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Abstract

AB toxins such as ricin and cholera toxin (CT) consist of an enzymatic A domain and a receptor-binding B domain. After
endocytosis of the surface-bound toxin, both ricin and CT are transported by vesicle carriers to the endoplasmic reticulum
(ER). The A subunit then dissociates from its holotoxin, unfolds, and crosses the ER membrane to reach its cytosolic target.
Since protein unfolding at physiological temperature and neutral pH allows the dissociated A chain to attain a translocation-
competent state for export to the cytosol, the underlying regulatory mechanisms of toxin unfolding are of paramount
biological interest. Here we report a biophysical analysis of the effects of anionic phospholipid membranes and two
chemical chaperones, 4-phenylbutyric acid (PBA) and glycerol, on the thermal stabilities and the toxic potencies of ricin
toxin A chain (RTA) and CT A1 chain (CTA1). Phospholipid vesicles that mimic the ER membrane dramatically decreased the
thermal stability of RTA but not CTA1. PBA and glycerol both inhibited the thermal disordering of RTA, but only glycerol
could reverse the destabilizing effect of anionic phospholipids. In contrast, PBA was able to increase the thermal stability of
CTA1 in the presence of anionic phospholipids. PBA inhibits cellular intoxication by CT but not ricin, which is explained by
its ability to stabilize CTA1 and its inability to reverse the destabilizing effect of membranes on RTA. Our data highlight the
toxin-specific intracellular events underlying ER-to-cytosol translocation of the toxin A chain and identify a potential means
to supplement the long-term stabilization of toxin vaccines.

Citation: Ray S, Taylor M, Burlingame M, Tatulian SA, Teter K (2011) Modulation of Toxin Stability by 4-Phenylbutyric Acid and Negatively Charged
Phospholipids. PLoS ONE 6(8): e23692. doi:10.1371/journal.pone.0023692

Editor: Michel R. Popoff, Institute Pasteur, France

Received May 31, 2011; Accepted July 22, 2011; Published August 22, 2011

Copyright: � 2011 Ray et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by National Institutes of Health (http://www.nih.gov/) grant R01 AI073783 to K. Teter. The funders had no role in study
design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: kteter@mail.ucf.edu

Introduction

Cholera toxin (CT), pertussis toxin (PT), Shiga toxin (ST), and

the plant toxin ricin are AB-type protein toxins that contain a

catalytic A subunit and a receptor-binding B subunit [1,2]. These

toxins move from the cell surface to the endoplasmic reticulum

(ER) as intact holotoxins. Conditions in the ER promote the

dissociation of the catalytic A subunit from the rest of the toxin [3–

7]. Unfolding of the isolated toxin A chain subsequently activates

the quality control mechanism of ER-associated degradation

(ERAD) [2]. This system recognizes misfolded or misassembled

proteins in the ER and exports them to the cytosol through one or

more protein-conducting channels in the ER membrane [8]. Most

exported ERAD substrates are degraded by the ubiquitin-26S

proteasome system, but ER-translocating toxins avoid this fate

because their lysine-poor A chains lack the target amino acid

residue for ubiquitin conjugation [9–12]. Instead, the translocated

A chain refolds in the cytosol and modifies its intracellular target to

initiate the cellular effects of intoxication.

ER-translocating toxins were originally thought to masquerade as

misfolded proteins in order to activate the ERAD translocation

mechanism [10]. However, accumulating evidence suggests the toxin

A chain actually assumes an unfolded conformation after dissociation

from the holotoxin. The isolated A chains of both CT (CTA1) and

PT (PT S1) are in disordered conformations at the physiological

temperature of 37uC [13–15]. Ricin toxin A chain (RTA) is more

stable than CTA1 or PT S1 [16–18], but its unfolding in the ER is

promoted by an interaction with negatively charged phospholipids.

This was originally demonstrated using unilamellar vesicles enriched

with the anionic phospholipid 1-hexadecanoyl-2-(9Z-octadecenoyl)-

sn-glycero-3-phospho-(19-rac-glycerol) (POPG) and was later demon-

strated with ER-derived microsomes [19,20]. Membrane interaction

appears to involve a hydrophobic stretch of amino acids near the C-

terminus of RTA [20,21]. The C-terminal region of the ST A1

subunit (STA1) also interacts with negatively charged vesicles and is

actively involved with the ER-to-cytosol translocation event [22–25].

A potential destabilizing interaction between anionic phospholipids

and CTA1 or PT S1 has not yet been examined.

