
original
report

Mathematical Approach to Differentiate
Spontaneous and Induced Evolution to Drug
Resistance During Cancer Treatment
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abstract

PURPOSE Drug resistance is a major impediment to the success of cancer treatment. Resistance is typically
thought to arise from random genetic mutations, after which mutated cells expand via Darwinian selection.
However, recent experimental evidence suggests that progression to drug resistance need not occur randomly, but
instead may be induced by the treatment itself via either genetic changes or epigenetic alterations. This relatively
novel notion of resistance complicates the already challenging task of designing effective treatment protocols.

MATERIALS AND METHODS To better understand resistance, we have developed a mathematical modeling
framework that incorporates both spontaneous and drug-induced resistance.

RESULTS Our model demonstrates that the ability of a drug to induce resistance can result in qualitatively
different responses to the same drug dose and delivery schedule. We have also proven that the induction
parameter in our model is theoretically identifiable and propose an in vitro protocol that could be used to
determine a treatment’s propensity to induce resistance.
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INTRODUCTION

Tumor resistance to chemotherapy and targeted drugs
is a major cause of treatment failure. Both molecular
and microenvironmental factors have been implicated
in the development of drug resistance.1 As an example
of molecular resistance, upregulation of drug efflux
transporters can prevent sufficiently high intracellular
drug accumulation, which limits treatment efficacy.2

Other molecular causes of drug resistance include
modification of drug targets, enhanced DNA damage
repair mechanisms, dysregulation of apoptotic path-
ways, and the presence of cancer stem cells.1-5 Ir-
regular tumor vasculature that results in inconsistent
drug distribution and hypoxia is an example of a mi-
croenvironmental factor that impacts drug resistance.6

Other characteristics of the tumor microenvironment
influencing drug resistance include regions of acidity,
immune cell infiltration and activation, and the tumor
stroma.1,6-10 Experimental and clinical research con-
tinues to shed light on the multitude of factors that
contribute to cancer drug resistance. Mathematical
modeling studies have also been used to explore both
broad and detailed aspects of cancer drug resistance,
as reviewed previously.11-13

Resistance to cancer drugs can be classified as either
pre-existing or acquired.1 Pre-existing—or intrinsic—

drug resistance describes the case in which a tumor
contains a subpopulation of drug-resistant cells at the
initiation of treatment, which makes therapy even-
tually ineffective as a result of resistant cell selection.1

As examples, pre-existing BCR-ABL kinase domain
mutations confer resistance to the tyrosine kinase
inhibitor imatinib in patients with chronic myeloid
leukemia,14,15 and pre-existing MEK1 mutations
confer resistance to BRAF inhibitors in patients with
melanoma.16 Many mathematical models have
considered how the presence of such pre-existing
resistant cells impacts cancer progression and
treatment.17-40

Acquired drug resistance broadly describes the case
in which drug resistance develops during the course of
therapy from a population of cells that were initially
drug sensitive.1 The term acquired resistance is really
an umbrella term for two distinct phenomena, which
complicates the study of acquired resistance. On the
one hand, there is resistance that is spontaneously—or
randomly—acquired during the course of treatment, be
it as a result of random genetic mutations or stochastic
nongenetic phenotype switching.41 This spontaneous
form of acquired resistance has been considered in
many mathematical models.18-22,27-29,31,32,35,40,42-49 On
the other hand, drug resistance can be induced (ie,
caused) by the drug itself.41,50-52

ASSOCIATED
CONTENT

Appendix

Data Supplement

Author affiliations
and support
information (if
applicable) appear at
the end of this
article.

Accepted on February
14, 2018 and
published at
ascopubs.org/journal/
cci on April 10, 2019:
DOI https://doi.org/10.
1200/CCI.18.00087

1

http://ascopubs.org/journal/cci
http://ascopubs.org/journal/cci
http://ascopubs.org/doi/full/10.1200/CCI.18.00087
http://ascopubs.org/doi/full/10.1200/CCI.18.00087


The question of whether resistance is an induced phe-
nomenon or predates treatment was first famously studied
by Luria and Delbrück53 in the context of bacterial
(Escherichia coli) resistance to a virus (T1 phage). In
particular, Luria and Delbrück hypothesized that if selective
pressures imposed by the presence of the virus induce
bacterial evolution, then the number of resistant colonies
formed in their plated experiments should be Poisson
distributed and thus have an approximately equal mean
and variance. What Luria and Delbrück found instead was
that the number of resistant bacteria on each plate varied
drastically, with variance being significantly larger than the
mean. As a result, the authors concluded that bacterial
mutations predated the viral challenge.53

In the case of cancer, there is strong evidence that at least
some drugs have the ability to induce resistance, as ge-
nomic mutations can be caused by cytotoxic cancer
chemotherapeutics.54,55 For instance, nitrogen mustards
can induce base substitutions and chromosomal rear-
rangements, topoisomerase II inhibitors can induce chro-
mosomal translocations, and antimetabolites can induce
double-stranded breaks and chromosomal aberrations.54

Such drug-induced genomic alterations would generally be
nonreversible. Drug resistance can also be induced at the
epigenetic level.41,50,56 For example, expression of multi-
drug resistance 1 (MDR1), an ABC-family membrane
pump that mediates the active efflux of the drug, can be
induced during treatment.1,41 In another recent example,
the addition of a chemotherapeutic agent is shown to in-
duce, through a multistage process, epigenetic reprog-
ramming in patient-derived melanoma cells.56 Resistance
developed in this way can occur quite rapidly and can often
be reversed.41,52,57

Despite these known examples of drug-induced resistance,
differentiating between drug-selected and drug-induced
resistance is nontrivial. For example, what appears to be

drug-induced acquired resistance may simply be the rapid
selection of a small number of pre-existing resistant cells or
the selection of cells that spontaneously acquired re-
sistance.41,44 In pioneering work by Pisco and colleagues,41

the relative contribution of resistant cell selection versus
drug-induced resistance was assessed in an experimental
system that involved HL60 leukemic cells that were treated
with the chemotherapeutic agent vincristine. After 1 to
2 days of treatment, expression of MDR1was demonstrated
to be predominantly mediated by cell-individual induction
of MDR1 expression and not by the selection of MDR1-
expressing cells.41,58 In particular, these cancer cells exploit
their heritable, nongenetic phenotypic plasticity—by which
one genotype can map onto multiple stable phenotypes—
to change their gene expression to a temporarily more
resistant state in response to treatment-related stress.41,58

Although there is a wealth of mathematical research that
addresses cancer drug resistance, relatively few models
have considered drug-induced resistance. Of the models of
drug-induced resistance that have been developed, many
do not explicitly account for the presence of the drug.
Instead, it is assumed that these models apply only under
treatment,41,59-62 with the effects of the drug implicitly
captured in model terms. As these models of resistance
induction are dose independent, they are unable to capture
the effects that the alteration of the drug dose has on re-
sistance formation. To our knowledge, there have been less
than a handful of mathematical models developed in which
resistance is induced by a drug in a dose-dependent
fashion.33,34,63, In Gevertz et al33 and follow-up work in
Shah, Rejniak, and Gevertz38 and Perez-Velazquez et al,64

duration and intensity of drug exposure determines the
resistance level of each cancer cell. This model allows for
a continuum of resistant phenotypes, but is computa-
tionally complex as it is a hybrid discrete-continuous,
stochastic spatial model. While interesting features about
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Key Objective
Resistance to chemotherapy may arise from Darwinian selection of resistant subclones that either predate therapy or emerge

during treatment. In addition, treatment itself may induce genetic or epigenetic variation that catalyzes drug resistance. This
work aims to mathematically tease out these various factors.

Knowledge Generated
A mathematical model is introduced to distinguish the effect of drugs that merely select from those that both create variation

and select. The ability of a drug to induce resistance can result in qualitatively different responses on the basis of dose and
delivery; constant-infusion regimes are less successful in controlling tumor growth than pulsed therapy for drugs that
induce resistance, but the situation is reversed for drugs that act only by selection.
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Recent experimental evidence suggests that progression to drug resistance need not occur randomly, but instead may be

induced by the treatment itself. Understanding the clinical implications of treatment-induced resistance will help formulate
appropriate protocols.
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the relationship between induced resistance and the mi-
croenvironment have been deduced from this model, its
complexity does not allow for general conclusions to be
drawn about dose-dependent resistance induction.

Another class of models that addresses drug-induced re-
sistance is that in Chisholm et al.63 These models are
distinct in that they are motivated by in vitro experiments
in which a cancer drug transiently induces a reversible
resistant phenotypic state.52 The individual-based and
integro-differential equation models developed consider
rapidly proliferating drug-sensitive cells, slowly proliferating
drug-resistant cells, and rapidly proliferating drug-resistant
cells. An advection term—with the speed depending on
drug levels—is used to model drug-induced adaptation of
the cell proliferation level, and a diffusion term for both the
level of cell proliferation and survival potential (response
to drug) is used to model nongenetic phenotype insta-
bility.63 Through these models, the contribution of non-
genetic phenotype instability (both drug induced and
random), stress-induced adaptation, and selection can
be quantified.63

Finally, the work in Liu et al34 models the evolutionary
dynamics of the tumor population as a multitype non-
homogeneous continuous time birth-death stochastic
process. This model accounts for the ability of a targeted
drug to alter the rate of resistant cell emergence in a dose-
dependent manner. The authors specifically considered
cases in which the rate of mutation that gives rise to a re-
sistant cell: (1) increases as a function of drug concen-
tration, (2) is independent of drug concentration, and (3)
decreases with drug concentration. Interestingly, this
model led to the conclusion that the optimal treatment
strategy is independent of the relationship between drug
concentration and the rate of resistance formation. In
particular, the authors found that resistance is optimally
delayed using a low-dose continuous treatment strategy
coupled with high-dose pulses.

