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PARKIN, an E3 ligase mutated in familial Parkinson’s disease, promotes
mitophagy by ubiquitinating mitochondrial proteins for efficient
engagement of the autophagy machinery. Specifically, PARKIN-
synthesized ubiquitin chains represent targets for the PINK1 kinase
generating phosphoS65-ubiquitin (pUb), which constitutes themitoph-
agy signal. Physiological regulation of PARKIN abundance, however,
and the impact on pUb accumulation are poorly understood. Using
cells designed to discover physiological regulators of PARKIN abun-
dance, we performed a pooled genome-wide CRISPR/Cas9 knockout
screen. Testing identified genes individually resulted in a list of
53 positive and negative regulators. A transcriptional repressor net-
work including THAP11 was identified and negatively regulates en-
dogenous PARKIN abundance. RNAseq analysis revealed the
PARKIN-encoding locus as a prime THAP11 target, and THAP11 CRISPR
knockout in multiple cell types enhanced pUb accumulation. Thus, our
work demonstrates the critical role of PARKIN abundance, identifies
regulating genes, and reveals a link between transcriptional repres-
sion and mitophagy, which is also apparent in human induced plurip-
otent stem cell-derived neurons, a disease-relevant cell type.
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Dysfunction of mitochondria is implicated in aging and hu-
man disease, including Parkinson’s disease. Mitochondrial

functionality is assured by a hierarchical system of interdepen-
dent cellular quality-control mechanisms acting at molecular or
organellar levels to allow rapid adaptation to mitochondrial stress
and damage (1). The E3 ligase PARKIN (encoded by the PARK2
gene) takes on the role of a major sentinel that integrates multiple
quality-control mechanisms ranging from facilitating proteasomal
degradation of mitochondrial proteins to suppressing mitochon-
drial antigen presentation (2, 3).
PARKIN’s best-characterized role in mitochondrial quality

control is in PINK1/PARKIN-mediated mitophagy where PARKIN
acts in concert with the PINK1 kinase in the signaling of mitochon-
drial damage to the autophagy machinery. Herein, PINK1 accumu-
lates on the surface of dysfunctional mitochondria and recruits and
activates cytosolic PARKIN. Preformed ubiquitin chains on multiple
mitochondrial surface proteins are extended by activated PARKIN
and S65-phosphorylated by PINK1 (4–7). The accumulation of S65-
phosphorylated ubiquitin (pUb) on mitochondria constitutes the
signaling mechanism to engage the autophagy machinery for selective
clearance of dysfunctional mitochondria (8). The efficiency of
mitophagy appears to depend on the pUb signal: while PINK1
generated pUb from preformed chains in the absence of PARKIN
can induce some mitophagy, the presence of PARKIN amplifies the
accumulation of pUb via a feed-forward mechanism and enhances
mitophagy (8, 9). Mutations in both PINK1 and PARKIN are a cause
of familial Parkinson’s disease, suggesting that compromised
mitophagy is an underlying feature (10, 11). Thus, the thorough
understanding of how these proteins regulate mitophagy, and

how these proteins are themselves regulated, is important for
the further understanding of mitophagy and the pathogenesis
of Parkinson’s disease.
Previous studies identified regulators of PINK1/PARKIN-

mediated mitophagy employing RNAi screens with damage-
induced mitochondrial translocation of overexpressed GFP-
PARKIN as a mitophagy proxy (12–15). These efforts pro-
foundly advanced the understanding of mitophagy regulation;
however, little is known about how cells set the threshold for
mitophagy to proceed. In this regard, cellular regulation of
PARKIN abundance is of particular interest as it may represent
a mechanism to tune the progression of mitophagy by impacting
pUb accumulation to adapt to physiological state changes.
The CRISPR/Cas9 gene-editing technology as a screening

tool appears to be superior to RNAi in most cases of lethality screens
(16–18) and in phenotypic screens (19). Using cells expressing a
PARKIN reporter protein from the endogenous PARK2 pro-
moter and in which steady state PARKIN levels dictate the
kinetics of pUb accumulation, a phenotypic genome-wide
CRISPR/Cas9 pooled screen was performed and resulted in a
list of 53 positive and negative regulators.We show that transcriptional
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repression negatively regulates endogenous PARKIN steady-state
level. In particular, THAP11 depletion affects both PARKIN pro-
tein levels and pUb accumulation in multiple cell types. Finally,
human induced pluripotent stem cell (iPSC)-derived inducible
Neurogenin 2 (iNGN2) neurons in which THAP11 was targeted
by CRISPR/Cas9 display de-repression of PARK2 transcription
and enhanced pUb accumulation, demonstrating the impact of
PARKIN-level regulation in a relevant cell type.

