assign Charge States = enabled; Protease =
trypsin (no proline rule); Maximum Missed Cleavages =
2; Initiator Methionine Behavior = variable; Fixed
Modifications = carbamidomethylation of C; Variable
Modifications = oxidation of M; Maximum Variable
Modification Isoforms Per Peptide = 1024; Precursor
Mass Tolerance = ± 2.1 Da (monoisotopic); Precursor
Monoisotopic Peak Correction = disabled; Product
Mass Tolerance = ± 0.025 Da (monoisotopic); Max-
imum False Discovery Rate = 1%.

For each liver sample, two sets of Morpheus output
files were created; the first analysis was searched using
the reference vervet monkey database and the second
analysis was searched utilizing the sample-specific data-
base created by the Galaxy-P pipelines described above.

Comparative proteomic analyses
Prior to comparison of the proteomic results, the six sets
of output files from the Morpheus program for each of
the liver samples (3 fractions per sample, run against 2
search databases = 6 files/sample) were combined and
transformed to create unique identifiers for all of the
peptide spectral match records. This permits the direct
comparison of spectra matched from the raw MS files.
The search database file size comparisons and wall clock
times were extracted from the Morpheus summary files.
The “VennDiagram” package in R (https://CRAN.R-pro-
ject.org/package=VennDiagram) was used to create the
lists of unique peptides and protein groups, as well as
Venn diagram image files. An R markdown document
outlining the tidying and concatenation of the Morpheus
output files, along with the creation of the Venn
diagrams, can be found in Additional file 1. Gene set
enrichment analyses were conducted to identify classes
of proteins overrepresented within the list of proteins
identified by the reference database but not the sample-
specific databases [37, 38].

Results
Search databases curated from RNA-Seq data are smaller
and computationally more efficient than reference
genome databases
To demonstrate the utility of RNA-Seq derived proteo-
mics search databases, we created sample-specific data-
bases (SSdb) for each liver sample from 10 different
vervet monkeys based on sequenced mRNA extracted
from the same tissue sample as the protein being ana-
lyzed by MS. As outlined above, this procedure creates a
unique optimized search database for each sample from
the RNA-Seq data, and each MS dataset for a given
sample is searched against just the SSdb. For each of the
10 samples, the peptide spectral matching performance
was compared between the SSdb and a search database
created from the reference vervet genome (REFdb). The
descriptive statistics for the RNA-Seq alignments and
MS/MS raw data are outlined in Table 1. The RNA-Seq
read depth ranged from 6.5 million to 10.5 million
mapped reads for the 10 samples. Despite this variability,
we found no relationship between RNA-Seq read depth
and peptide spectral matches (PSMs) or unique peptides
identified in the samples when searched by the SSdb.
Restricting the size of SSdb to transcripts with an

abundance of 1 TPM or more condensed the search
database size and Morpheus compute time when
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compared to the REFdb. On average, the SSdbs were
77% of the size of the REFdb, and compute times in
Morpheus averaged 53% faster for SSdbs compared to
the REFdb (defined by ([REFdb time/SSdb time]-1)).
Interestingly, for two samples (samples 1347 and

1448), the search against the REFdb resulted in more
peptide spectral matches (aon average 0.6%) when com-
pared to the search using the SSdb. Similarly, for three
samples (samples 1030, 1245, and 1347) the analysis
against the REFdb identified slightly more peptides com-
pared to the search using the SSdb (on average 0.5%).
Given the lower number of RNA-Seq reads or mass
spectra obtained for some of these samples, it is conceiv-
able that this difference is due to variation in sample
preparation or sample quality. Partial degradation of tis-
sue samples would affect both RNA and protein recov-
ery, and may have impacted the analyses presented here.