As in vitro experiments have demonstrated that treatment
response can be affected by drug-induced resistance,41,52

in the current work we seek to understand this phenom-
enon further using mathematical modeling. The initial
mathematical model that we have developed—and that will
be analyzed herein—is a system of two ordinary differential
equations with a single control representing the drug. We
intentionally chose a minimal model that would be ame-
nable to analysis, as compared with previously developed
models of drug-induced resistance which are significantly
more complex.33,38,63,64 Despite the simplicity of the model,
it incorporates both spontaneous and drug-induced
resistance.

In addition to drug-induced resistance, the other charac-
teristic of cancer dynamics we explore is that of traditional,
maximally tolerated dose (MTD) treatment protocols
compared with high-frequency, low-dose so-called

metronomic therapies. Indeed, the differential response
between these therapies is fundamentally related to
intratumoral heterogeneity/competition, and is explicitly
considered in our model. Furthermore, results presented in
this work support recent evidence that promotes the
adoption ofmetronomic therapy inmany circumstances,65-69

and a main objective of this work is to relate competition
and drug-induced resistance to therapy design.

This work is organized as follows. We begin by introducing
a mathematical model to describe the evolution of drug
resistance during treatment with a theoretical resistance-
inducing—and noninducing—drug. We use this mathe-
matical model to explore the role played by the drug’s
resistance induction rate in treatment dynamics. We
demonstrate that the induction rate of a theoretical cancer
drug could have a nontrivial impact on the qualitative re-
sponses to a given treatment strategy, including tumor
composition and the time horizon of tumor control. In our
model, for a resistance-preserving drug—that is, a drug that
does not induce resistance—better tumor control is
achieved using a constant therapeutic protocol versus
a pulsed one. Conversely, in the case of a resistance-
inducing drug, pulsed therapy prolongs tumor control
longer than constant therapy as a result of sensitive/
resistant cell competitive inhibition. Once the importance of
induced resistance has been established, we demonstrate
that all parameters in our mathematical model are identi-
fiable, meaning that it is theoretically possible to determine
the rate at which drug resistance is induced for a given
treatment protocol. As this theoretical result does not di-
rectly lend itself to an experimental approach for quanti-
fying the ability of a drug to induce resistance, we also
describe a potential in vitro experiment for approximat-
ing this ability utilizing constant therapies. We end with
some concluding remarks and a discussion of potential
extensions of our analysis, such as a model that differ-
entiates between reversible and nonreversible forms of
resistance.

MATERIALS AND METHODS

Here we introduce a general modeling framework to de-
scribe the evolution of drug resistance during treatment.
Our model captures the fact that resistance can result from
random events or can be induced by the treatment itself.
Random events that can confer drug resistance include
genetic alterations—for example, point mutations or gene
amplification—and phenotype switching.41 These sponta-
neous events can occur either before or during treatment.
Drug-induced resistance is resistance specifically activated
by the drug and, as such, depends on the effective dose
encountered by a cell. Such a formulation allows us to
distinguish the contributions of both drug-dependent and
drug-independent mechanisms, as well as any dependence
on pre-existing—that is prior to treatment—resistant
populations.

Differentiating Spontaneous and Induced Resistance

JCO Clinical Cancer Informatics 3



We consider the tumor to be composed of two types of cells,
sensitive (S) and resistant (R). Sensitive (or wild-type) cells
are fully susceptible to treatment, whereas treatment af-
fects resistant cells to a lesser degree. To analyze the role of
both random and drug-induced resistance, we use a sys-
tem of two ordinary differential equations to describe the
dynamics between the S and R subpopulations:

dS
dt

� r
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All parameters are non-negative. In the absence of treat-
ment, we assume that the tumor grows logistically, with
each population contributing equally to competitive in-
hibition. Phenotypes S and R each possess individual
intrinsic growth rates, and we make the assumption in
the remainder of the work that 0 ≤ rR , r . This simply
states that resistant cells grow slower than nonresistant
cells, an assumption that is supported by experimental
evidence.70-72

The transition to resistance can be described with a net
term of the form «S + αu(t)S. Mathematically, the drug-
induced term αu(t)S, where u(t) is the effective applied drug
dose at time t, describes the effect of treatment on pro-
moting the resistant phenotype. For example, this term
could represent the induced overexpression of the
P-glycoprotein gene, a well-known mediator of multidrug
resistance, by the application of chemotherapy.1,73

Spontaneous evolution of resistance is captured in the eS
term, which permits resistance to develop even in the
absence of treatment. Note that ε is generally considered
small,74 although recent experimental evidence regarding
error-prone DNA polymerases suggests that cancer cells
may have increased mutation rates as a result of the
overexpression of such polymerases.75-77 For example, in
Krutyakov,75 mutation rates as a result of such polymerases
are characterized by probabilities as high as 7.5 × 10−1 per
base substitution, and it is known that many point muta-
tions in cancer arise from these DNA polymerases.77 For
this work, we adopt the notion that random point mutations
that lead to drug resistance are rare, and that drug-induced
resistance occurs on much quicker time scales41; there-
fore, we will assume that α. ε with u = O(1) in our analysis
of Equations 1 and 2.

We model the effects of treatment by assuming the log-kill
hypothesis,78 which states that a given dose of chemo-
therapy eliminates the same fraction of tumor cells re-
gardless of tumor size. We allow for each cellular
compartment to have a different drug-induced death rate
(d, dR); however, to accurately describe resistance it is
required that 0 ≤ dR, d. Our analysis presented herein will

be under the simplest assumption that the drug is com-
pletely ineffective against resistant cells, so that dR = 0.

The last term in the equations, γR, represents the resen-
sitization of cancer cells to the drug. In the case of non-
reversible resistance, γ = 0; otherwise γ . 0. Our
subsequent analysis will be done under the assumption of
nonreversible resistance. For a discussion of the effect of
reversibility on the presented model, see the Appendix.

Finally, we note that the effective drug concentration u(t)
can be thought of as a control input. For simplicity, in this
work we assume that it is directly proportional to the applied
drug concentration; however, pharmacodynamic/phar-
macokinetic considerations could be incorporated to more
accurately describe the uptake/evolution of the drug in vivo
or in vitro—for example, as in Bender, Schindler, and
Friberg,79 Wu et al,80 and Fetterly et al.81

To understand the above system of drug resistance evo-
lution, we reduce the number of parameters via non-
dimensionalization. Rescaling S and R by their (joint)
carrying capacity K, and time t by the sensitive cell growth
rate,
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Equations 1 and 2 (with γ = dR = 0) can be written in the
form,
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For convenience, we have relabeled S,R, and t to coincide
with the nondimensionalization so that the parameters ε, α,
and d must be scaled accordingly (by 1/r). As rR was as-
sumed to satisfy 0 ≤ rR , r, the relative resistant population
growth rate pr satisfies 0 ≤ pr , 1.

One can show (Appendix) that asymptotically, under any
treatment regimen u(t) ≥ 0, the entire population will be-
come resistant:

�
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�
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�
t
�
�
→
t→∞

�
0
1

�
. (6)

However, tumor control is still possible where one can
combine therapeutic efficacy and clonal competition to in-
fluence transient dynamics and possibly prolong patient life.
Indeed, the modality of adaptive therapy has shown promise
in using real-time patient data to inform therapeutic mod-
ulation aimed at increasing quality of life and survival times.67

This work will focus on such dynamics and controls.
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RESULTS

Effect of Induction on Treatment Efficacy

We investigate the role of the induction capability of a drug
(parameter α in Eqs 4 and 5) on treatment dynamics.
Specifically, the value of αmay have a substantial impact on
the relative success of two standard therapy protocols—
constant dosage and periodic pulsing.

Treatment Protocol

To quantify the effects of induced resistance, a treatment
protocol must be specified. We adopt a clinical perspective
over the course of the disease, which is summarized in
Figure 1. We assume that the disease is initiated by a small
number of wild-type cells:

S
�
0
�
� S0, R

�
0
�
� 0, (7)

where 0 , S0 , 1. Denote the tumor volume at time t by
V (t):

V t( ) � S t( ) + R t( ). (8)

The tumor then progresses untreated until a specific vol-
ume Vd is detected—or, for hematologic tumors, via ap-
propriate blood markers—which using existing nuclear
imaging techniques corresponds to a tumor with diameter
on the order of 10 mm.82 Time to reach Vd is denoted by td,
which in general depends on all parameters that appear in
Equations 4 and 5. Note that, assuming e . 0, a nonzero
resistant population will exist at the onset of treatment.
Therapy, represented through u(t), is then applied until the
tumor reaches a critical size Vc, which we equate with
treatment failure. Because the (S,R) = (0,1) state is globally
asymptotically stable in the first quadrant, Vc , 1 is
guaranteed to be obtained in finite time. Time until failure,
tc, is then a measure of efficacy of the applied u(t).