AB toxins that enter the cytosol from acidified endosomes utilize

a pH-dependent mechanism for A chain translocation to the

cytosol [1]. In contrast, exposure to acidic pH is not required for

productive intoxication with either CT or ricin [26–28]. Both

travel as intact holotoxins from the cell surface to the endosomes,

from the endosomes to the trans-Golgi network, and from the trans-

Golgi network to the ER (Fig. S1) [29,30]. A/B subunit

dissociation occurs in the ER, which maintains a near-neutral

pH similar to the cytosolic pH of 7.1–7.4 [31,32]. The holotoxin-

associated A chains are held in stable conformations [33,34], but

unfolding of the dissociated CTA1 subunit occurs at 37uC and

pH 7.0–7.4 [14,35]. Unfolding of the isolated RTA subunit
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likewise occurs at 37uC and pH 7.1 in the presence of anionic

phospholipids which mimic the ER membrane [19]. Although

acidic pH often denatures proteins, we have reported that a

pH 6.0 buffer actually stabilizes the CTA1 subunit [36]. A pH 6.5

buffer also prevents the thermal unfolding of CTA1, while a

pH 8.5 buffer destabilizes CTA1 (A.H. Pande and K. Teter,

unpublished observations). Acidic pH has also been reported to

stabilize RTA [16]. The mildly acidic conditions in the early

endosomes and trans-Golgi network [31,37] are therefore unlikely

to begin the unfolding process before holotoxin transport to the

ER. As such, negatively charged phospholipids and/or physiolog-

ical temperature appear to be the main contributing factors for

unfolding of the dissociated CTA1 and RTA subunits.

In addition to its role in ERAD-mediated translocation, the

instability of RTA also impacts the process of vaccine develop-

ment. Efforts to produce a vaccine against ricin, a potential

bioterror agent [38], have been hampered by the negative impact

of RTA instability on its expression and storage [17,39–42]. Thus,

recombinant variants of RTA with increased thermostability have

been generated as potential vaccine candidates [17,42]. Protein

stabilizers have also been evaluated as potential additions to a

RTA vaccine [18]. Recently, a mutant RTA-based vaccine

(RiVax) in clinical evaluation [43,44] has been shown to maintain

immunogenicity for one year when lyophilized in the presence of

20% trehalose [45].

We have previously suggested that the inhibition of A chain

unfolding represents a potential target for broad-spectrum anti-

toxin therapeutics [35]. Stabilization of the dissociated A chain

would prevent its recognition by the ERAD system, its ER-to-

cytosol export, and, thus, its toxic effect in the cytosol. We

demonstrated this principle with 4-phenylbutyric acid (PBA), a

chemical chaperone and therapeutic agent approved by the

Food and Drug Administration (FDA) for the treatment of urea

cycle disorders [46]. PBA inhibited the thermal disordering of

CTA1, the ER-to-cytosol translocation of CTA1, and CT

activity against both cultured cells and ileal loops [47]. In this

work, we examined whether PBA also blocks the thermal

disordering of RTA. Two medicinal benefits could result from

the potential stabilization of RTA by PBA: (i) an extended shelf-

life for recombinant RTA vaccines; and (ii) an inhibition of the

intoxication process via disruption of ERAD-mediated translo-

cation to the cytosol.

The overall aim of this work was to assess the medicinal value

of PBA as a protein stabilizer for RTA and as a ricin inhibitor.

Biophysical studies demonstrated that PBA binds to RTA and

increases the thermal stability of the protein without affecting its

structure. PBA or similar small molecules could thus potentially

be used to improve RTA vaccine production by preserving its

long-term conformational stability. However, PBA did not

inhibit ricin intoxication of cultured cells. Additional experi-

ments demonstrated that the destabilizing effect of anionic

phospholipids on RTA structure was dominant over the

stabilizing effect of PBA. In contrast, negatively charged

phospholipids did not destabilize CTA1 and did not prevent

the thermal stabilization of CTA1 by PBA. These collective

results provide a molecular explanation for why PBA protects

cells from CT but not ricin: PBA will stabilize CTA1, but not

RTA, in the presence of the negatively charged phospholipids of

the ER membrane. Our data, which highlight the importance of

toxin-phospholipid interactions for the translocation of RTA,

demonstrate that distinct ERAD-related events are active in the

export of different ER-translocating toxins.

Materials and Methods

Materials
Ricin holotoxin, ricin B chain, and RTA were purchased from

Vector Laboratories, Inc. (Burlingame, CA). Culture supernatant

from ST1- and ST2-producing Escherichia coli O157 strain

RM1697 was kindly provided by Dr. Beatriz Quinones (US

Department of Agriculture, Western Regional Research Center).

CTA1-His6 was purified as previously described [36]. 1-palmitoyl-

2-oleoyl-sn-glycero-3-phosphocholine (POPC) and POPG were

purchased from Avanti Polar Lipids (Alabaster, Alabama). PBA

was purchased from EMD Chemicals (Gibbstown, NJ); Na2HPO4,

KH2PO4, and NaCl were purchased from Fisher Scientific

(Pittsburgh, PA); chloroform and ethanolamine were purchased

from Sigma Aldrich (St. Louis, MO); and NHS and EDC were

purchased from Thermo Scientific (Rockford, IL). Rabbit anti-

RTA and anti-ricin B chain antibodies were purchased from

Abcam (Cambridge, MA).

Preparation of large unilamellar vesicles (LUVs)
Lipid solutions of 10 mM POPC were made in chloroform, and

lipid solutions of 10 mM POPG were made in chloroform:metha-

nol (2:1, v/v). After mixing POPC and POPG solutions in a 4:1

molar ratio, the solvent was evaporated under a steady stream of

nitrogen gas and then placed in a desiccator for 4 h. To prepare

LUVs, the dried lipid mixture was suspended in 10 mM Na/K

phosphate buffer (pH 7.2) containing 50 mM NaCl, vortexed

thoroughly, and extruded at room temperature through 100 nm

pore size polycarbonate membranes using a LiposoFast extruder

(Avestin, Ottawa, Canada) with 30 passes.