Results
PARKIN Levels Dictate Kinetics of pUb Accumulation. To assess the
effects of cellular PARKIN abundance on downstream processes,
we generated cellular models with different levels of PARKIN ex-
pression. HEK293-based JumpIN TI 293 cells expressing endoge-
nous PARKIN were infected with lentiviruses for stable integration
of Cas9 to enable gene editing and PARKIN depletion (parental
cells) (Fig. S1A). Next, we aimed at generating cells with mildly
elevated PARKIN expression additionally amenable to functional
screening for physiological regulators of PARKIN. Thus, parental
cells were transfected with a transgene encoding GFP-PARKIN
under the control of a large PARK2 promoter fragment, which

contains enhancer and repressor sites for physiological control of
expression (20) (Fig. S1B). We selected a clone showing the lowest
discrete GFP-signal in flow cytometry (endoGFP-PARKIN cells)
(Fig. 1A). The fluorescence signal is below the detection threshold
of conventional fluorescence microscopy, but is GFP-PARKIN–
dependent because PARKIN-directed single guide RNAs (sgRNAs)
resulted in the concomitant loss of GFP-PARKIN protein and GFP-
fluorescence (Fig. 1 B and C). While endogenous PARKIN protein
levels in the parental cells were near the detection threshold, GFP-
PARKIN was readily detectable, likely reflecting multiple transgene
insertions (Fig. 1D).
We then examined the downstream effects of PARKIN-level

alterations by assessing the accumulation of pUb upon mito-
chondrial damage in parental and endoGFP-PARKIN cells,
additionally infected with either a PARK2-specific or a control
[scrambled (SCR)] sgRNA. After treatment of parental cells
transduced with control viruses with the mitochondria-damaging
agent carbonyl cyanide m-chlorophenyl hydrazone (CCCP) for
6 h, α-pUb signals appeared that were absent in DMSO-treated
samples (Fig. 1E), indicating the initiation of mitophagy. pUb
accumulation in endoGFP-PARKIN cells was robustly induced
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Fig. 1. endoGFP-PARKIN cells display PARKIN level-dependent pUb accumulation. (A) Clonal JumpIN Cas9+ cells carrying a stable transgene driving GFP-
PARKIN expression from 4.5 kb of the endogenous PARK2 promoter (endoGFP-PARKIN; green) or not (GFP-negative parental cells; gray) were assessed for
GFP-dependent fluorescence by flow cytometry. (B and C) endoGFP-PARKIN cells display near-complete CRISPR/Cas9-mediated GFP-PARKIN depletion. Cells
expressing either an SCR sgRNA or one of two different PARK2-specific sgRNAs (#i, #ii) were assessed for GFP-dependent fluorescence (B) and GFP-PARKIN
protein levels (C) 8 or 15 d postinfection. (D) Comparison of GFP-PARKIN protein levels in endoGFP-PARKIN cells to endogenous PARKIN. Protein lysates from
stable cell pools expressing either an SCR sgRNA or a PARK2-specific sgRNA (#i) were assessed by WB analysis using indicated antibodies. (E) PARKIN-
dependent pUb accumulation in JumpIN cells treated with CCCP. endoGFP-PARKIN cells or parental JumpIN cells expressing PARK2-specific or SCR sgRNAs
for 8 d were treated with 10 μM CCCP or vehicle for 6 h, and lysates probed with the antibodies indicated. (F) PARKIN-dependent MFN2 ubiquitination and
degradation in parental cells (Upper) or endoGFP-PARKIN cells (Lower). WB analysis using indicated antibodies of stable cell pools expressing PARK2-specific
or SCR sgRNAs treated with A/O for the time indicated. WB, Western blot.
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to a level higher than in parental cells, and this accumulation
was abrogated in cells additionally targeted for PARK2. GFP-
PARKIN migrated slower on SDS/PAGE in mitochondrial
damage conditions (Fig. 1E), reflecting PARKIN activation, where
the GFP-tag serves as a pseudo-substrate (21). Time-course analyses
revealed PARKIN-dependent pUb accumulation at early time
points of CCCP or antimycin A/oligomycin treatment (A/O; both
trigger PARKIN-dependent mitophagy) (Fig. S1 C and D). Varying
levels of PARKIN affected pUb accumulation to a lesser extent
after 24 h of treatment (Fig. S1 C and D). GFP-PARKIN levels
declined during mitochondrial damage, likely reflecting proteasomal
degradation (22) (Fig. S1 C and D). These data indicate that
PARKIN levels are limiting for pUb accumulation during the early
phase of mitochondrial damage in JumpIN cells. While we observed
mitochondrial damage- and PARKIN-dependent decline of the
common mitophagy marker TOM20 in endoGFP-PARKIN cells,
degradation rates were at low levels (Fig. S1C). This is in agree-
ment with other studies observing significantly lower rates for cells
expressing endogenous PARKIN compared with those over-
expressing PARKIN, with low rates likely reflecting the “endog-
enous” situation in human patients with Parkinson’s disease, in
whom it takes decades to develop the disease (23). The estab-
lished PARKIN-dependent ubiquitination and proteasomal deg-
radation of MFN2 (23) showed similar dependency on PARKIN
levels in mitochondrial damage conditions, thereby further high-
lighting the importance of cellular PARKIN level (Fig. 1F). Thus,
the generated cell line expresses functional GFP-tagged PARKIN
from its endogenous promoter that is limiting for pUb accumu-
lation and is amenable to fluorescence-based genetic screening.