Although a diverse set of inputs u(t) may be theoretically
applied, presently we consider only strategies as illustrated
in Figure 1B. The blue curve in Figure 1B corresponds to
a constant effective dosage uc(t) initiated at td—administered
approximately using continuous infusion pumps and/or
slow-release capsules—whereas the black curve represents
a corresponding pulsed strategy up(t), with fixed treatment
windows (Δton) and holidays (Δtoff). In general, we may allow
for different magnitudes, uon,c and uon,p, for constant and
pulsed therapies respectively—for example, to relate the
total dosage applied per treatment cycle (area under the
drug concentration-time curve [AUC]83). However, for sim-
plicity we assume the same magnitude in the subsequent
section (although see the Appendix for a normalized com-
parison). While these represent idealized therapies, such u(t)
may form an accurate approximation to in vitro and/or in vivo
kinetics. Note that the response V(t) illustrated in Figure 1A
will not be identical, or even qualitatively similar, for both
presented strategies, as will be demonstrated numerically.

Constant Versus Pulsed Therapy Comparison

To qualitatively demonstrate the role that induced resistance
plays in the design of therapy schedules, we consider two
drugs with the same cytotoxic potential—that is, the same
drug-induced death rate d—each possessing a distinct level
of resistance induction (parameter α). A fundamental
question, then, is whether there exist qualitative distinctions
between treatment responses for each chemotherapy. More
specifically, how does survival time compare when sched-
uling is altered between constant therapy and pulsing? Does
the optimal strategy—in this case, optimal across only two
schedulings—change depending on the extent to which the
drug induces resistance?

We fix two values of the induction parameter α:

αs � 0, αi � 10−2.
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FIG 1. Schematic of tumor dynamics under two treatment regimes. (A) Tumor volume V in response to treatment initiated
at time td. Cancer population arises from a small sensitive population at time t = 0, upon which the tumor grows to detection
at volume Vd. Treatment is begun at td and continues until the tumor reaches a critical size Vc (at a corresponding time tc),
where treatment is considered to have failed. (B) Illustrative constant and pulsed treatments, both initiated at t = td.
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Recall that we are studying the nondimensional model
Equations 4 and 5, so no units are specified. Parameter
α = 0 corresponds to no therapy-induced resistance
(henceforth denoted as phenotype preserving), and
therefore considering this case allows for a comparison
between the classic notion of random evolution toward
resistance (α = 0) and drug-induced resistance (α . 0).
For the remainder of the section, parameters are fixed as
in Table 1. Critically, all parameters excluding α are
identical for each drug, which enables an unbiased
comparison. Treatment magnitudes uon,c and uon,p are
selected to be equal: uon,c = uon,p = uon.

Note that selecting parameter Vd = 0.1 implies that the
carrying capacity has a diameter of 100 mm, as Vd cor-
responds to a detectable diameter of 10 mm. Assuming
each cancer cell has volume 10−6 mm3, tumors in our
model can grow to a carrying capacity of approximately
12.4 cm in diameter, which is in qualitative agreement
with the parameters estimated in Chignola and Foroni84

(≈12.42 cm, assuming a tumor spheroid).

By examining Figures 2A and 2B, we clearly observe an
improved response to constant therapy when using
a phenotype-preserving drug, with treatment success time
tc nearly seven times as long compared with pulsed
therapy (tc ≈ 90 for constant, compared with tc ≈ 14 for
pulsed). It can be observed that the tumor composition at
treatment conclusion is different for each therapy—not
shown for this simulation, but see a comparable result in
Appendix Figures A2B and A2D—and it seems that
pulsed therapy was not sufficiently strong to hamper the
rapid growth of the sensitive population. Indeed, treat-
ment failed quickly as a result of insufficient treatment
intensity in this case, as the population remains almost
entirely sensitive. Thus, for this patient under these
specific treatments, assuming drug resistance only arises
via random stochastic events, constant therapy would be
preferred. One might argue that pulsed, equal-magnitude
treatment is worse when α = 0 simply because less total

drug—that is, AUC—is applied. However, we see that
even in this case, intermediate doses may be optimal (Figs
3A and 4A). Thus, it is not the larger total drug, per se, that
is responsible for the superiority of the constant protocol in
this case, a point that is reinforced by the fact that the
results remain qualitatively unchanged even if the total
drug is controlled for (Appendix).

Compare this with Figures 2C and 2D, which consider the
same patient and cytotoxicity, but for a highly inductive
drug. Results are strikingly different and suggest that
pulsed therapy is now not worse but in fact substantially
improves patient response (tc ≈ 61 for pulsed, compared
with tc ≈ 45 for constant). In this case, both tumors are
now primarily resistant (Figs A3B and A3D), but the
pulsed therapy allows for prolonged tumor control via
sensitive/resistant competitive inhibition. Furthermore,
treatment holidays reduce the overall flux into resistance
as the application of the drug itself promotes this evolu-
tion. The total amount of drug (AUC) is also less for pulsed
therapy (22.5 compared with ≈ 64), so that pulsed
therapy is both more efficient in terms of treatment effi-
cacy and less toxic to the patient as adverse effects are
typically correlated with the total administered dose,
which is proportional to the AUC. This is further consistent
with recent experimental and clinical evidence that
supports metronomic therapy as a superior alternative to
classic chemotherapy regimens. The results presented in
Figure 2 suggest that it may be advantageous to apply
a smaller amount of drug more frequently; however, we
also note that the results depend on patient-specific
parameters, so that therapy would ideally be personal-
ized to individual patients. Of note, we do not claim that
these results hold for all parameter values—both patient
and treatment specific—but instead emphasize that the
rate of induction may play a large role in the design of
therapies for specific patients.

For these specific parameter values, differences between
constant and pulsed therapy for the inductive drug are not
as extensive as in the phenotype-preserving case; how-
ever, recall that time has been nondimensionalized and,
hence, the scale may indeed be clinically relevant. Such
differences can be further amplified, and, as exact pa-
rameters are difficult or even (currently) impossible to
measure, qualitative distinctions are paramount. Thus, at
this stage, ranking of therapies, rather than their precise
quantitative efficacy, should act as the more important
clinical criterion.

From these results, we observe a qualitative difference in
the treatment strategy to apply based entirely on the
value of α, the degree to which the drug itself induces
resistance. Thus, in administering chemotherapy, the
resistance-promotion rate α of the treatment is a clinically
significant parameter. In the next section, we use our model
and its output to propose in vitromethods for experimentally
measuring a drug’s α parameter.

TABLE 1. Parameters Used For Comparison of Treatment Efficacy for Phenotype-
Preserving Drugs and Resistance-Inducing Drugs
Parameter Biologic Interpretation Value (dimensionless)

S0 Initial sensitive population 0.01

R0 Initial resistant population 0

Vd Detectable tumor volume 0.1

Vc Tumor volume defining treatment failure 0.9

« Background mutation rate 10−6

d Cytotoxicity of sensitive cells 1

pr Resistant growth fraction 0.2

uon Treatment magnitude, constant dose 1.5

Δton Pulsed treatment window 1

Δtoff Pulsed holiday length 3

NOTE. Parameters used in Figure 2.
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Identifying the Rate of Induced Drug Resistance

The effect of treatment on the evolution of phenotypic
resistance may have a significant impact on the efficacy of
conventional therapies. Thus, it is essential to understand
the value of the induction parameter α before administering
therapy. In this section, we briefly discuss both the theo-
retical possibility and practical feasibility of determining α
from different input strategies u(t). For more details, see the
Appendix.

Theoretical Identifiability

We first study the structural identifiability of Equations 4 and
5, a prerequisite for analyzing practical methods for de-
termining parameter values. Structural identifiability is the
process of determining model parameters—for example,
α—froma set of control experiments. Here, we assume that the
only measurable quantity is the tumor volume V = S + R, along
with its derivatives, in time. Using four different controls, we
show that all model parameters, including the induction rate α,
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FIG 2. Comparison of treatment efficacy for phenotype-preserving drugs (α = 0) and resistance-inducing drugs (α = 10−2). The left column indicates
treatment strategy, whereas the right column indicates corresponding tumor volume response. Note that the dashed red line in the right column indicates
the tumor volume representing treatment failure, Vc. (A) Constant and pulsed therapies after tumor detection for α = 0. (B) Responses corresponding
to treatment regimens in panel A. (C) Constant and pulsed therapies after tumor detection for α = 10−2. (D) Responses corresponding to treatment regimens
in panel C.
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may be determined by precisely measuring the corre-
sponding volume-response curves. For more details, see
the Appendix.

An In Vitro Experimental Protocol to Distinguish

Spontaneous and Drug-Induced Resistance

As structural identifiability was established in the previous
section, we focus on practical qualitative differences
exhibited by Equations 4 and 5 as a function of the
resistance-induction rate α. Utilizing only constant dos-
ages, we investigate the dependence of tc on dose u, cy-
totoxicity d, and α. Defining the supremum over doses of
the response time (Eq 8),

Tα

�
d
�
:� sup

u
{tc

�
u,d, α

�
}, (9)

we plot the results for different α values in Figures 3 and 4.

Comparing Figures 3B and 4B, we observe a clear quali-
tative difference in maximum response times. In the case of
a phenotype-preserving drug, the proposed in vitro ex-
periment would produce a flat curve, whereas a resistance-
inducing drug (α. 0) would yield an increasing function Tα
(d). Additional comparisons are presented in Figure 5,
where the α dependence is more closely analyzed. For
more details and analysis, see the Appendix.