Surface plasmon resonance (SPR)
A Reichert (Depew, NY) SR7000 SPR Refractometer with a

flow rate of 41 ml/min was used for SPR experiments. To create a

sensor slide, we activated a self-assembled monolayer gold sensor

slide (Reichert) by a 10 min perfusion with a buffer containing

0.4 M EDC and 0.1 M NHS. Phosphate-buffered saline (pH 7.4)

containing 0.05% Tween 20 (PBST) was passed over the plate for

5 min to remove the activation buffer. An anti-RTA antibody at

1:1,000 dilution in 20 mM sodium acetate (pH 5.5) was then

perfused over the slide for 10 min. Following another 5 min PBST

wash, the remaining active sites on the slide were deactivated with

a 3 min perfusion of 1 M ethanolamine pH 8.5. A baseline

measurement corresponding to the mass of the bound antibody

was taken, and 20 mg/ml RTA in PBST was then passed over the

antibody-coated plate for 5 min. The increased refractive index

unit (RIU) resulting from antibody capture of RTA confirmed the

presence of toxin on the plate. This elevated RIU reading was set

as the new baseline value before perfusion of 100 mM PBA over

the toxin-bound sensor slide. Reichert Labview software was used

for data collection, and the BioLogic (Campbell, Australia)

Scrubber 2 software was used for data analysis.

For experiments involving ricin holotoxin or ricin B chain, the

aforementioned protocol was followed except the activated plate

was initially exposed to a 1:500 dilution of anti-ricin B chain

antibody. Either 20 mg/ml of ricin holotoxin or 20 mg/ml of ricin

B chain was then used to coat the plate. The baseline value

resulting from toxin deposition on the sensor was lower for

holotoxin-coated plates than RTA-coated plates, indicating that

the holotoxin-coated sensor had less toxin appended to it than the

RTA-coated sensor. This could be due to a difference in the

quality of the anti-RTA vs. anti-RTB antibodies used to append

RTA and ricin holotoxin, respectively, to their sensors. The

different toxin quantities on the sensor slides affected the arbitrary
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RIU signal but would not affect the affinity of PBA-toxin

interactions [48].

Circular dichroism (CD) and fluorescence spectroscopy
For measurements of RTA secondary structure, far-UV CD

experiments with a Jasco 810 spectrofluoropolarimeter were

conducted on 66 mg/ml of RTA (2 mM) in 10 ml Na/K phosphate

buffer (pH 7.2) with 1 mM dithiothreitol. The toxin was placed in

a 0.1 mm optical path-length quartz cuvette (Hellma USA,

Plainview, NY) and heated from 20uC to 60uC in 2uC increments

using a Neslab RTE 7 thermostat (Thermo Fisher Scientific,

Waltham, MA). The sample was equilibrated for 4 min at each

temperature before measurement. Where indicated, the sample

was placed in a buffer containing 10% glycerol, 100 mM PBA,

and/or 600 mM LUVs containing 80% POPC and 20% POPG.

Additions were made at 20uC before the measurements. In

experiments involving a combination of PBA and POPC:POPG

LUVs, RTA was incubated with PBA for 30 min at 20uC before

the addition of LUVs and commencement of measurements.

Likewise, RTA was pre-incubated with 10% glycerol for 30 min at

20uC before the addition of LUVs and commencement of

measurements.

The temperature-dependence of CTA1 structure was studied by

CD and fluorescence techniques as previously described

[14,35,36,47]. Sample concentration was 72 mg of CTA1-His6 in

220 ml of 10 mM sodium borate buffer (pH 7.2), or 15 mM, in a

4 mm 6 4 mm rectangular quartz cuvette. CTA1 was heated

from 20uC to 60uC in 1uC or 2uC increments using a Jasco PFD-

425S Peltier temperature controller. At each temperature, the

sample was incubated for 4 min before measurement. Toxin

samples incubated with PBA, LUVs, or both PBA and LUVs were

prepared as described above for RTA, including the 30 min pre-

incubation with PBA before addition of POPC:POPG LUVs.

Thermal unfolding profiles for both CTA1 and RTA were

calculated as previously described [14,35,36,47].

Toxicity assay
As previously described [49], Vero cells expressing a destabi-

lized variant of the enhanced green fluorescent protein (Vero-

d2EGFP) were seeded in 96-well microplates and exposed to

varying concentrations of ricin or culture supernatant from ST1-

and ST2-producing E. coli O157 strain RM1697 [50] for 16 hr at

37uC in a 5% CO2 humidified incubator. EGFP fluorescence was

then measured on a Synergy HT Multi-Detection Microplate

Reader (BioTek, Winooski, VT) with the 485/20 nm excitation

filter and the 528/20 nm emission filter. Results from toxin-

treated cells were expressed as percentages of the values obtained

from control cells incubated without toxin.

Results

We have recently reported that PBA binds directly to CTA1

and prevents its thermal unfolding [47]. To determine whether

PBA could also bind to RTA, we used the technique of SPR. PBA

was perfused over SPR sensor slides coated with ricin holotoxin or

RTA (Fig. 1). A positive signal was detected with both the

holotoxin (Fig. 1A) and the isolated A chain (Fig. 1B). A stronger

signal in the case of RTA compared to the holotoxin likely

indicates a higher surface density of the protein in the former case.