RNA-Seq derived search databases identify peptides not
annotated in the vervet reference genome
Next, we combined the search results across the 10 sam-
ples to compare the unique peptides and protein groups
identified in vervet monkey liver samples by the REFdb
versus the SSdb. These results are shown in the Venn
diagram of Fig. 1. We identified 601 peptides in analyses
using the SSdb that were not identified using the REFdb.
The first set of these peptides represents peptides that

match newly identified SJs not annotated in the gene
models of the reference genome. Of the 284 SJ peptide
search records identified and annotated from the RNA-
Seq data, we identified 47 peptides by MS in more than
one sample, which suggests these matches represent
incompletely annotated genes of the vervet genome. Con-
sequently, the results of these proteomics analyses could
aid in the improved annotation of the gene models.
Another 45 peptides mapped to a single sample, bringing
the total number of distinctly SJ-mapped peptides

identified in these samples to 92. A comparative analysis
of these peptide sequences with other primates utilizing
BLASTP revealed that the majority of the identified pep-
tides (53/92) could be matched with an orthologous pro-
tein [39]. The complete catalogue of SJs with their
corresponding peptides can be found in Additional file 2.
A second set of peptides uniquely identified in

searches using the SSdb are peptides that map to an
SAV record where the amino acid variant resides within
the predicted tryptic peptide that matched in the search.
In total, 192 peptide matches representing 101 distinct
peptides were found in the 10 samples by the sample-
specific analyses using the SSdb. Of these 101 distinct
peptides that conformed SAVs identified in the RNA-Seq
data, 37 peptides were identified in more than one
sample. A list of all peptides matching SAV records are
included in Additional file 2.
These first two categories of peptides identified within

the SSdb analyses represent search results we expected
to obtain from the RNA-Seq-based proteogenomic
approach because the mRNA read data create search
records which accurately predict the respective peptide
fragments seen in the MS dataset.

Reduction of the search database size recovers peptide
identifications
While we might expect the same number of matches to
reference protein entries contained in both the SSdb and
REFdb searches, a total of 313 peptides were identified
as matches to reference proteins in the search against
the SSdb but not the REFdb. Morpheus, like many other
spectral matching algorithms, uses a decoy-based
searching approach to empirically estimate and maintain
a 1% false discovery rate (FDR). The inclusion of these
peptides may result from the adjustment of the absolute
FDR that arises from the reduction in the absolute size
of the SSdb compared to the REFdb. This is supported

Table 1 Descriptive statistics for the RNA-Seq and mass spectrometry analyses utilizing the Vervet reference search database (REFdb,
19,255 gene entries) and the sample-specific databases (SSdb)

Sample RNA-Seq SSdb Entries Mass Spectra PSMs Peptide IDs

RNA-Seq reads % reads aligned Genes Novel SJs REFdb SSdb REFdb SSdb

1030 7,040,525 55.5 13,804 4069 80,003 26,525 26,680 9765 9702

1211 6,585,341 68.8 15,782 7171 79,381 27,288 27,673 10,532 10,527

1238 6,594,936 67.1 15,659 6595 78,444 19,600 19,898 9349 9354

1245 6,730,432 64.0 13,901 4089 80,281 29,143 29,193 10,503 10,463

1248 10,504,974 69.4 15,513 7429 80,221 22,205 22,479 9120 9162

1254 9,127,588 62.5 15,936 7641 79,675 23,655 23,738 9334 9385

1291 6,575,182 67.9 13,354 3653 79,960 30,623 30,722 11,478 11,652

1347 6,637,842 56.6 13,284 3147 78,791 17,284 17,037 8633 8575

1448 8,019,158 65.0 15,668 6419 71,853 15,612 15,561 7582 7593

1467 9,983,615 66.2 16,176 7305 78,781 20,101 20,162 9177 9223
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by the fact that the q-values of this subset of SSdb-
identified peptides is higher, on average, compared to
the overall average q-value of all peptides identified
using the SSdb search. Of the “reference” peptides iden-
tified using the SSdb, only 16% (151 of 948) were seen in
two or more samples. The peptides identified exclusively
in the SSdb analyses are listed in Additional file 3.