DISCUSSION

In the current work, we analyzed two distinct mechanisms
that can result in drug resistance. Specifically, a mathe-
matical model is proposed which describes both the
spontaneous generation of resistance and drug-induced
resistance. Using this model, we contrasted the effect of

standard therapy protocols and demonstrate that contrary
to the work in Liu et al,34 the rate of resistance induction
may have a significant effect on treatment outcome. Thus,
understanding the dynamics of resistance evolution with
regard to the applied therapy is crucial.

To demonstrate that one can theoretically determine the
induction rate, we performed an identifiability analysis on
the parameter α and demonstrated that it can be obtained
via a set of appropriate perturbation experiments on u(t).
Furthermore, we presented an alternative method, using
only constant therapies, for understanding the qualitative
differences between purely spontaneous and induced
cases. Such properties could possibly be used to design
in vitro experiments on different pharmaceuticals, which
allows one to determine the induction rate of drug re-
sistance without an a priori understanding of the precise
mechanism. We do note, however, that such experiments
may still be difficult to perform in a laboratory environ-
ment, as engineering cells with various drug sensitivities
d may be challenging. Indeed, this work can be consid-
ered as a thought experiment to identify qualitative
properties that the induction rate α yields in our modeling
framework.

Our simple model allows significant insight into the role of
random versus induced resistance. Of course, more
elaborate models can be studied by incorporating more
biologic detail. For example, while our two-equation model
classifies cells as either sensitive or resistant, not all re-
sistance is treated equally. Some resistant cancer cells are
permanently resistant, whereas others could transition
back to a sensitive state.41 This distinction may prove to be
vitally important in treatment design. A possible extension
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FIG 3. Variation in response time tc for a treatment that induces resistance. Constant therapy u(t)≡ u is applied for td≤ t≤ tc. Induction rate α = 10−2, with all
other parameters as in Table 1. (A) Time until tumor reaches critical size Vc for various drug sensitivities d. (B) Maximum response time Tα(d) for a treatment
that induces resistance. Note that time Tα(d) increases with drug sensitivity; compare with Figure 4B for purely random resistance evolution.
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of our model is one in which we distinguish between
sensitive cells S, nonreversible resistant cells Rn, and re-
versible resistant cells Rr (Eqs 9-12):

dS
dt

� r
�
1 −

V
K

�
S −

�
en + er

�
S −

�
αn + αr

�
u
�
t
�
S − du

�
t
�
S

+ γRr ,

(10)

dRn

dt
� rn

�
1 −

V
K

�
Rn + enS + αnu

�
t
�
S − dnu

�
t
�
Rn, (11)

dRr

dt
� rr

�
1 −

V
K

�
Rr + er S + αr u

�
t
�
S − γRr − dru

�
t
�
Rr .

(12)

Here, V denotes the entire tumor population—that is,

V :� S + Rn + Rr . (13)

In this version of the model, nonreversible resistant cells Rn

can be thought of as resistant cells that form via genetic
mutations. Under this assumption, «n represents the rate at
which spontaneous genetic mutations give rise to re-
sistance, and αn is the drug-induced resistance rate. This
situation can be classified as nonreversible as it is in-
credibly unlikely that genomic changes that occur in re-
sponse to treatment would be reversed by an "undoing"
mutation. Therefore, once cells confer a resistant pheno-
type via an underlying genetic change, we assume that they
maintain that phenotype. This term could also be thought of
as describing resistance that forms via stable epigenetic

alterations or resistance that forms by some combination of
genetic and stable epigenetic changes.

Conversely, reversible resistant cells Rr denote resistant
cells that form via phenotype switching, as described in
Pisco et al.41 Random phenotype switching in the ab-
sence of treatment is captured in the εrS term. This is
consistent—and indeed necessary—to understand the
experimental results in Pisco et al,41 where a stable dis-
tribution of MDR1 expressions is observed even in the
absence of treatment. The αru(t)S term represents the
induction of a drug-resistant phenotype. Phenotype
switching is often reversible, and therefore we allow a back
transition from the Rr compartment to the sensitive com-
partment at a nonnegligible rate γ70 (see Appendix). For-
mulated in this way, the model can be calibrated to
experimental data and we can further consider the effects
of the dosing strategy on treatment response. We plan to
further study this model in future work.

Other extensions which include different clinical scenarios
are also being investigated. In practice, chemotherapies are
rarely applied in isolation. Multiple therapies are often
administered simultaneously to improve efficacy. The in-
clusion of multiple drugs, including targeted therapies that
act primarily on resistant subpopulations, yields natural
control questions that are clinically relevant. Similarly,
immune cells, together with immunotherapies, may also be
incorporated to more accurately mimic the cancer
microenvironment.

Overcoming drug resistance is crucial for the success of
both chemotherapy and targeted therapy. Furthermore, the
added complexity of induced drug resistance complicates
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FIG 4. Change in critical time tc for differing drug sensitivities in the case of a phenotype-preserving treatment. (A) Time until tumor reaches critical size Vc for
various drug sensitivities d; comparable to Figure 3A, with α = 0. (B) Maximum critical time T0(d). Note that the curve is essentially constant.
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therapy design, as the simultaneous effects of tumor re-
duction and resistance propagation confound one another.
Mathematically, we have presented a clear framework for

differentiating random and drug-induced resistance, which
will allow for clinically actionable analysis on a biologically
subtle, yet important, issue.

AFFILIATIONS
1Rutgers University, New Brunswick, NJ
2The College of New Jersey, Ewing Township, NJ
3Northeastern University, Boston, MA
4Harvard Medical School, Cambridge, MA

Preprint version available on https://www.biorxiv.org/content/10.1101/
235150v2.

CORRESPONDING AUTHOR
Eduardo D. Sontag, PhD, Northeastern University, 360 Huntington
Avenue, Boston, MA 02115; e-mail: sontag@sontaglab.org.

AUTHORS’ DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST
AND DATA AVAILABILITY STATEMENT

Disclosures provided by the authors and data availability statement (if
applicable) are available with this article at DOI https://doi.org/10.1200/
CCI.18.00087.

AUTHOR CONTRIBUTIONS
Conception and design: All authors
Collection and assembly of data: All authors
Data analysis and interpretation: All authors
Manuscript writing: All authors
Final approval of manuscript: All authors
Accountable for all aspects of the work: All authors

AUTHORS’ DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST
AND DATA AVAILABILITY STATEMENT

The following represents disclosure information provided by authors of
this manuscript. All relationships are considered compensated.
Relationships are self-held unless noted. I = Immediate Family Member,
Inst =My Institution. Relationshipsmay not relate to the subject matter of
this manuscript. For more information about ASCO's conflict of interest
policy, please refer to www.asco.org/rwc or ascopubs.org/jco/site/ifc.

No potential conflicts of interest were reported

REFERENCES
1. Holohan C, Van Schaeybroeck S, Longley DB, et al: Cancer drug resistance: An evolving paradigm. Nat Rev Cancer 13:714-726, 2013

2. Gottesman MM: Mechanisms of cancer drug resistance. Annu Rev Med 53:615-627, 2002

3. Dean M, Fojo T, Bates S: Tumour stem cells and drug resistance. Nat Rev Cancer 5:275-284, 2005

4. Woods D, Turchi JJ: Chemotherapy induced DNA damage response: Convergence of drugs and pathways. Cancer Biol Ther 14:379-389, 2013

0.5 1 1.5 2 2.5

d

20

40

60

80

100

120

140

160

180

T 
Maximum Critical Time for Different

Induced Mutation Rates

A

= 7.00e-03

= 5.00e-03

= 8.00e-03

= 6.00e-03 = 1.00e-02

= 1.10e-02

= 9.00e-03

= 1.30e-02

= 1.40e-02

= 1.20e-02

= 1.50e-02

= 10-2

= 10-1

= 10-5

= 0

= 10-6

= 10-4

= 10-3

0.5 1 1.5 2 2.5

d

0

50

100

150

200

250

300

350

400

450

T 

Maximum Critical Time for Different

Induced Mutation Rates

B

FIG 5. Variation in maximum response time for different induction rates α. For details on computation of Tα(d), see Appendix Figure A4. All other parameters
are given as in Table 1. (A) Plot of Tα(d) for α near 10−2. (B) Analogous to panel A, where α is now varied over several orders of magnitude. Nonmutagenic case
(α = 0) is included for reference.