Preliminary calculations of the association rate constants (ka) for

these experiments provided further support for this interpretation,

as PBA binding to both RTA and ricin holotoxin was

characterized by similar values of ka. The rapid return of the

signal to baseline value upon removal of PBA from the perfusion

buffer indicated that PBA binding to either RTA or the holotoxin

is easily reversible. No signal was obtained when ricin B chain was

exposed to PBA (not shown), which strongly suggested that PBA

binding to the ricin holotoxin resulted from an interaction with the

holotoxin-associated A chain. Far-UV CD confirmed that our

ricin B chain was in the folded conformation expected from

previous reports (not shown) [51].

Far-UV CD was used to determine the impact of PBA binding

on the structural stability of RTA (Fig. 2). Measurements of

protein secondary structure were taken at defined temperatures as

the A chain was heated from 20uC to 60uC in either the absence

(Fig. 2A) or presence (Fig. 2B) of 100 mM PBA. For both

conditions, RTA exhibited a strong minimum between 207–

212 nm and a weaker shoulder around 220–222 nm. These

signals, which are likely generated by the a-helical pp* and np*

transitions, respectively, overlapped with the b-sheet np* transition

around 216 nm [52]. The recorded spectra were similar to

previous far-UV CD measurements of RTA [17–20,51] and,

Figure 1. PBA binds to ricin. PBA was perfused at a 100 mM
concentration over SPR sensor slides coated with ricin holotoxin (A) or
RTA (B). For each slide, the baseline signal from the bound toxin was set
at 0 microRIU before PBA perfusion. Arrowheads indicate the time at
which PBA was removed from the perfusion buffer.
doi:10.1371/journal.pone.0023692.g001
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consistent with the crystal structure of ricin (PDB entry 1AAI;

[53]), indicated an a/b-type structure. The RTA spectrum was

slightly red shifted in the presence of PBA, which may indirectly

indicate hydrophobic interactions between the protein and PBA

resulting in a less polar microenvironment [52]. Thus, PBA

treatment did not induce gross structural alterations to RTA.

Thermal unfolding profiles derived from the raw data were used to

determine the secondary structure transition temperature (Tm; the

midpoint between folded and unfolded conformations) for

untreated and PBA-treated toxin (Fig. 2C). Untreated RTA

exhibited a Tm of 44.2uC (Table 1). PBA shifted the temperature

of RTA thermal unfolding to a higher temperature of 48.5uC and

thus exerted a stabilizing effect on the protein (Table 1).

We have previously shown that PBA prevents the thermal

unfolding of CTA1, which in turn blocks the ER-to-cytosol export

of CTA1 and productive intoxication [47]. The unfolding of RTA

also occurs before toxin translocation to the cytosol [2,16,19,20], so

we predicted that PBA would inhibit ricin intoxication as well. To

test this prediction, Vero-d2EGFP cells were incubated with

100 mM PBA and various concentrations of ricin for 18 hours.

The cytotoxic effect of ricin prevents d2EGFP synthesis, so the

fluorescent signal from Vero-d2EGFP cells decays over time. Loss of

fluorescence is thus used as an indicator of intoxication [49,50].

Surprisingly, rather than protect cells, PBA treatment slightly

sensitized cells to ricin challenge by an unknown mechanism (Fig. 3).

RTA is destabilized by an interaction with negatively charged

phospholipid membranes which have been used to mimic the

inner leaflet of the ER membrane [19,20]. We hypothesized that

this interaction nullified the stabilizing effect of PBA on RTA and

thus allowed productive intoxication of PBA-treated cells. To test

this prediction, we monitored the effect of phospholipid vesicles

containing the anionic lipid POPG on the thermal unfolding of

RTA in the either the absence or presence of PBA (Fig. 4). In the

presence of LUVs containing 20% POPG + 80% POPC, the

thermal unfolding of RTA secondary structure exhibited a

dramatically decreased Tm of 27.4uC (Fig. 4A, 4C, and Table 1).

When exposed to both POPC/POPG vesicles and 100 mM PBA,

the thermal transition for the secondary structure of RTA

exhibited a Tm of 33.4uC (Fig. 4B–C, Table 1). These data

indicated that anionic membranes exert a strong destabilizing

effect on RTA secondary structure. Furthermore, PBA only

partially restored the thermal stability of RTA: in the presence of

both POPC/POPG vesicles and PBA, the Tm was still significantly

lower than that of the untreated protein (see Table 1). Thus, the

stabilizing effect of PBA on RTA structure was largely negated by

the destabilizing effect of anionic membranes. The inability of

PBA to stabilize RTA in the presence of anionic lipids provided a

molecular explanation for the failure of PBA to protect cultured

cells from challenge with ricin holotoxin, where the toxin is

exposed to the inner face of the negatively charged ER membrane.

