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Abstract
The aim of this paper is to provide a deep learning based method that can solve high-
dimensional Fredholm integral equations. A deep residual neural network is constructed at
a fixed number of collocation points selected randomly in the integration domain. The loss
function of the deep residual neural network is defined as a linear least-square problem using
the integral equation at the collocation points in the training set. The training iteration is done
for the same set of parameters for different training sets. The numerical experiments show
that the deep learning method is efficient with a moderate generalization error at all points.
And the computational cost does not suffer from “curse of dimensionality” problem.

Keywords Fredholm integral equation · High-dimensional problem · Residual neural
network · Deep learning

Introduction

Integral equations have wide applications in electrical engineering [1], optics [2], mathe-
matical biology [3] and other fields. The most popular integral equations are the Fredhom
integral equations and the Volterra integral equations. The Fredholm integral equation can
be considered as a reformulation of the elliptic partial differential equation and the Volterra
integral equation is a reformulation of the fractional-order differential equation, which has
wide applications in modeling the real problems, for instance, the chaotic system [4], the
dynamics of COVID-19 [5], the motion of beam on nanowire [6], the capacitor microphone
dynamical system [7], etc. Since these integral equations usually can not be solved explicitly,
numerical methods are necessary to be considered.

We consider the linear Fredholm integral equation of the second kind

f (x) −
∫

�

k(x, y) f (y)dy = g(x), (1)

where x, y ∈ � ⊂ R
m , the function g(x) and the kernel k(x, y) are given, and f (x) is the

unknown that we want to find.
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So far, many numerical methods have been proposed to solve the Fredholm integral equa-
tions, for example, the Nyström method [3, 8, 9], the Galerkin method [10], the wavelet
analysis method [11], the neural network [12, 13], the collocation method [14], the maxi-
mum entropy method [15], etc. However, most of these traditional methods can only solve
low-dimensional Fredholm integral equations and suffer from “curse of dimensionality".

The neural network has been successful in solving partial differential equations in math-
ematical modelling and the applied science, such as medical smoking model [16], nonlinear
high order singular models [17], food chain system [18–20], Liénard differential model [21],
etc. The neural network was also used to solve the Fredholm integral equations in [12, 13],
where the authors only evaluated the approximation at some fixed points without generaliza-
tion. And the integral was evaluated using numerical integral method whose cost depends on
the dimension exponentially.

In recent years, deep learning method has been successfully used in artificial intelligence
solving high-dimensional problems, such as image recognition [22, 23], speech recognition
[24, 25], natural language processing [26], and also in mathematical problems [27–29] and
physical problems [30].

E and his collaborators have done a series of works on solving high-dimensional differ-
ential equations based on deep learning method. In [28], a deep learning-based algorithm
was proposed for solving high-dimensional semilinear parabolic partial differential equa-
tions and reverse stochastic differential equations from a relation between BSDE (backward
stochastic differential equations) and reinforcement learning. In [29], the deep Ritz method
for elliptic differential equations was given by numerically solving variational problems. In
[27], a machine learning approximation algorithmwas raised to solve high-dimensional fully
nonlinear second-order partial differential equations. These works show that deep learning
method provides a new idea to solve high-dimensional mathematical problems.

In this paper, a deep residual neural network method is proposed to approximate the
solution of the high-dimensional linear Fredholm integral equations of the second kind. Few
novel highlights of this deep learning method are briefly provided as follows:

• A deep residual neural network is constructed to solve numerically the linear Fredholm
integral equations of the second kind.

• The proposed method can solve high-dimensional Fredholm integral equations and does
not suffer from “curse of dimensionality” problem, that is the cost depends on the dimen-
sion linearly.

• The reasonable absolute error values validate the reliability of the deep learning method.
• The proposed method has a small generalization error in the domain.

This paper is organized as follows. In Sect. 2 we construct a deep residual neutral network
for solving the Fredholm integral equations. In Sect. 3, some numerical experiments are given
to show the efficiency of the numerical method. The conclusion is given in Sect. 4.

Proposed Deep LearningMethod for Solving Fredhom Integral
Equations

The output F(x, θ) of the neural network is a composite function of the input x, where θ

denotes the parameters of the neural network including the weighs and bias. Let x be any
point in the domain �. Now we want to train a deep neural network whose output F(x, θ) is
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Fig. 1 Residual neural network
block

the solution of the Fredholm integral Eq. (1), that is

F(x, θ) −
∫

�

k(x, y)F(y, θ)dy = g(x), x ∈ �.

To learn theparameters θ , and so the function F(x, θ), take randomlyn points {x1, x2, · · · , xn}
with a uniform distribution as the training set. Initializing the parameter vector θ , the pre-
diction values F(xi , θ) for i = 1, 2, · · · , n, can be obtained by forward propagation neural
network.