Greene, Gevertz, and Sontag

10 © 2019 by American Society of Clinical Oncology

https://www.biorxiv.org/content/10.1101/235150v2
https://www.biorxiv.org/content/10.1101/235150v2
http://ascopubs.org/doi/full/10.1200/CCI.18.00087
http://ascopubs.org/doi/full/10.1200/CCI.18.00087
http://www.asco.org/rwc
http://ascopubs.org/jco/site/ifc


5. Zahreddine H, Borden KL: Mechanisms and insights into drug resistance in cancer. Front Pharmacol 4:28, 2013

6. Trédan O, Galmarini CM, Patel K, et al: Drug resistance and the solid tumor microenvironment. J Natl Cancer Inst 99:1441-1454, 2007

7. Gajewski TF, Meng Y, Blank C, et al: Immune resistance orchestrated by the tumor microenvironment. Immunol Rev 213:131-145, 2006

8. MeadsMB, Gatenby RA, Dalton WS: Environment-mediated drug resistance: Amajor contributor to minimal residual disease. Nat Rev Cancer 9:665-674, 2009

9. Correia AL, Bissell MJ: The tumor microenvironment is a dominant force in multidrug resistance. Drug Resist Updat 15:39-49, 2012

10. McMillin DW, Negri JM, Mitsiades CS: The role of tumour-stromal interactions in modifying drug response: Challenges and opportunities. Nat Rev Drug Discov
12:217-228, 2013

11. Lavi O, Gottesman MM, Levy D: The dynamics of drug resistance: A mathematical perspective. Drug Resist Updat 15:90-97, 2012

12. Brocato T, Dogra P, Koay EJ, et al: Understanding drug resistance in breast cancer with mathematical oncology. Curr Breast Cancer Rep 6:110-120, 2014

13. Foo J, Michor F: Evolution of acquired resistance to anti-cancer therapy. J Theor Biol 355:10-20, 2014

14. Roche-Lestienne C, Preudhomme C: Mutations in the ABL kinase domain pre-exist the onset of imatinib treatment. Semin Hematol 40:80-82, 2003 (suppl 2)

15. Iqbal Z, Aleem A, Iqbal M, et al: Sensitive detection of pre-existing BCR-ABL kinase domain mutations in CD34+ cells of newly diagnosed chronic-phase chronic
myeloid leukemia patients is associated with imatinib resistance: Implications in the post-imatinib era. PLoS One 8:e55717, 2013

16. CarlinoMS, Fung C, Shahheydari H, et al: Preexisting MEK1P124mutations diminish response to BRAF inhibitors in metastatic melanoma patients. Clin Cancer
Res 21:98-105, 2015

17. Jackson TL, Byrne HM: A mathematical model to study the effects of drug resistance and vasculature on the response of solid tumors to chemotherapy. Math
Biosci 164:17-38, 2000

18. Komarova NL, Wodarz D: Drug resistance in cancer: Principles of emergence and prevention. Proc Natl Acad Sci USA 102:9714-9719, 2005

19. Michor F, Nowak MA, Iwasa Y: Evolution of resistance to cancer therapy. Curr Pharm Des 12:261-271, 2006

20. Komarova NL, Wodarz D: Stochastic modeling of cellular colonies with quiescence: An application to drug resistance in cancer. Theor Popul Biol 72:523-538,
2007

21. Foo J, Michor F: Evolution of resistance to targeted anti-cancer therapies during continuous and pulsed administration strategies. PLOS Comput Biol
5:e1000557, 2009 [Erratum: PLoS Comput Biol doi:10.1371/annotation/d5844bf3-a6ed-4221-a7ba-02503405cd5e]

22. Foo J, Michor F: Evolution of resistance to anti-cancer therapy during general dosing schedules. J Theor Biol 263:179-188, 2010

23. Silva AS, Gatenby RA: A theoretical quantitative model for evolution of cancer chemotherapy resistance. Biol Direct 5:25, 2010

24. Cunningham JJ, Gatenby RA, Brown JS: Evolutionary dynamics in cancer therapy. Mol Pharm 8:2094-2100, 2011

25. Mumenthaler SM, Foo J, Leder K, et al: Evolutionary modeling of combination treatment strategies to overcome resistance to tyrosine kinase inhibitors in non-
small cell lung cancer. Mol Pharm 8:2069-2079, 2011

26. Orlando PA, Gatenby RA, Brown JS: Cancer treatment as a game: Integrating evolutionary game theory into the optimal control of chemotherapy. Phys Biol
9:065007, 2012

27. Bozic I, Reiter JG, Allen B, et al: Evolutionary dynamics of cancer in response to targeted combination therapy. eLife 2:e00747, 2013

28. Foo J, Leder K, Mumenthaler SM: Cancer as a moving target: understanding the composition and rebound growth kinetics of recurrent tumors. Evol Appl
6:54-69, 2013

29. Lavi O, Greene JM, Levy D, et al: The role of cell density and intratumoral heterogeneity in multidrug resistance. Cancer Res 73:7168-7175, 2013

30. Bozic I, Nowak MA: Timing and heterogeneity of mutations associated with drug resistance in metastatic cancers. Proc Natl Acad Sci USA 111:15964-15968,
2014

31. Greene J, Lavi O, Gottesman MM, et al: The impact of cell density and mutations in a model of multidrug resistance in solid tumors. Bull Math Biol 76:627-653,
2014

32. Yamamoto KN, Hirota K, Takeda S, et al: Evolution of pre-existing versus acquired resistance to platinum drugs and PARP inhibitors in BRCA-associated
cancers. PLoS One 9:e105724, 2014

33. Gevertz J, Aminzare Z, Norton K-A, et al: Emergence of anti-cancer drug resistance: exploring the importance of the microenvironmental niche via a spatial
model, in Jackson T and Radunskaya A (eds): Applications of Dynamical Systems in Biology and Medicine, Volume 158, Berlin, Germany, Springer-Verlag,
2015, pp 1-34

34. Liu LL, Li F, Pao W, et al: Dose-dependent mutation rates determine optimum erlotinib dosing strategies for EGRF mutant non-small lung cancer patients. PLoS
One 10:e0141665, 2015

35. Menchón SA: The effect of intrinsic and acquired resistances on chemotherapy effectiveness. Acta Biotheor 63:113-127, 2015

36. Mumenthaler SM, Foo J, Choi NC, et al: The impact of microenvironmental heterogeneity on the evolution of drug resistance in cancer cells. Cancer Inform
14:19-31, 2015 (suppl 4)

37. Waclaw B, Bozic I, Pittman ME, et al: A spatial model predicts that dispersal and cell turnover limit intratumour heterogeneity. Nature 525:261-264, 2015

38. Shah AB, Rejniak KA, Gevertz JL: Limiting the development of anti-cancer drug resistance in a spatial model of micrometastases. Math Biosci Eng
13:1185-1206, 2016

39. Carrère C: Optimization of an in vitro chemotherapy to avoid resistant tumours. J Theor Biol 413:24-33, 2017

40. Chakrabarti S, Michor F: Pharmacokinetics and drug-interactions determine optimum combination strategies in computational models of cancer evolution.
Cancer Res 77:3908-3921, 2017

41. Pisco AO, Brock A, Zhou J, et al: Non-Darwinian dynamics in therapy-induced cancer drug resistance. Nat Commun 4:2467, 2013

42. Coldman AJ, Goldie JH: A stochastic model for the origin and treatment of tumors containing drug-resistant cells. Bull Math Biol 48:279-292, 1986

43. Ledzewicz U, Schättler H: Drug resistance in cancer chemotherapy as an optimal control problem. Discrete Continuous Dyn Syst Ser B 5:129-150, 2006

44. Leder K, Foo J, Skaggs B, et al: Fitness conferred by BCR-ABL kinase domain mutations determines the risk of pre-existing resistance in chronic myeloid
leukemia. PLoS One 6:e27682, 2011

45. Hadjiandreou MM, Mitsis GD: Mathematical modeling of tumor growth, drug-resistance, toxicity, and optimal therapy design. IEEE Trans Biomed Eng
61:415-425, 2014

46. Lorz A, Lorenzi T, Hochberg M, et al: Populational adaptive evolution, chemotherapeutic resistance and multiple anti-cancer therapies. ESAIM: Math Model
Num Anal 47:377-399, 2013

47. Fu F, Nowak MA, Bonhoeffer S: Spatial heterogeneity in drug concentrations can facilitate the emergence of resistance to cancer therapy. PLOS Comput Biol
11:e1004142, 2015

48. Ledzewicz U, Bratton K, Schättler H: A 3-compartment model for chemotherapy of heterogeneous tumor populations. Acta Appl Math 135:191-207, 2015

Differentiating Spontaneous and Induced Resistance

JCO Clinical Cancer Informatics 11



49. Lorz A, Lorenzi T, Clairambault J, et al: Modeling the effects of space structure and combination therapies on phenotypic heterogeneity and drug resistance in
solid tumors. Bull Math Biol 77:1-22, 2015

50. Nyce J, Leonard S, Canupp D, et al: Epigenetic mechanisms of drug resistance: Drug-induced DNA hypermethylation and drug resistance. Proc Natl Acad Sci
USA 90:2960-2964, 1993

51. Nyce JW: Drug-induced DNA hypermethylation: A potential mediator of acquired drug resistance during cancer chemotherapy. Mutat Res 386:153-161, 1997

52. Sharma SV, Lee DY, Li B, et al: A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 141:69-80, 2010

53. Luria SE, Delbrück M: Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28:491-511, 1943
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APPENDIX
The supplement contains additional results and extensions related to
the model Equations 1 and 2 presented in the main text. Sections
include details on the mathematical characteristics of solutions of
Equations 4 and 5, an extension describing the reversibility of drug
resistance, treatment regimens with normalized dosages, details on
structural identifiability, and an expanded discussion on the maximum
critical time Tα(d).

Fundamental Solution Properties of Resistance Model

For convenience, Equations 4 and 5 are reproduced below:

dS
dt

�
�
1 −

�
S + R

��
S −

�
e + αu

�
t
��
S − du

�
t
�
S, (A1)

dR
dt

� pr
�
1 −

�
S + R

��
R +

�
e + αu

�
t
��
S. (A2)

We begin with a standard existence/uniqueness result, as well as the
dynamical invariance of the triangular region:

T :�
��

S,R
�
|S ≥ 0,R ≥ 0, S + R ≤ 1

�
. (A3)

Note that T represents the region of non-negative tumor sizes less than
1. Biologically, this implies that all solutions remain physical (non-
negative) and bounded above by the carry capacity (non-
dimensionalized to 1 here, generally K in Eqs 1 and 2).