The destabilizing effect of phospholipid vesicles on PBA-bound

RTA might result from the phospholipid-mediated displacement

of PBA from the toxin. SPR was used to examine this possibility

(Fig. 5). PBA was perfused at 37uC over a sensor slide coated with

RTA until the binding equilibrium was reached. Then, the

perfusion buffer was replaced with a buffer containing both PBA

and POPC/POPG vesicles. This led to rapid displacement of PBA

from the sensor slide (Fig. 5A). POPC/POPG vesicles alone did

not generate a signal when perfused over the RTA plate (Fig. 5A),

possibly because anionic LUVs rupture upon contact with RTA

[19] and would thus lack the necessary mass to alter the refractive

index of the slide. The process of buffer switching alone was not

responsible for displacement of RTA-bound PBA, as no

substantial loss of signal occurred when the PBA-containing buffer

was replaced with another PBA-containing buffer (Fig. 5B) or with

a buffer containing both PBA and 100% POPC vesicles (Fig. 5C).

The latter observation was consistent with the established lack of

interaction between RTA and neutral phospholipid vesicles

[19,20]. Thus, POPC/POPG vesicles could effectively remove

pre-bound PBA from RTA.

We further hypothesized that the POPC/POPG-induced

destabilization of RTA was responsible for displacing pre-bound

Figure 2. PBA inhibits the thermal unfolding of RTA. (A–B): Far-UV CD measurements of RTA secondary structure were taken in the absence (A)
or presence (B) of 100 mM PBA. Data were recorded with 2 mM RTA in pH 7.2 buffer. The change in color from blue to red corresponds to a change in
temperature from 20uC to 60uC. (C): The mean residue molar ellipticities at 208 nm ([h]208) in the absence (red) or presence (blue) of PBA were plotted
as a function of temperature.
doi:10.1371/journal.pone.0023692.g002

Table 1. Influence of PBA, POPC/POPG (4:1), and Glycerol on
the Thermal Stability of RTA a.

Condition Tm (6C)

No treatment 44.260.7

+ PBA 48.560.5

+ POPC/POPG 27.461.0

+ POPC/POPG & PBA 33.460.5

+ Glycerol 49.360.8

+ Glycerol & POPC/POPG 43.561.0

aTm values were calculated from the thermal unfolding profiles presented in
Figures 2, 4, and 7. Values represent the averages 6 ranges from two
independent experiments per condition.

doi:10.1371/journal.pone.0023692.t001

Toxin Interactions with PBA, Anionic Phospholipids

PLoS ONE | www.plosone.org 4 August 2011 | Volume 6 | Issue 8 | e23692



PBA. In this model, PBA would not bind to unfolded

conformations of RTA. We tested this prediction by perfusing

PBA over an SPR sensor coated with RTA that had been

denatured by a one hour, 50uC heat treatment [16]. As shown in

Figure 5D, PBA did not bind to denatured RTA. Our collective

observations thus indicated that the destabilizing effect of anionic

phospholipids is dominant over the stabilizing effect of PBA, and

that the phospholipid-induced unfolding of RTA displaces pre-

bound PBA.

We have previously shown that PBA blocks the thermal

unfolding of CTA1, the ER-to-cytosol export of CTA1, and CT

intoxication [47]. These results suggested that, in contrast to RTA,

anionic phospholipid membranes (such as the ER membrane) do

not alter the impact of PBA on CTA1 stability. CD and

fluorescence spectroscopy were used to test this prediction

(Fig. 6). Consistent with previous reports [14,35,36,47], the

isolated CTA1 subunit was in a partially unfolded conformation

at the physiological temperature of 37uC (Fig. 6A–C and J–L).

CTA1 exhibited a tertiary structure Tm of 31.5uC, a Tm of 34.4uC
for the red shift to the maximum emission wavelength (lmax) of

tryptophan fluorescence, and a secondary structure Tm of 34.8uC
(Table 2). POPC/POPG vesicles did not destabilize CTA1, but

rather had a slight stabilizing effect (Fig. 6D–F): in the presence of

these vesicles, the Tm values derived from far-UV CD, near-UV

CD, and fluorescence experiments were shifted to 2–3uC higher

temperatures than recorded for the control condition (Fig. 6J–L

and Table 2). This stood in sharp contrast to the dramatic

destabilizing effect of negatively charged vesicles on RTA thermal

stability. When CTA1 was treated with both PBA and POPC/

POPG vesicles (Fig. 6G–I), we recorded a 5–7uC increase in Tm

values (Fig. 6 J–L and Table 2) that was similar to the stabilizing

effect previously reported for PBA alone [47]. Collectively, these

observations demonstrated that anionic phospholipid vesicles are

neither a general protein destabilizer nor a direct inhibitor of PBA.

The data also provided a molecular explanation for the differential

effects of PBA on ricin vs. cholera intoxication: PBA does not

inhibit ricin intoxication and does not prevent unfolding of RTA

in the presence of anionic phospholipids, whereas PBA inhibits

both CT intoxication and CTA1 unfolding in the presence of

negatively charged phospholipids at physiological temperature.