Define the loss function as

lossx(θ) = 1

n

n∑
i=1

⎛
⎝F(xi , θ) −

∫

�

k(xi , y)F(y, θ)dy − g(xi )

⎞
⎠

2

. (2)

The training of the neural network is to minimize the loss function (2) by the backward
propagation neural network, which is a least-square problem

min
θ

lossx(θ). (3)

In Eq. (2) the integral term
∫

�

k(xi , y)F(y, θ)dy can be evaluated using the Monte Carlo

method, leading to

∫

�

k(xi , y)F(y, θ)dy ≈ β

n

n∑
j=1

k(xi , x j )F(x j , θ), (4)

where β =
∫

�

dx is the volume of �.

The training can be done repeatedly for different training set until we get a stationary loss
function.

As the network deepens, minimizing the loss function has great difficulties, such as van-
ishing gradient problem, gradient explosion, and degradation problem. The residual neural
network can avoid the vanishing gradient problem and may greatly improve the solution. It
also can reduce the risk of over-adapting the parameters to a specific dataset [22]. A residual
block is shown in Fig. 1, where an identity shortcut connection is added to a shallow neural
network, whose output is H(x) = ϕ(x) + x, where ϕ(x) is the output of the shallow neural
network. Then the output of the residual block is taken as the input of the next residual block.

Our algorithm of deep residual neural network for solving Fredholm integral equations is
shown in algorithm 1.
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Algorithm 1 Framework of deep residual neural network.
Input: The number of training points n and the number of training iterations M ;
Output: The parameters θ of the residual neural network;
1: Initialize θ randomly;
2: for k = 1; k ≤ M ; k + + do
3: Sample the region � with a uniform distribution to generate the training set {x1, x2, · · · , xn};
4: Minimize the loss function in equation (2) by the following iteration.
5: while not converge do
6: Forward propagate the neural network to get F(xi , θ), i = 1, 2, · · · , n;
7: Back propagate the neural network to update θ ;
8: Sample � with a uniform distribution to generate the test set and evaluate the generalization error on

the test set;
9: end while
10: end for
11: Output θ and obtain the approximate solution of the Fredholm integral equation;

Numerical Experiments

In this section, several Fredholm integral equations are numerically solved using algorithm
1. In the numerical experiments, n = 1000 points in � are randomly sampled uniformly as
the training set to train the deep residual neural network, and the number of training iterations
is M = 2000. The neural network consists of one input layer, two blocks of residual neural
network shown in Fig. 1, and one output layer. There are 30 neurons in the second layer and
the forth layer and 10 neurons in the other layers. The ReLU function is used as the active
function in the neural network. Minimization is realized by “AdamOptimizer” [31] built in
TensorFlow (version 1.13.1 ) with a learning rate 0.001.

To measure the efficiency of the deep learning method for solving the Fredholm inte-
gral equations, we consider several examples whose exact solutions are known. Denote
f ∗(x1), f ∗(x2), · · · , f ∗(xn) as the exact solutions at n points x1, x2, · · · , xn in the test set.
Define the generalization error between the exact solution f ∗(x) of the integral equation and
the approximate solution F(x, θ) obtained by using the deep residual neural network as

error = 1

n

n∑
i=1

(
f ∗(xi ) − F(xi , θ)

)2
.

The generalization error is evaluated for each example in the following numerical experi-
ments.

Example 1 Consider the three-dimensional Fredholm integral equation

f (x, y, z) +
∫ 2

1

∫ 2

1

∫ 2

1
k(x, y, z, s, t, v) f (s, t, v)dsdtdv = g(x, y, z), (5)

where � = [1, 2]3,
k(x, y, z, s, t, v) = e−xs−yt−zv,

and

g(x, y, z) = 1 − 1

xyz
(e−2x − e−x )(e−2y − e−y)(e−2z − e−z).

The exact solution of Eq. (5) is f ∗(x, y, z) = 1.
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Fig. 2 Convergence of the loss function (left) and the generalization error (right) of Example 1

Table 1 Partial iterative results of the loss function and the generalization error for Example 1

Number of training loss error Number of training loss error

1 0.8958 0.9446 800 3.498e-4 0.0161

60 0.0428 0.2040 1200 9.472e-5 0.0080

80 0.008 0.0804 1600 3.852e-5 0.0051

409 9.937e-4 0.0270 2000 1.917e-5 0.0035

For Example 1, the convergence of the loss function and the generalization error are shown
in Fig. 2. Some typical iteration data of the loss function (loss) and the generalization error
(error ) are given in Table 1. The loss function converges to 10−5, and the generalization
error converges to 10−3.

Example 2 Consider a high-dimensional version of the three-dimensional Fredholm integral
Eq. (5), that is

f (x) +
∫

�

k(x, y) f (y)dy = g(x),

where � = [1, 2]m , x = {x1, x2, · · · , xm}, y = {y1, y2, · · · , ym},
k(x, y) = e−x1 y1−···−xm ym

and

g(x) = 1 + (−1)m
1

x1x2 · · · xm (e−2x1 − e−x1)(e−2x2 − e−x2) · · · (e−2xm − e−xm ).