Peptide identifications missed by RNA-Seq-derived data-
bases are predominantly structural proteins
While the minimization of the search database helps
recover some true positive matches, as described above,
concerns about restricting proteome search databases
based upon RNA-Seq data could arise when a protein’s
abundance is poorly correlated with its corresponding
transcript abundance, or when proteins might be derived
from a tissue of origin different from which they
currently reside. Extracellular structural proteins or
chromatin-associated proteins with long-half-lives would
be likely candidates for the former category, while
growth factors, cytokines or contaminating proteins
might comprise the latter. We surveyed the list of pep-
tides identified by REFdb but not SSdb analyses and
identified 1950 total matches mapping to 891 unique
peptides, of which 506 (57%) were identified in 2 or
more liver samples. Those 506 peptides correspond to
238 unique protein entries in the vervet ENSEMBL data-
base. Gene set enrichment analysis revealed that this list

of proteins was indeed overrepresented by structural,
cytoskeletal, and ribonucleotide binding proteins. Table 2
lists the significantly enriched categories identified in
this subset of proteins. The peptides identified by the
REFdb but not the SSdbs searches can be found in
Additional file 4.
Though distinct differences in the peptides identified by

the SSdb versus REFdb have been revealed by this com-
parative exercise, it is perhaps equally important to high-
light that SSdb analyses are capable of matching nearly
98% of the same spectra as the REFdb. The customized
databases created from RNA-Seq robustly identify pro-
teins from tissue samples, identify peptide variation that
would otherwise be missed by searching against the refer-
ence annotation, and perform these functions using
smaller file sizes and faster compute times.

Discussion
This work represents the implementation and proof-of-
concept application of an established RNA-Seq proteo-
genomic approach to improve the identification of
proteins in non-human primate proteomics experiments,
such as the vervet monkey liver sample analyses
reported here. Several non-human primate genomes
have been drafted but incompletely annotated because a
limited number of animals have been sequenced. Less
common sequence and splice variants will continue to
be incorporated as DNA sequencing sample sizes

Fig. 1 Sample specific database vs reference database proteins identified
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increase and more complete transcriptional profiles
across tissue types are reported. In the meantime, a
proteogenomic approach should improve protein identi-
fication in MS experiments in these species, and may
offer robust and reliable data to improve the existing
annotation using both transcript and protein data. We
demonstrated that this analysis approach, implemented
in Galaxy-P, is capable of identifying peptides derived
from unannotated splice junctions and non-synonymous
coding substitutions revealed from the RNA-Seq read
data. These peptides would have gone unmatched by
searching the MS data using the vervet reference
genome annotation data. These novel peptides likely
represent a combination of common, yet previously
unannotated gene isoforms as well as isoforms and vari-
ants private to individual animals studied.
As with other “omics” scale analyses, the iterative

search process of shotgun proteomics presents chal-
lenges in balancing type I and type II error rates. The
optimal search database would incorporate only those
potential proteins which are likely to be found within a
given sample; however, if the repertoire of proteins were
already known, it would obviate the need for conducting
proteomics experiments in the first place. Instead, RNA-
Seq data can facilitate a compromise in the database
curation process by predicting non-reference protein
isoforms for inclusion while also utilizing information
about transcript abundance to exclude individual gene
sequences from the search records as the corresponding
mRNA are not expressed and therefore the translated
protein (or a peptide thereof ) is unlikely to be identified
by MS. While RNA-Seq data can be a useful benchmark
for restricting the size of the MS search database, it
should be noted that certain exceptions to the database
exclusion process should be considered. Examples
include proteins whose tissue of origin is different from
the sampled tissue, such as blood-derived albumin,
immunoglobulins, and complement proteins, or long-
lived structural proteins such as collagen or ribosomal
proteins, whose protein abundance is uncoupled from
their corresponding mRNA expression in the tissue of
interest at the time of sample collection. By comparing

peptide matches made using RNA-Seq derived databases
to peptides identified using the reference database, we
have revealed a list of proteins routinely found in vervet
livers that do not have corresponding mRNA abundance
levels from RNA-Seq read data. Including these protein
records in the construction of sample-specific databases
for liver samples could mitigate the loss of information
in future proteomics experiments.
The reduction of the search database size and the

included protein records significantly impacts the confi-
dence with which peptides and proteins are identified.
Due to the smaller number of records to compare an
experimental spectrum to, the confidence with which
individual peptides are assigned to the correct record is
higher. However, these “improved” matches have
another consequence: some experimental peptide
spectra may not be confidently assigned to a specific
sequence in the REFdb analysis since the match may not
fall under the stringent 1% FDR commonly required to
confirm a match. However, using the smaller SSdb, the
same match is now made with a FDR of less than 1%
(simply based on the smaller number of searches),
resulting in some additional “reference” proteins being
identified in the SSdb searches at a 1% FDR but not in
the REFdb searches. It is possible that these matches
may include some low confidence peptide matches, but
overall these additional peptide matches emphasize the
additional power that is gained from reducing the search
database to only relevant records of expressed proteins
and peptide sequences.
Our analysis only used one standard established ana-