Glycerol is a general protein stabilizer that confers cellular

resistance to ricin, CT, and other AB toxins [35,50,54]. Glycerol

has also been shown to prevent the thermal unfolding of CTA1

[35]. We accordingly predicted that glycerol would inhibit the

thermal unfolding of RTA, and that negatively charged phospho-

lipid vesicles would not block the stabilizing effect of glycerol. Far-

UV CD was used to test this prediction (Fig. 7). Exposure to 10%

glycerol resulted in a substantial increase in RTA thermal stability:

the secondary structure Tm was increased to 49.3uC, which was

5.1uC higher than the Tm for untreated RTA (Fig. 7A, 7C, and

Table 1). Consistent with our data, previous work reported that an

incubation with 10% glycerol raises the Tm for the red shift to the

lmax of RTA tryptophan fluorescence by 4uC [18]. Exposure to

both 10% glycerol and POPC/POPG vesicles (Fig. 7B) partially

attenuated the stabilizing effect of glycerol: under this condition,

RTA exhibited a secondary structure Tm of 43.5uC (Fig. 7C,

Figure 3. PBA does not inhibit ricin intoxication. Vero-d2EGFP
cells were exposed to the indicated concentrations of ricin for 16 h in
the absence (circles) or presence (squares) of 100 mM PBA. The means 6
standard errors of the means of four independent experiments with six
replicate samples for each condition are shown.
doi:10.1371/journal.pone.0023692.g003

Figure 4. POPC/POPG destabilizes RTA in either the absence or presence of PBA. (A–B): The temperature-induced unfolding of RTA
secondary structure in the presence of POPC/POPG (4:1 molar ratio) vesicles (A) or in the presence of both POPC/POPG vesicles and PBA (B) was
monitored by far-UV CD. In panel (B), LUVs were introduced 30 min after toxin exposure to 100 mM PBA at 20uC. Data were recorded with 2 mM RTA
in pH 7.2 buffer. The change in color from blue to red corresponds to a change in temperature from 20uC to 60uC. (C): The mean residue molar
ellipticities at 208 nm ([h]208) in the presence of either POPC/POPG (blue) or both POPC/POPG and PBA (green) were plotted as a function of
temperature.
doi:10.1371/journal.pone.0023692.g004
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Table 1). This Tm was similar to the Tm obtained from untreated

RTA, but it was also 16.1uC higher than the Tm obtained for

POPC/POPG-treated toxin (Table 1). Glycerol treatment, in

contrast to PBA, thus prevented the destabilizing effect of anionic

phospholipid vesicles on the structure of RTA. These observations

provide a molecular explanation for the differential effects of PBA

and glycerol on ricin intoxication: PBA did not inhibit ricin

intoxication and did not affect toxin destabilization by anionic

phospholipids, whereas glycerol inhibited both ricin intoxication

and toxin destabilization by negatively charged phospholipids.

Discussion

ER-translocating toxins bind to a variety of surface receptors,

follow distinct trafficking routes to the ER, and modify their

specific targets in the host cytosol. However, with the exception of

cytolethal distending toxin [55], all known ER-translocating toxins

appear to exploit the ERAD system for A chain translocation to

the cytosol [2]. The inhibition of ERAD-mediated toxin

translocation could thus confer broad-spectrum resistance to a

subset of AB toxins.

It was originally thought that a hydrophobic domain near the

C-terminus of the A chain allowed the toxin to masquerade as a

misfolded protein for ERAD recognition and subsequent export to

the cytosol [10]. More recent studies have suggested an alternative

model in which the A chain actually assumes a disordered

conformation upon its dissociation from the holotoxin at 37uC.

Thermal instability in the isolated A chain has been reported for

the catalytic subunits of PT, CT, and ricin [13,14,19,20]. In

contrast, the catalytic subunit of cytolethal distending toxin (which

does not use ERAD to exit the ER) is thermally stable [56]. The

inhibition of A chain unfolding at physiological temperature could

thus block the ERAD-mediated translocation of multiple AB

toxins.

We have previously shown that either 10% glycerol or 100 mM

PBA will inhibit the thermal disordering of CTA1, the ER-to-

cytosol export of CTA1, and CT intoxication [35,47]. PBA is a

chemical chaperone and an FDA-approved therapeutic for the

treatment of urea cycle disorders [46,57]. It therefore held

promise as a drug that could generate broad-spectrum toxin

resistance through an inhibition of A chain unfolding. The

potential stabilizing effect of PBA on A chain structure could also

help improve the expression and storage of recombinant RTA

vaccines. Our data indicate that PBA substantially increases the

thermal stability of RTA and, thus, could potentially be used in

the formulation of RTA vaccines. A 4.3uC increase in the

secondary structure Tm of RTA was obtained with 100 mM PBA

(Fig. 2), and a 7.8uC increase in the secondary structure Tm was

obtained with 1 mM PBA (Fig. S2). PBA is thus more effective

than any of the previous compounds evaluated as RTA

stabilizers, with the exception of 50% glycerol [18]. Future

studies will be required to determine whether this level of

stabilization can aid long-term storage of lyophilized or soluble

RTA as well as other vaccine antigens. In terms of vaccine

development, our current observations represent a preliminary

step that could orient further research on small molecule

stabilizers of vaccine antigens.