Theorem 1. For any bounded measurable control u: [0,∞) → [0,
umax], with umax , ∞, and (S0, R0) 2 T, the initial value problem
Equations A1 and A2,

S
�
0
�
� S0, R

�
0
�
� R0,

has a unique solution [S(t), R(t)] defined for all times t 2 R. Fur-
thermore, under the prescribed dynamics, region T is invariant.

Proof. Existence and uniqueness of local solutions follow from standard
results in the theory of differential equations—for example (Sontag ED:
Mathematical Control Theory: Deterministic Finite Dimensional Sys-
tems. Springer, 1998). As the vector field

F
�
S,R, t
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is analytic for (S,R)2R2, the existence of maximal solutions defined for
all t 2 R will follow from boundedness (Sontag ED: Mathematical
Control Theory: Deterministic Finite Dimensional Systems. Springer,
1998), which we demonstrate below.

Uniqueness implies that solutions remain in the first quadrant for all t≥
0. Indeed, we first note that (0, 0) and (0 ,1) are steady states for any
control u(t). As S = 0 implies that Ṡ � 0, we see that the R-axis in
invariant, with R(t )→t→∞1. Similarly, R = 0 implies Ṙ ≥ 0, and hence
all trajectories with (S0, R0) 2 T remain non-negative for all t. As V = S +
R satisfies the differential equation

V̇ � α
�
t
��
1 − V

�
− β

�
t
�
,

where α(t) := S(t) + prR(t), β(t) := du(t)S(t) are both non-negative,
V0 , 10V (t ), 1. Thus, if the initial conditions (S0, R0) reside in T, we
are guaranteed that (S(t), R(t)) 2 T for all time t, as desired.

We now prove that, asymptotically, cells will evolve to become
entirely resistant. For simplicity, we assume that the tumor is
initially below carrying capacity, although a similar result holds
for V0 . 1.

Theorem 2. For any bounded measurable control u: [0,∞) →
[0,umax] , with umax , ∞, and initial conditions (S0, R0) 2 T,
solutions of Equations A1 and A2 will approach the steady state
(S, R) = (0,1):

�
S
�
t
�
,R

�
t
��
→
t→∞ �

0, 1
�
.

Proof. From Theorem 1, we have that 0 ≤ S(t) + R(t) ≤ 1, so that
Equation A2 implies

dR
dt

≥ 0.

As 0 ≤ R(t) ≤ S(t) + R(t) ≤ 1, R(t) must converge, so that there exists
0 ≤ R* ≤ 1 such that

R
�
t
�
→
t→∞

Rp.

Define

ρ :� lim inf
t→∞

S
�
t
�
.

Since S(t)2 [0,1], we know that 0≤ ρ≤ 1. Assume that the inequality is
strict on the left: ρ. 0. By definition, there then exists t* . 0 such that

S
�
t
�
≥
ρ

2
,

for all t ≥ t*. As S(t) + R(t) ≤ 1 for all t, Equation A2 implies that for all
t ≥ t*,

Ṙ
�
t
�
≥ eS(t ) ≥

eρ

2
,

which implies that

R
�
t
�
− R

�
tp
�
≥
eρ

2

Z t

tp
d s→t→∞∞,

a contradiction. Thus, ρ = 0.

Define

σ :� lim inf
t→∞

�
S
�
t
�
+ R

�
t
��
.

As above, it is clear that σ 2 [0,1]. Assume that σ , 1. Thus, there
exists tp, e. 0 such that S(t ) + R(t ) ≤ 1 − e, 1 for all t ≥ t*. Equation
A2 then implies that for all t ≥ t*,

Ṙ
�
t
�
≥ pr

�
1 −

�
S
�
t
�
+ R

�
t
���

R. pr eR,

As in the previous argument, this differential inequality contradicts the
boundedness of R. Thus, σ = 1.

Since R converges to R*, lim inf distributes over the sum of S + R, and
we have that

1 � lim inf
t→∞

�
S
�
t
�
+ R

�
t
��

� ρ + Rp.

Thus R* = 1.

As R(t )→
t→∞

1, there exists t* . 0 such that

R
�
t
�
≥ 1 −

e

2

for all t ≥ t*. For such t, Equation A1 implies that Ṡ(t) , 0. Thus, S is
eventually decreasing and hence must converge to its lim inf ρ = 0.
Thus, we have that (S(t ),R(t ))→t→∞(0, 1), as desired.

Reversible Phenotype Switching

In the model analyzed in this work (Eqs 4 and 5), we assumed that
resistance is nonreversible; however, experiments suggest58 that
phenotypic alterations are generally unstable and hence a non--
negligible back transition exists. In this Appendix, we demonstrate
that an extension of our model to include this phenomenon does not
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change the qualitative results presented previously, at least for pa-
rameter values that are consistent with experimental data.

To model reversible drug resistance, we include a constant per-capita
transition rate from the resistant compartment R back to the wild
cell-type S. Denoting this rate by γ, we obtain the system

dS
dt

�
�
1 −

�
S + R

��
S + γR −

�
e + αu

�
t
��
S − du

�
t
�
S, (A4)

dR
dt

� pr
�
1 −

�
S + R

��
R +

�
e + αu

�
t
��
S − γR. (A5)

We first consider an appropriate value of the rate γ. Note that in the
absence of treatment (u(t) = 0), the system becomes

dS
dt

�
�
1 −

�
S + R

��
S + γR − eS (A6)

dR
dt

� pr
�
1 −

�
S + R

��
R + eS − γR. (A7)

Note that the tumor volume V(t) = S(t) + R(t) satisfies the equation

V̇ �
�
S + prR

��
1 − V

�
, (A8)

which is nondecreasing (recall Theorem 1). This implies that the
system approaches a steady state (S*, R*), which can be easily
computed as

�
Sp,Rp

�
�
�

γ

γ + e
,

e

γ + e

�
. (A9)

Note that Equation A9 lies on the line V = 1.

Pisco and colleagues53 measure a 1% to 2% subpopulation of clonally
derived HL60 cells that consistently express high levels of MDR1,
which we equate with the resistant population R. Using the 2% upper
bound, this implies that

Sp � 0.98, Rp � 0.02. (A10)

Solving Equation A9 with the above values then determines the ratio γ
e:

γ

e
� 49. (A11)

We now repeat the constant versus pulsed experiments discussed
in the main text, but for the reversible Equations A4 and A5.
Parameter values are taken again as in Table 1, and γ is de-
termined via Equation A11. Results are presented in Figure A1
and should be compared with that presented in Figure 2. Note that
the same qualitative—and indeed quantitative—conclusions hold:
constant therapy improves response time compared with pulsing
when α = 0, whereas the reverse is true for α = 10−2. Thus, the
inclusion of instability of the resistant cell subpopulation still
suggests that knowledge of the resistance-induction rate α for
a chemotherapy is critical when designing therapies. We note that
precise agreement of Figures A1 and A2 is a result of the small
values taken for ε and hence γ.

Treatment Comparison for Equal Area Under the Drug

Concentration-Time Curve

Here, we provide an analogous comparison of treatment outcomes
between constant and pulsed therapy as in the main text; however,
treatment magnitudes uon,c and uon,p are chosen such that

Z td+Δton+Δtoff

td

uc
�
t
�
dt �

Z td+Δton+Δtoff

td

up
�
t
�
dt , (A12)

which is equivalent to the conservation of total administered dose between
both strategies over a single pulsing cycle. In Equation A12, uc(t) and up(t)
denote constant andpulsed therapy schedules, respectively. The constant

therapymagnitude uon,c is fixed (arbitrarily) at 0.5, which by Equation A12
implies that uon,p = 5. We also adjust Δton = 0.5, Δtoff = 4.5, and all other
parameter values remain as in Table 1.

Results of the simulations are presented in Figures A2 and A3. Note
that here Figure A2 displays the results for the phenotype-preserving
drug (α = 0), whereas Figure A3 represents the resistance-inducing
drug (α = 10−2). Each drug is simulated for the two distinct strategies;
each strategy is represented in the left column of the respective figures.
The right column illustrates the population response for both the in-
dividual populations—sensitive S and resistant R cells—as well as for
the total tumor volume V = S + R. As previously discussed, treatment is
continued until a critical tumor size Vc is obtained, and the corre-
sponding time tc is used as a measure of treatment efficacy, with
a larger tc indicating a better response.

Our results are qualitatively in agreement with those presented in the
main text (Fig 2), where no preservation of total administered drug
(area under the drug concentration-time curve) was considered.
Specifically, we observe a superior response with constant therapy for
the phenotype-preserving drug (α = 0), whereas the situation is re-
versed for the resistance-inducing drug (α = 10−2).

Identifiability

We provide details of both the structural and practical identifiability of
control system Equations A1 and A2. Technical details are provided
that do not appear in the main text.

Theoretical identifiability. We first show that all parameters in
Equations A1 and A2 are identifiable using a relatively small set of
controls u(t) via classic methods from control theory. We provide a self-
contained discussion. For a thorough review of theory and methods,
see a recent article (Sontag ED: PLOS Comput Biol 13:e1005447,
2017) and the references therein.

Assuming that time and tumor volume are the only clinically ob-
servable outputs—that is, that one cannot readily determine sensitive
and resistant proportions in a given population—we measure V(t)
and its derivatives at time t = td for different controls u(t). For sim-
plicity, we assume that td = 0, so that treatment is initiated with
a purely wild-type (sensitive) population. Note that this is equivalent
to assuming an entirely sensitive tumor at treatment initiation. Al-
though the results remain valid if td . 0 as the system of equations
gain only a constant, this assumption will simplify the subsequent
computations. For a discussion of the practical feasibility of such
methods, see the next section.