A Phenotypic Genome-Wide CRISPR Knockout Screen Identifies Regulators
of GFP-PARKIN Steady-State Level. To identify transcriptional and
posttranslational regulators of cellular PARKIN steady-state levels,
we used the endoGFP-PARKIN cells in a genome-wide CRISPR/
Cas9 knockout screen using GFP-fluorescence changes as a pheno-
typic read-out, similar to DeJesus et al. (19) (Fig. 2A). Cells were
infected with a pooled lentiviral sgRNA library covering 18,360 genes
(on average, five sgRNAs/gene) at a sufficiently low multiplicity of
infection to bias for integration of a single lentiviral sgRNA cassette
per cell. Following selection and purity assessment of infected pools
using lentiviral puromycin resistance and TagRFP expression, re-
spectively, pools were sorted for cells carrying the lowest 25% and the
highest 25% of the GFP-fluorescence peak (“GFP-low” and “GFP-
high” cell populations). The GFP-fluorescence profile of infected
cells is similar to that of noninfected cells due to an overall low
abundance of cells with phenotypes of interest; however, GFP-low
and -high populations are enriched for cells expressing sgRNAs that
negatively and positively regulate GFP-PARKIN, respectively (Fig.
S2A). Cell sorting was performed at two time points, 8 and 15 d
postinfection, to account for sgRNA-specific editing kinetics and
time-dependent modulation of knockout-associated biological
processes. Together with an “unsorted” sample to assess presort
sgRNA library coverage, sorted GFP populations were subjected
to genomic DNA extraction and subsequent sgRNA counting by
next-generation sequencing (Fig. 2A).
Our data showed high coverage of the sgRNA library with

<0.25% missing sgRNAs across samples and a high correlation
between replicates with r2 values >0.97 (Fig. S2B). Fold-change
values were calculated from sgRNA counts in GFP-low and GFP-
high populations as well as the “unsorted” population and the input
library. Comparing fold-changes in the “unsorted” population, we
observed that the essential gene set from KBM7 cells (24) was
enriched among genes with strong negative fold-changes, suggesting
that these genes are also essential in endoGFP-PARKIN cells
and demonstrating efficient genome-wide editing in the pooled
screening mode (Fig. S2C). Our data revealed additional candidate
essential genes in these cells (Dataset S1).