Figure 5. POPC/POPG treatment removes PBA from RTA. (A–C, solid lines): SPR sensor slides coated with RTA were exposed to perfusion
buffer containing 100 mM PBA at 37uC for 300 sec. The buffer was then replaced with buffer containing (A) 100 mM PBA and 80% POPC : 20% POPG
LUVs, (B) 100 mM PBA, or (C) 100 mM PBA and 100% POPC LUVs. As shown by the dotted line in panel A, control experiments demonstrated that LUVs
alone did not generate a positive signal from the RTA sensor slide. (D): RTA was irreversibly denatured by a 1 hr, 50uC heat treatment and then
appended to an SPR sensor slide. PBA was subsequently perfused over the slide at a concentration of 100 mM. For each slide, the baseline signal from
the bound toxin was set at 0 microRIU before PBA perfusion.
doi:10.1371/journal.pone.0023692.g005
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Figure 6. Anionic phospholipid vesicles do not destabilize CTA1 in either the absence or presence of PBA. (A–I): The temperature-
induced unfolding of untreated CTA1 (A–C), CTA1 treated with POPC/POPG (at 4:1 molar ratio) vesicles (D–F), or CTA1 treated with PBA and POPC/
POPG vesicles (G–I) was monitored by near-UV CD (A, D, G), fluorescence spectroscopy (B, E, H), and far-UV CD (C, F, I). In panels (G–I), LUVs were
introduced 30 min after toxin exposure to 100 mM PBA at 20uC. Data were recorded with 15 mM CTA1 in pH 7.2 buffer. The change in color from blue
to red corresponds to a change in temperature from 20uC to 60uC. (J–L): Thermal unfolding profiles for CTA1 (red), CTA1 + lipid (blue), and CTA1 +
PBA + lipid (yellow) were derived from the data presented in panels A–I. (J): For near-UV CD analysis, the mean residue molar ellipticities at 280 nm
([h]280) were plotted as a function of temperature. (K): For fluorescence spectroscopy, the maximum emission wavelength (lmax) was plotted as a
function of temperature. (L): For far-UV CD analysis, the mean residue molar ellipticities at 220 nm ([h]220) were plotted as a function of temperature.
doi:10.1371/journal.pone.0023692.g006
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PBA did not protect cultured cells from ricin intoxication

(Fig. 3). The different effects of PBA on CT intoxication vs. ricin

intoxication apparently result from the distinct host-toxin

interactions that occur in the ER for these two toxins. CTA1

and RTA both use thermal instability as a means to activate the

ERAD translocation mechanism. However, as highlighted in this

work, the translocation of each toxin involves distinct molecular

events. CTA1 has a disordered tertiary structure and a partially

disturbed secondary structure at the physiological temperature of

37uC [14], so further host-induced unfolding is apparently

unnecessary for its ERAD-mediated translocation. Indeed, we

found that exposure to anionic phospholipids did not lead to

further destabilization of CTA1 (Fig. 6). The PBA-induced

stabilization of CTA1 can thus occur in vivo as well as in vitro,

thereby preventing toxin export to the cytosol and productive

intoxication [47]. In contrast, RTA is more stable than CTA1

and uses an interaction with the negatively charged phospho-

lipids of the ER membrane to induce further unfolding [19,20].

The destabilization by anionic phospholipids is dominant over

the PBA-induced stabilization of RTA (Fig. 4), so PBA is

unlikely to inhibit the in vivo unfolding and translocation of

RTA that is exposed to the negatively charged ER membrane.

The different pathways utilized by CTA1 and RTA to attain a

disordered, translocation-competent conformation thus produce

different outcomes when PBA is applied in vivo to block

intoxication.

Treatment with 10% glycerol stabilized RTA in both the

absence and presence of anionic phospholipids (Fig. 7). This

condition is known to inhibit ricin intoxication [54] (S. Massey and

K. Teter, unpublished observations), so the general strategy of

toxin stabilization appears to be a valid therapeutic approach.

Furthermore, the glycerol-induced block of ricin intoxication

strongly suggests that the unfolding of RTA by anionic

phospholipids is a key step for toxin translocation. RTA exposed

to both glycerol and POPC/POPG vesicles exhibited about the

same secondary structure Tm as untreated RTA (Table 1), which

indicates the intrinsic thermal instability of RTA is insufficient to

promote toxin translocation and productive intoxication. The

possible extent of host-assisted A chain unfolding was further

documented by the dramatic ,17uC decrease in secondary

structure Tm for POPC/POPG-treated RTA. These collective

observations provide further support for a previously suggested

model in which A chain interaction with the ER membrane is an

essential event for ricin translocation to the cytosol [20].

Preliminary experiments have shown that PBA also fails to

protect cultured cells from ST (Fig. S3). In contrast, glycerol-

treated cells are resistant to ST [50]. These observations mirror

the results obtained with ricin and suggest that STA1 unfolding

also involves an interaction with the negatively charged phospho-

lipids of the ER membrane. Consistent with this model, it has been

shown that (i) the C-terminus of STA1 binds to membranes

containing 20–30% anionic phospholipids [24,25] and (ii) the C-

terminus of STA1 is required for productive intoxication [22,25].

Likewise, the C-terminus of RTA appears to mediate the

interaction with anionic phospholipids which results in its

unfolding [20,21]. Computational predictions of toxin stability

further indicate that STA1 is more stable than CTA1 and is either

as stable or more stable than RTA, depending on the STA1

variant (Table S1). Based on these observations, we hypothesize

that, like RTA, physiological temperature alone is not sufficient to

place the dissociated STA1 subunit in a disordered conformation

for ERAD recognition.