Specifically, consider the Equations A1 and A2 with initial conditions
(Eqn 7). Measuring V(t) = S(t) + R(t) at time t = 0 implies that we can
identify S0:

V
�
0
�
� S

�
0
�
+ R

�
0
�
� S0 �: Y0,

where we adopt the notation Yi,i ≥ 0 for measurable quantities.
Similarly, define the following for the given input controls:

Y1 :� V ′
�
0
�
, u

�
t
�
≡ 0,

Y2 :� V ′
�
0
�
, u

�
t
�
≡ 1,

Y3 :� V
�
0
�
, u

�
t
�
≡ 0,

Y4 :� V ′′
�
0
�
, u(t ) ≡ 1,

Y5 :� V
�
0
�
, u

�
t
�
≡ 2,

Y6 :� V ′
�
0
�
, u

�
t
�
≡ 0,

Y7 :� V ′
�
0
�
, u

�
t
�
� t .

(A13)

All quantities Yi,i = 0, 1,…, 7 are measurable, as each requires only
knowledge of V(t) in a small positive neighborhood of t = 0. Note that
the set of controls u(t) is relatively simple, with Y7 exclusively de-
termined via a nonconstant input.

Each measurable Yi may also be written in terms of a subset of the
parameters d, ε, pr, and α, as all derivatives can be calculated in
terms of the right sides of Equations A1 and A2. For more details,
see the below section. Equating the expressions yields a system of
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equations for the model parameter, which we are able to solve.
Carrying out these computations yields the following solution:

d � −
Y2 − Y1

Y0
, (A14)

ε �
Y7 − Y6 + 1

2Y5 − 2Y4 − 3
2Y3 + dY0

�
1 − Y0

�
dY0

, (A15)

pr �
Y3 −

�
1 − e

�
Y0 +

�
3 − e

�
Y 2
0 − 2Y 3

0

eY0

�
1 − Y0

� , (A16)

α �
1
2Y5 − Y4 + 1

2Y3 − d2Y0

dY0
. (A17)

Note that in Equations A14 and A17 each quantity is determined
by the Yi and the parameter values previously listed. We do not
write the solution in explicit form for the sake of clarity as the
resulting equations are unwieldy. Furthermore, the solution of
this system relies on the assumption of strictly positive initial
conditions (S0 = Y0 . 0), wild-type drug induction death rate (d),
and background mutation rate (ε), all of which are made in
this work.
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FIG A1. Comparison of treatment efficacy for phenotype-preserving drugs (α = 0) and resistance-inducing drugs (α = 10−2), where resistance is reversible.
The left column indicates treatment strategy, whereas right indicates corresponding tumor volume response. Note that the dashed red line in the right
column indicates the tumor volume representing treatment failure, Vc. (A) Constant and pulsed therapies after tumor detection for α = 0. (B) Responses
corresponding to treatment regimens in panel A. (C) Constant and pulsed therapies after tumor detection for α = 10−2. (D) Responses corresponding to
treatment regimens in panel C.
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Equation A17 is the desired result of our analysis. It demonstrates that
the drug-induced phenotype switching rate α may be determined by
a relatively small set of input controls u(t). As discussed in the previous
section, the value of α may have a large impact on treatment efficacy
and, therefore, determining its value is clinically significant. Our results
now prove that it is possible to compute the induction rate and, hence,
use this information in the design of treatment protocols. In the next
section, we investigate other qualitative properties that could also be
applied to understand the rate of drug-induced resistance.

An In Vitro Experimental Protocol to Distinguish

Spontaneous and Drug-Induced Resistance

We have demonstrated that all parameters in Equations 4 and 5 are
identifiable so that it is theoretically possible to determine the

phenotype-switching rate α from a class of input controls u(t);
however, we see that the calculation involved measuring de-
rivatives at the initial detection time t = td. Furthermore, the applied
controls (Eq A13) are nonconstant and thus require fractional
doses to be administered. Clinically, such strategies and mea-
surements may be difficult and/or impractical. In this section, we
describe an in vitro method for estimating α using constant ther-
apies only. Specifically, our primary goal is to distinguish drugs with
α = 0 (phenotype preserving) and α . 0 (resistance inducing). Such
experiments, described below, may be implemented for a specific
drug, even if its precise mechanism of promoting resistance remains
uncertain.

Before describing the in vitro experiment, we note that we are in-
terested in qualitative properties for determining α. Indeed, in most
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FIG A2. Treatment dynamics for phenotype-preserving drugs (α = 0). The left column indicates treatment strategy, whereas the right indicates cor-
responding population response. (A) Constant treatment after tumor detection. (B) Response to constant treatment. Note that at the time of treatment
failure, the tumor is essentially entirely resistant. (C) Pulsed therapy after tumor detection. (D) Response to pulsed therapy. Note that the treatment fails
much earlier versus the constant dose and that the tumor is primarily drug sensitive.
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modeling scenarios, we have little or no knowledge of precise pa-
rameter values and insteadmust rely on characteristics that distinguish
the switching rate α independently of quantitative measurements.
Furthermore, as a general framework for drug resistance, the only
guaranteed clinically observable output variables are the critical tumor
volume Vc and the corresponding time tc. For a description of the
treatment protocol, see above. We cannot expect temporal clonal
subpopulation measurements. Assuming that Vc is fixed for a given
cancer, tc is thus the only observable that we consider.

By examining Equations 4 and 5, we see that the key parameters
that dictate progression to the steady state (S, R) = (0,1) are d and α,
as these determine the effectiveness and resistance induction of
the treatment, respectively. Recall that ε is the fixed background

mutation rate and pr the relative fitness of resistant cells. We thus
perform a standard dose-response experiment for each value of
drug sensitivity d and measure the time tc to reach critical size Vc as
a function of d. The response tc will then depend on the applied
dose u—recall that we are only administering constant therapies—
and the sensitivity of wild-type cells d, as well as the induction
rate α:

tc � tc
�
u, d, α

�
. (A18)

We further imagine that it is possible to adjust the wild-type
drug sensitivity d. For example, in the case of multidrug resistance
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FIG A3. Treatment dynamics for resistance-inducing drugs (α = 10−2). The left column indicates treatment strategy, whereas the right indicates
corresponding population response. (A) Constant treatment after tumor detection. (B) Response to constant treatment. Note that at the time of treatment
failure, the tumor is essentially entirely resistant. Dynamics are similar to Figure 2B, although with a shorter survival time. (C) Pulsed therapy after tumor
detection. (D) Response to pulsed therapy. Note that here, in contrast to the case of a phenotype-preserving drug as shown in Figure A2, pulsed therapy
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in which the overabundance of P-glycoprotein affects drug phar-
macokinetics, altering the expression of MDR1 via ABCBC1 or even
CDX2 (Koh I, Hinoi T, Sentani K, et al: Cancer Med 5:1546-1555,
2016) may yield a quantifiable relationship between wild-type cell
and d, thus producing a range of drug-sensitive cell types. Figure 3A
exhibits a set of dose-response curves for representative drug
sensitivities d for the case of a resistance-inducing drug (α = 10−2).

For each of these cell types, we then define the supremum response
time over administered doses:

Tα

�
d
�
:� sup

u
{tc

�
u, d, α

�
}. (A19)

Note that in a laboratory setting, only a finite number of doses will be
administered so that the above supremum is actually a maximum,
but for mathematical precision we retain supremum. Thus, we
obtain a curve Tα = Tα(d) for each value of the induced resistance
rate α. We then explore the properties of these curves for different α
values.

Consider first the case of a phenotype-preserving drug, so that α = 0.
As u(t) ≡ u, we see that the system Equations 4 and 5 depends only
on the product of u and d. Hence, the dependence in Equation A18
becomes the form tc(u$d, 0), and thus the supremum in Equation
A19 is instead across the joint parameter D := u$d:

T0 :� sup
D

�
tc
�
D, 0

��
. (A20)

Clearly, this is independent of d so that T0 is simply a horizontal line for
α = 0. Qualitatively, the resulting curve will have no variation among the
engineered sensitive phenotypes, save for experimental and mea-
surement noise. Figure 4 shows both representative curves (Fig 4A
compared with Fig 3A) and a plot of T0(d) (Fig 4B), which verifies its
independence of d. We make two minor technical notes. First, it is
important that we assume d. 0 here, as otherwiseD = 0, independent
of dose u and the supremum is over a one element set. See below for
more details and the implications for α identifiability. Second, the slight
variation for large values of d is a result of numerical error, as the
maximum of tc occurs at decreasing doses (see the below section and
Figure A4 for more details).

Comparing Figures 3A and 4A, we observe similar properties: small tc
for small doses, a sharp increase about a critical uc, followed by
smooth decrease and eventual horizontal asymptote (for mathe-
matical justification, see the below section). However, note that for
a resistance-inducing drug (Fig 3A), maximum critical time Tα(d)
increases as a function of d. This is in stark contrast to the constant
behavior obtained for α = 0, argued above and demonstrated in
Figure 4B. To further understand this phenomenon, we plot Tα(d) for
a fixed induction rate α = 10−2 in Figure 3B. The behavior of this curve
is a result of the fact that the critical dosage uc at which Tα(d) is
obtained is a decreasing function of d (see Equation A24 and Fig A4
in the below section). But as uc also controls the amount of resistant
cells generated—via the αu(t)S term—resistance growth is impeded
by a decreasing uc. Thus, as a non-negligible amount of resistant
cells are necessary to yield Tα(d), more time is required for resistant
cells to accumulate as d increases. Hence, Tα(d) increases a function
of d.