For the gene-centric analysis of GFP-signals, we calculated re-
dundant siRNA activity (RSA) scores as a probability-based measure
of the performance of all sgRNAs of a gene with respect to the entire
library (25). To account for effect size, RSA scores were plotted
against fold-change values of the second strongest sgRNA (Fig. 2B
andDataset S2). As expected, PARK2was recovered among the genes
showing the strongest fold-change values and RSA scores in GFP-low
cells at both time points, confirming efficient on-target editing (Figs. 1
B and C and 2B). Interestingly, sgRNAs targeting the PACRG gene—
oriented head-to-head adjacent to PARK2 and sharing the same
promoter region—were among the most strongly enriched in GFP-
low cells, likely because the transgene promoter contains PACRG
sgRNA targeting sequences (Fig. 2B). Thus, the phenotypic screen
for regulators of GFP-PARKIN levels resulted in a high-quality
dataset exemplified by the high coverage of the genome-wide
sgRNA library and high correlation between replicates and of es-
sential gene dropouts. Furthermore, the recovery of PARK2 among
the strongest scoring genes suggests robust separation of signal from
noise, a notion further supported by a comparable signal window in
a GFP-based screen that used a similar setup (19).
A hypergeometric enrichment analysis of genes in GFP-low

and -high cells revealed predominantly large gene sets in the
10 most significant sets on both time points, with the top-scoring sets
comprising >1,000 genes (Fig. S2D). Enrichment of gene sets re-
lated to “nucleoplasm” and “nucleus” as well as other sets related to
transcription and protein synthesis may point to GFP-PARKIN
levels being particularly sensitive to modulation of biogenesis
rather than turnover. “Fanconi anemia nuclear complex” repre-
sented one of the smallest enriched sets and has been linked to
PARKIN and mitophagy (26). Half of the top 10 enriched processes
in GFP-high cells showed similar P values for both time points;
however, other processes were present only on day 8, indicating
time-point–dependent scoring for some genes but not others (Fig.
S2D). Indeed, in GFP-low cells, multiple gene sets related to mi-
tochondrial function were enriched only on day 15, linking GFP-
PARKIN level decline to mitochondrial dysfunction and suggesting
detection of genes associated with different PARKIN-affecting
processes at the two time points (Fig. 2C and Fig. S2D).

Individual sgRNA Testing of Screen Hits Results in a List of 53 Positive
and Negative Regulators of GFP-PARKIN. For downstream testing in
lower throughput assays, gene scores were assigned (see Mate-
rials and Methods). Based on these scores, we selected genes for
confirmation according to the following criteria: first, the top-
scoring 25 genes from both GFP-low and -high cells from both
time points were selected; second, genes in the top 100 common to
both time points in the respective GFP population were selected;
and finally, genes in the top 50 of one time point, but not in the
top 1,000 of the other time points of the respective GFP pop-
ulation, were chosen as those genes display time-point de-
pendency. In total, 114 genes were selected for confirmation and
were considered as primary screen “hits” (Fig. 2B, marked genes).
For individual confirmation of this list of genes, the strongest

scoring sgRNA per gene was used to infect endoGFP-PARKIN
cells individually, allowing for multiple integrations of lentiviral
sgRNA expression cassettes. To avoid clonal effects, selected cell
pools were analyzed for GFP-fluorescence by flow cytometry on
days 8 and 15. sgRNAs selected from GFP-low cells exclusively
resulted in GFP-signals lower than the SCR control (Fig. S3,
gray highlighting). Likewise, sgRNA hits from GFP-high cells
showed predominantly higher GFP-signals (Fig. S3). Comparing
primary screen enrichment values for a given sgRNA with GFP-
fluorescence changes in individual sgRNA experiments revealed
a highly significant correlation, demonstrating the robustness of
the screening approach (Fig. 3A).
To confirm that the knockout of selected hits affects steady-

state GFP-PARKIN abundance, we assessed protein levels for
a subset of the hits. The best sgRNAs targeting 24 randomly
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confirmation are colored, and genes selected forWB analysis are labeled (Fig. 3B) (green labeling for time-point–specific genes). (C) Hypergeometric gene-set enrichment
analysis was performed using the top 500-scoring genes of either the GFP-low or -high analysis. The P values denoting the significance of the enrichments from day 8 are
plotted against day 15 (−log10). FDR, false discovery rate; gDNA, genomic DNA; MOI, multiplicity of infection; NGS, next-generation sequencing; WB, Western blot.
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selected hits, 16 from GFP-high and eight from GFP-low cells,
were lentivirally delivered to endoGFP-PARKIN cells, and
protein lysates were probed with PARKIN-specific antibodies
15 d postinfection (Fig. 3B). In most cases, CRISPR knockout of
selected hits from GFP-high or GFP-low cells resulted in an
increase or decrease, respectively, of GFP-PARKIN compared
with the control, fully consistent with the data from FACS ex-
periments (Fig. 3B). In some cases, the effects were mild, which
can be partially explained by inefficient editing as assessed by the
TIDE (Tracking of Indels by Decomposition) sequence trace
composition assay (27) (Fig. 3B).
We defined a list of regulators by selecting the top-scoring 25