The exact solution is f ∗(x) = 1.

For Example 2, when the dimension m = 100, the convergence of the loss function and
the generalization error are shown in Fig. 3. Some typical iteration data of the loss function
(loss) and the generalization error (error ) are given in Table 2. The loss function converges
to 10−4, and the generalization error converges to 10−3.
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Fig. 3 Convergence of the loss function (left) and the generalization error (right) of Example 2

Table 2 Partial iterative results of the loss function and the generalization error for Example 2 when the
dimension m = 100

Number of training loss error Number of training loss error

1 1.264 1.123 800 5.814e-4 0.0195

32 0.0131 0.1055 1100 4.195e-4 0.0162

300 0.0012 0.0277 1600 2.239e-4 0.0119

400 9.805e-4 0.0254 2000 1.417e-4 0.0094

Example 3 Consider the four-dimensional Fredholm integral equation

f (x, y, z, w) − xyzw
∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
f (s, t, v, r)dsdtdvdr = 15

16
xyzw (6)

where � = [0, 1]4,
k(x, y, z, w, s, t, v, r) = xyzw,

and

g(x, y, z, w) = 15

16
xyzw.

The exact solution is f ∗(x, y, z, w) = xyzw.

For Example 3, the convergence of the loss function and the generalization error are shown
in Fig. 4, and some typical iteration data of the loss function (loss) and the generalization
error (error ) are given in Table 3. The loss function and the generalized error function
synchronously converge very fast to a stable state. The loss function converges to 10−3, and
the generalization error converges to 10−2.

Example 4 Consider a high-dimensional version of the four-dimensional Fredholm integral
Eq. (6), that is

f (x) − x1x2 · · · xm
∫

�

f (y)dy =
(
1 − 1

2m

)
x1x2 · · · xm
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Fig. 4 Convergence of the loss function (left) and the generalization error (right) of Example 3

Table 3 Partial iterative results of the loss function and the generalization error for Example 3

Number of training loss error Number of training loss error

1 0.0167 0.1190 1100 0.0074 0.0621

100 0.0070 0.0602 1400 0.0079 0.0603

500 0.0075 0.0632 1700 0.0064 0.0585

800 0.0064 0.0614 2000 0.0066 0.0606

where x ∈ [0, 1]m , x = {x1, x2, · · · , xm}, y = {y1, y2, · · · , ym},
k(x, y) = x1x2 · · · xm,

and

g(x) =
(
1 − 1

2m

)
x1x2 · · · xm .

The exact solution of the equation is f ∗(x) = x1x2 · · · xm .
For Example 4, when the dimensionm = 100, the convergence of the loss function and the

generalization error are shown in Fig. 5, and some typical iteration data of the loss function
(loss) and the generalization error (error ) are given in Table 4. The loss function converges
to 10−7, and the generalization error converges to 10−4.

Discussion and Conclusions

In this paper, we propose a deep learning method based on the residual neural network to
solve numerically the linear Fredholm integral equations of the second kind. The output of
the deep residual network is used as the numerical solution. The loss function is defined
using the Fredholm integral equation. The loss function is optimized by Adam method built
in TensorFlow. Then the numerical results, including high-dimensional problems, confirm
the efficiency of the method. The main advantage of this method is that it can solve high-
dimensional Fredholm integral equations with a cost less sensitive to the dimensionality of
the problem.

123



87 Page 8 of 10 Int. J. Appl. Comput. Math (2022) 8 :87

Fig. 5 Convergence of the loss function (left) and the generalization error (right) of Example 4

Table 4 Partial iterative results of the loss function and the generalization error for Example 4 when the
dimension m = 100

Number of training loss error Number of training loss error

1 0.6974 0.8341 1114 9.910e-6 0.0023

500 0.0010 0.0256 1243 3.728e-6 0.0010

800 2.731e-4 0.0129 1337 7.648e-7 4.484e-4

1000 4.119e-5 0.0050 2000 2.826e-7 1.718e-4

The accuracy of the residual neural network is not as good as that of the traditional method,
such as the Galerkin method. Some error analysis of the neural network has been discussed
in [32–34]. But so far rigorous error analysis for neural network can not be given yet. The
error of the neural network consists of three parts, that is the error between the space of the
output of the neural network and the exact solution of the Fredholm integral equation, the
optimization error inEq. (3), and the approximation error inEq. (4). The error in our numerical
experiments has a good accuracy compared to the error of the Monte Carlo method 1/

√
n in

Eq. (4). In the future we will explore more techniques or theory to improve the convergent
accuracy. Additionally, we will try to construct a deep residual neural network to solve the
Volterra integral equations.
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