The behavior observed in Figures 3B and 4B is precisely the qualitative
distinction that could assist in determining the induced resistance rate
α. In the case of a phenotype-preserving drug, the proposed in vitro
experiment would produce a flat curve, whereas a resistance-inducing
drug (α. 0) would yield an increasing function Tα(d). Furthermore, we
could use this phenomenon, in principle, to measure the induction rate
from the experimental Tα(d) curve. For example, Figure 5A displays
a range of Tα(d) for α near 10−2.

Figure 5A shows a clear dependence of Tα(d) on the value of α.
Quantitatively characterizing such curves would allow us to reverse
engineer the induction rate α; however, we note that, in general, the
precise characteristics will depend on the other fixed parameter
values, such as pr, Vc, and «. Indeed, only order of magnitude
estimates may be feasible. Illustrative sample curves are provided
in Figure 5B. Two such characteristics are apparent from this
figure, both related to the slope of Tα(d). First, as d → 0+, we
observe an increase in the slope of Tα(d) as α decreases (note that
in Fig 5B, only d ≥ 0.05 are plotted). This follows from the con-
tinuity of solutions on parameters and the fact that T0(d) possesses
a jump discontinuity at d = 0—that is, its distributional derivative is
given by

∂
∂d

|d�0T0

�
d
�
� kδ

�
d
�
, (A21)

where δ is the Dirac function and k is a positive constant. As discussed
previously (Equation A20 and the subsequent paragraph), T0(d) is flat,
except at d = 0 where the vector field contains no u dependence.
Therefore, the set over which the maximum is taken is irrelevant and
T0(d) is thus proportional to the Heaviside function, which possesses
the distributional derivative Equation A21. The constant k is de-
termined by the size of the discontinuity of T0(d). Continuous de-
pendence on parameters then implies that as α increases, the resulting
derivative decreases away from positive infinity as the corresponding
derivative for Tα(d) with α. 0 is defined in the classic sense for α. 0:

∂
∂α

∂
∂d

|d�0Tα

�
d
�
≤ 0.

The above argument implies that measuring the slope of Tα(d) at d =
0 will give a characterization of the phenotypic alteration rate α of the
treatment; however, such experiments may be impractical, as fine-
tuning the sensitivity of a cell near complete resistancemay be difficult.
Alternatively, one could analyze the degree of flatness for a relatively
large d—so to be sufficiently far from d = 0—and correlate this
measure with α. For example, examining d = 2 in Figure 5B, we see
that the relative slope of Tα(d) with respect to d should correlate with
decreasing α. An argument similar to the abovemakes this rigorous, for
d sufficiently large. Practical issues still arise, but this second method
provides a more global method for possibly computing α. Indeed,
slopes at a given d can be approximated by a wider range of secant
approximations as the result holds for a range of d compared with the
previously discussed case when d is near zero. Furthermore, our focus
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FIG A4. Dose yielding maximal response time Tα(d) computed nu-
merically, as well as the approximation given by Equation A24. All
parameters appear as in Table 1, and α = 10−2. The numerical
maximum is computed over a discretization of constant dosage
procedures u(t) ≡ u, for u 2 [0,5], with a mesh size Δu = 0.005.
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is largely on the qualitative aspects of α determination, such as the
differences in Figures 3A and 4A, and determining whether the
treatment itself induces resistance to emerge.

Introduction to Identifiability Analysis

In this section, we provide additional details on the theoretical iden-
tifiability of model parameters. As mentioned in the main text, all
higher-order derivatives at initial time t = 0 may be calculated in terms
of the initial conditions (S(0), R(0)) and the control function u(t). For
example, for an arbitrary system

ẋ
�
t
�
� f

�
x
�
t
�
, u

�
t
��
,

with external control u(t), the second derivative ẍ may be calculated
using the chain rule:

ẍ � Jf
�
x , u

�
f + ∇uf

�
x , u

�
u̇,

where Jf(x) is the Jacobian matrix of f, evaluated at state x and control
u. If x(0) = x0 is known, the above expression is a relation among
parameters, together with u and u̇ evaluated at time t = 0. An anal-
ogous statement holds for a measurable output y = h(x), but will also
involve the Jacobian of h. Concretely, for the model of induced drug
resistance Equations 4 and 5, first derivatives of the tumor volumemay
be calculated as

V ′�0� � S′�0� + R′�0�,
�
��
1 −

�
S + R

��
S −

�
e + αu

�
t
��
S − du

�
t
�
S
�

+
�
pr
�
1 −

�
S + R

��
R +

�
e + αu

�
t
��
S
�
|t�0,

�
�
1 − S0

�
S0 − du

�
0
�
S0,

for any control u(t) [recall that R(0) = 0]. Similarly, for the second
derivative, we compute:

V ′′
�
0
�
� S0

�
1 − S0 −

�
e + d

�
u
�
0
���

1 − 2S0 − du(0)
�

+ S0

�
αu

�
0
�
+ e

��
pr − S0

�
1 + pr

��
− dS0u̇

�
0
�
.

Using such expressions—or, more precisely, the Lie derivatives of the
vector field [see Sontag (PLOS Comput Biol 13:e1005447, 2017)]
—for the controls in Equation A13, one is able to obtain a set of
equations between the set of Yi,i = 0, 1,…, 7 and the parameters d, «,
pr, and α. Solving these equations allows us to determine the pa-
rameters with respect to the measurable quantities. The algebraic
solution is Equations A14-A17.

Analysis of Critical Time Tα(d)
We provide a qualitative understanding of the properties of Tα(d),
the maximum time, across all constant doses for the tumor to
reach size Vc. This Appendix is designed to explain the basic
properties discussed in An In Vitro Experimental Protocol to
Distinguish Spontaneous and Drug-Induced Resistance in the
main text.

We first note that Tα(d) is achieved at a medium dose uc. More
precisely, we describe the qualitative properties of Figures 3A and
4A. Fix a drug sensitivity d. For small u, the sensitive subpopulation is
not sufficiently inhibited and thus expands rapidly to cross the
threshold Vc, with an essentially homogenous population of sensitive

cells. Indeed, as u → 0, the dynamics of Equations A1 and A2
approach those of

dS̃
dt

�
�
1 −

�
S̃ + R̃

		
S̃, (A22)

dR̃
dt

� pr

�
1 −

�
S̃ + R̃

		
R̃, (A23)

for small finite times, as ε,,1. Trajectories of Equations A22 and A23
remain on the curve

R
�
S
�
�
R0

Spr
0

Spr

as the solution approaches the line S +R = 1. The critical time tc is then
determined by the intersection of this curve with S + R = Vc and, thus,
has sensitive population Sc at tc given by the unique solution in the first
quadrant of

Sc +
R0

Spr
0

Spr
c � Vc .

As R0 ,, 1 (as ε ,,1), Sc ≈ Vc, as claimed. Time tc is thus small for
small u.

Increasing values of u imply that tc also increases as the overall growth
rate of sensitive cells is decreased; however, there exists a critical dose
uc such that sensitive cells alone are not able to multiply sufficiently to
attain Vc, so that the critical volume must have non-negligible con-
tributions from the resistant fraction. This leads to the bifurcation
apparent in Figures 3A and 4A. We can even approximate the critical
dose maximizing tc, as Vc must be an approximation for the carrying
capacity of the sensitive cells:

SK ≈ Vc .

Examining the right side of Equation A1 and assuming that the dy-
namics of the resistant population are negligible, which is accurate in
the early stages of treatment (Figs 2B and 3B), we see that the dose
that yields the maximum temporal response should be

uc ≈
1 − e − Vc

α + d
. (A24)

That is, the dose at which Tα(d) is obtained is given approximately by
the expression in Equation A24. For a sample numerical comparison of
the predicted formula Equation A24 and a numerical optimization over
a range of drug sensitivities d (Figure A4). Note that in actuality, SK ,
Vc, as the resistant dynamics cannot be ignored entirely. Thus, the
precise value of uc will be smaller than that provided in the previous
formula as we numerically observe. Lastly, uc decreases with in-
creasing values of parameter d and, thus, requires an increasingly fine
discretization to numerically locate the maximum value. Hence, some
numerical error is observed in Figure 4B.

Lastly, as u is increased further, the dose becomes sufficiently large so
that the inhibition of S via therapy implies that S cannot approach the
critical volume Vc and, hence, Vc is again reached by an essentially
homogeneous population, but now of resistant cells. As resistant cells
divide at a slower rate (pr, 1), the corresponding time tc is smaller. For
a schematic of the three regimes described above (Figure A5).
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FIG A5. Schematic demonstrating dynamics of variation in tc on
dosage u. Sensitive cell population plotted as a function of time for
three representative doses. For u, uc, sensitive cells grow and reach
Vc in a short amount of time. As u→u−

c , the sensitive population
approaches its approximate carrying capacity of Vc, but subsequently
decreases as a result of the dynamics of resistance. Here, tc is
maximized as the sensitive population spends a large amount of time
near Vc. For u. uc, the sensitive population is eliminated quickly, and
Vc is obtained by a primarily resistant population.

Greene, Gevertz, and Sontag
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