GFP-low and -high hits in the day 8 FACS analysis (those genes
show a very high correlation with the primary screen, r = 0.94) and
additionally included genes that were tested in Western blot anal-
yses. This resulted in a list of 53 regulators, which we subjected to
STRING functional gene network analysis to reveal their biological
function and association with each other (Fig. 3C and Dataset S2)
(28). STRING analysis allowed grouping of hits in several cate-
gories covering a range of biological processes and revealed genes
that have not been confidently associated with each other in pre-
vious studies as well as others known to be in functional gene
networks (Fig. 3C). The most-populated categories contained genes
linked to general and sequence-specific transcription and suggests
an important role in PARKIN steady-state–level control. Genes

linked to the categories general transcription, RNA metabolism, as
well as cell cycle and chromatin stability also scored in the gene-set
enrichment analysis of the screen and suggest on a genome-wide
scale that PARKIN levels are sensitive to changes in these pro-
cesses (Fig. S2D).

THAP11 Is Part of a Functional Network Mediating Transcriptional
Repression of PARK2. A specific effect on PARKIN levels may be
exerted by genes in the “ubiquitin/proteasome system” and the
“sequence-specific transcription” category, which includes a func-
tional network comprising THAP11, HCFC1, OGT, and WDR82
(Fig. 3C). HCFC1 and WDR82 were robustly identified in the pri-
mary screen on day 8, and both THAP11 as well as OGT scored
significantly at both time points in the primary screen and in con-
firmation experiments (Figs. 2B and 3B and Fig. S3). WhileWDR82
was identified in the GFP-low cells, increased GFP-PARKIN levels
upon targeting THAP11, HCFC1, or OGT suggests that these genes
collaborate in the negative regulation of GFP-PARKIN levels by
repressing transcription from the endogenous PARK2 promoter.
To test this hypothesis, parental cells expressing only endog-

enous PARKIN were targeted for THAP11, HCFC1, or OGT,
selected and cultured beyond day 15 to generate stable cell
pools, and subjected to qPCR to measure PARK2 mRNA levels.
A significant increase in PARK2 mRNA levels was observable
upon CRISPR knockout of any one of the genes targeted with

r = 0.87
p <0.00001
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THAP11 and OGT sgRNAs increasing PARK2 mRNA more
than twofold (Fig. 4A). The small increase in HCFC1-targeted
stable cells reflects a very low knockout percentage as assessed
by TIDE, likely due to drift in the stable pool and consistent with
the time-point–dependent scoring of HCFC1 in the primary
screen (Fig. 4A). A more pronounced increase in PARK2 mRNA
levels was observable on day 8 postinfection compared with
stable cells (Fig. S4A). Regardless, the change in transcript levels
was also reflected in protein levels, with endogenous PARKIN
accumulating in stable cells lacking OGT or THAP11 (Fig. 4B).
Thus, transcriptional de-repression leads to an increase in the
steady state of endogenous PARKIN protein levels.

Genome-Wide Investigation of THAP11-Mediated Transcriptional
Regulation Identifies Transcripts with Diverse Functions and the
PARK2 Genomic Locus as a Prime Target. Recently, Poché et al.
(29) reported that THAP11 depletion results in elevated PARK2
mRNA levels (among other genes) in the developing mouse
retina, which was hypothesized to be caused by down-regulated
mitochondrial genes followed by mitochondrial dysfunction in
these samples. Data from our screen, however, suggest that
targeting mitochondrial genes results in decreased PARKIN
levels and motivates further investigation of THAP11-dependent
transcripts in JumpIN cells (Fig. 2C and Fig. S2D). We therefore
analyzed the gene expression profile of THAP11-depleted
JumpIN cells using RNAseq (Fig. S4B). On day 15 post-
infection with THAP11-directed sgRNAs, the expression of
92 genes was enhanced and 158 genes repressed compared with
the control sgRNA-infected cells (more than twofold change in
absolute value, 1% false discovery rate; Fig. 4C and Dataset S3).
PARK2 was found among the most strongly up-regulated genes.
Gene-set enrichment analysis revealed diverse biological