Our collective data indicate that, similar to the numerous AB

toxin trafficking routes from the cell surface to the ER, the ERAD-

mediated translocation of toxin A chains from the ER to the

cytosol is a heterogeneous process. For some toxins, A chain

thermal instability alone is sufficient to generate a disordered

conformation for ERAD recognition. In other cases, ERAD

recognition requires further destabilization of the A chain via an

Table 2. Influence of PBA and POPC/POPG (4:1) on the
Thermal Stability of CTA1a.

Tm (6C)

Condition near-UV CD lmax far-UV CD

No treatment 31.560.5 34.460.6 34.860.7

+ POPC/POPG 33.661.0 36.860.8 37.761.0

+ POPC/POPG &
PBA

36.361.0 39.760.7 42.560.8

aTm values were calculated from the thermal unfolding profiles presented in
Figure 6. Values represent the averages 6 ranges from two independent
experiments per condition.

doi:10.1371/journal.pone.0023692.t002

Figure 7. Glycerol prevents the thermal unfolding of RTA in either the absence or presence of POPC/POPG. (A–B): The temperature-
induced unfolding of RTA secondary structure in the presence of 10% glycerol (A) or in the presence of both 10% glycerol and POPC/POPG (B) was
monitored by far-UV CD. In panel (B), 100 nm LUVs containing 80% POPC and 20% POPG were introduced 30 min after toxin exposure to 10%
glycerol at 20uC. Data were recorded with 2 mM RTA in pH 7.2 buffer. The change in color from blue to red corresponds to a change in temperature
from 20uC to 60uC. (C): The mean residue molar ellipticities at 208 nm ([h]208) in the presence of either 10% glycerol (green) or both 10% glycerol and
POPC/POPG (blue) were plotted as a function of temperature.
doi:10.1371/journal.pone.0023692.g007
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interaction with the ER membrane. Stabilization of the A chain

will prevent ERAD-mediated export for either of the aforemen-

tioned categories of toxin, but the stabilizing agent must be able to

supersede the host-toxin interactions which place the A chain in a

translocation-competent conformation. The identification of such

a non-toxic agent represents a major challenge for the develop-

ment of a broad-spectrum inhibitor that blocks ER-localized toxin

unfolding. Our data indicate PBA could potentially serve as a

therapeutic agent for certain toxins such as CT, as well as a

preservative in bacterial or plant toxin vaccine production such as

in the case of RTA.

Supporting Information

Figure S1 Intracellular transport of CT and ricin. As

reviewed in [29,30], surface-bound toxins are internalized by

receptor-mediated endocytosis. A substantial portion of internal-

ized toxin is directed to the lysosomes for degradation (long, skinny

arrow). The functional pool of internalized toxin moves through

two early endosome compartments (sorting and recycling

endosomes) en route to the trans-Golgi network. An additional

vesicle trafficking step delivers the toxin to the ER in a process that

may bypass the Golgi apparatus. The intact AB toxin cycles

between the Golgi apparatus and ER until holotoxin disassembly

in the ER releases the A subunit (red oval) from the membrane-

associated B subunit (blue oval). The holotoxin-associated A chain

is held in a stable conformation [33,34], but the isolated A chain is

an unstable protein that will unfold in the ER at 37uC [14,20].

This unfolding event identifies the dissociated A chain as a

substrate for ERAD-mediated translocation to the cytosol. An

interaction with host factors in the cytosol allows the translocated

A chain to regain a folded, active conformation [14–16]. The

isolated B subunit can continue to cycle between the ER and Golgi

apparatus; its ultimate fate remains unknown. Although CT and

ricin pass through numerous organelles of varying pH, only

conditions in the ER affect the unfolding of the A chain:

alkalinization of the endomembrane system inhibits neither CT

nor ricin toxicity [27,28].

(TIF)

Figure S2 Dose-dependent inhibition of RTA unfolding
by PBA. (A): Far-UV CD measurements of RTA secondary

structure were taken in the presence of 1 mM PBA. Data were

recorded with 2 mM RTA in pH 7.2 buffer. The change in color

from blue to red corresponds to a change in temperature from

20uC to 60uC. (B): The mean residue molar ellipticities at 208 nm

([h]208) were plotted as a function of temperature. RTA exposed to

1 mM PBA exhibited a secondary structure Tm of 52uC, which

was 7.8uC higher than the Tm for untreated RTA and 3.5uC
higher than the Tm for RTA treated with 100 mM PBA.

(TIF)

Figure S3 PBA does not inhibit the cytotoxic activity of
ST. Vero-d2EGFP cells were exposed to 10-fold dilutions of an E.

coli culture supernatant containing ST1 and ST2 for 16 h in the

absence (circles) or presence (squares) of 100 mM PBA. The means

6 standard errors of the means of four independent experiments

with six replicate samples for each condition are shown.

(TIF)

Table S1 Computational predictions of toxin stability.
Protein instability data for the A chains of Shiga toxin (STA1),

Shiga-like toxin 1 (ST1 A1), Shiga-like toxin 2 (ST2 A1), ricin

(RTA), cholera toxin (CTA1), E. coli heat-labile toxin (LTA1), and

pertussis toxin (PT S1) were obtained from the ProtParam function

of ExPASy-SWISS-PROT. An instability index value greater than

40 is indicative of protein instability.

(DOC)
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