lysis approach for these comparisons. The analysis pipe-
line implemented in Galaxy includes the Morpheus
search algorithm which empirically calculates the FDR
for peptide matches obtained in the search. Numerous
other approaches have been proposed for the analysis of
proteogenomic data, and the assessment of FDR in
peptide and protein identifications. It is likely that some
of these approaches, such as analyzing FDR separately
for REFdb matches and matches to novel SSdb records
derived from RNA-Seq [19] or alternative programs to
calculate FDR in these datasets [40–42], would improve

Table 2 Gene Set Enrichment Analysis for proteins identified by reference but not sample-specific databases

GO Annotation Description p-value FDR q-value

GO: STRUCTURAL MOLECULE ACTIVITY The action of a molecule that contributes to the structural integrity of a complex
or assembly within or outside a cell.

3.03 × 10−15 3.42 × 10−11

GO: OXIDATION REDUCTION PROCESS A metabolic process that results in the removal or addition of one or more
electrons to or from a substance, with or without the concomitant removal
or addition of a proton or protons.

9.8 × 10−14 5.52 × 10−10

GO: DNA PACKAGING COMPLEX A protein complex that plays a role in the process of DNA packaging. 7.61 × 10−13 2.86 × 10−9

GO: EXTRACELLULAR SPACE That part of a multicellular organism outside the cells proper, usually taken
to be outside the plasma membranes, and occupied by fluid.

1.25 × 10−11 2.81 × 10−8

GO: PROTEIN DNA COMPLEX A macromolecular complex containing both protein and DNA molecules. 6.04 × 10−11 1.13 × 10−7
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the results presented here, and further enhance the
utility of this proteogenomic approach for non-human
primate proteomics. However, a detailed comparison of
these different analysis approaches was not the goal of
the current study, and future studies will help define the
optimal approach for a proteogenomic analysis in these
species, including the optimal RNA-Seq coverage and
the depth of proteomic analysis. Prior analyses have
generated far more detailed mass spectral analysis data
(500,000 mass spectra compared to 80,000 used in our
study), and it remains to be seen what the optimal
approach will be [16]. As proteogenomic approaches
continue to gain momentum in shotgun proteomics
experiments, we anticipate further refinement of search
databases to account for biochemical variability in
peptides which arise from post-translational modifica-
tions (PTMs). A recent publication has outlined an
approach to parsimoniously account for peptide mass
shifts caused by PTMs through incorporating Uniprot
annotation data ([43, 44]). Similarly, proteogenomics can
incorporate findings from complimentary NGS
approaches, such as ribosomal profiling, to expand the
prediction of the protein-coding products from novel
coding sequences [45] and lncRNA molecules previously
presumed to be untranslated [44, 46]. Continued refine-
ments to search databases and proteomics search
algorithms will accelerate the accurate identification and
quantification of peptides in MS analyses, and it will
complement and improve the genome annotation of
animal research model organisms and help researchers
utilize shotgun proteomics to implicate protein changes
associated with pathophysiologic processes. Ultimately,
the proteomic validation of novel splice variants and
non-synonymous sequence variants will greatly enhance
the ongoing efforts of genome annotation, especially in
model species with poorly annotated genomes, such as
many non-human primates.

Conclusions
A proteogenomic approach to the analysis of liver shotgun
proteomic data from a nonhuman primate species, the
vervet/African green monkey (Chlorocebus aethiops
sabaeus), demonstrates that the use of sample-derived
RNA-Seq data, as anticipated, improves peptide identifica-
tion and the accuracy and confidence of protein identifica-
tion, while simultaneously reducing the search database
space and the resulting computing effort required for the
data analysis. Novel peptides including sequence variants
identified by RNA-Seq, as well as new splice variants
uncovered in the transcriptional analysis account for the
majority of the novel peptides identified, highlighting the
importance of proteogenomic approaches in species with
limited available genome sequence data and gene annota-
tion, such as non-human primates.
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