processes associated with the modulated genes (Fig. 4E). More
specifically, significantly enriched gene sets for up-regulated
transcripts are mostly implicated in protein biosynthetic pro-
cesses as well as in cell division and DNA repair. In contrast,
down-regulated transcripts showed significant enrichment of di-
verse gene sets related to GTPase-mediated signal transduction
as well as positive regulation of apoptosis and protein kinase
binding. Mitochondria-related transcripts were not enriched
upon THAP11 depletion. While we confirmed some of the
mitochondria-related transcripts reported to be down-regulated in
mouse samples, other transcripts were unaffected or even oppo-
sitely regulated in JumpIN cells, including MTRF1 and SIRT4, re-
spectively, which were confirmed by qPCR (Fig. 4D and Fig. S4C)
(29). These findings suggest that THAP11 depletion has different
effects in the developing mouse retina and human JumpIN cells,
which is supported by a limited overlap of these data sets (Fig. 4F).
While most of the identified transcripts seem to be specific to

either one of the two data sets, a set of 31 transcripts was
commonly affected in the two studies, with PARK2 being the
most strongly up-regulated (Fig. 4F). This common set also in-
cludes PACRG, which is adjacent to PARK2 in the genome
sharing a bidirectional promoter, and was confirmed by qPCR
(Fig. 4D). Unbiased analysis of the promoter sequences of the
31 commonly regulated genes revealed the most significant motif
located primarily between −200 and 0 nucleotides from pre-
dicted transcription start sites (Fig. S4D). This sequence motif is
present in the PARK2-PACRG promoter (Fig. S4E) and almost
identical to the THAP11 motif identified in mouse retinal cells
(29), confirming that THAP11 is a key regulator of this set of
genes in the two disparate cell types. Targeting the motif in the
PARK2 promoter in endoGFP-PARKIN cells using specific
sgRNAs resulted in a bimodal GFP-fluorescence profile, with
most cells showing either elevated or decreased GFP-PARKIN
compared with the control, indicating the importance of the
motif in PARKIN expression (Fig. S4 E and F). The bimodal
profile is consistent with the notion that, depending on the

CRISPR, PARK2 repression is inhibited by specific motif mu-
tations in cells with elevated GFP-PARKIN, while PARK2 ex-
pression is inhibited by extensive promoter editing in cells with
decreased GFP-PARKIN levels. Taken together, RNAseq
revealed diverse THAP11-dependent transcripts in JumpIN cells
and indicates that the PARK2 promoter is a prime target for
THAP11-mediated regulation.

THAP11-Mediated Transcriptional Repression of PARK2 Regulates pUb
Accumulation in Neuronal Cells. To address whether THAP11-
mediated transcriptional repression of PARK2 impacts pUb ac-
cumulation, we initially examined THAP11-depleted endoGFP-
PARKIN cells. As before, THAP11 depletion resulted in
elevated levels of GFP-PARKIN compared with the SCR control
(Fig. 5A). Upon treatment with A/O for 6 h, there was an in-
creased accumulation of pUb in cells lacking THAP11 compared
with control cells (Fig. 5A). In line with previous time-course
experiments, treatment for 24 h did not reveal obvious differ-
ences in pUb accumulation between PARKIN- and THAP11-
depleted nor control samples (Fig. 5A and Fig. S1 C and D).
Upon treatment with A/O, PINK1 stabilization was observable in
samples from all genotypes (Fig. 5A). However, we noted de-
clining levels of OGT in mitophagy-triggering conditions, with
kinetics that appeared to be altered upon THAP11 depletion,
opening up the possibility of additional THAP11- and OGT-
mediated PARK2 control during mitophagy. By using a differ-
ent THAP11-directed sgRNA and a different α-pUb antibody we
confirmed an enhanced accumulation of pUb upon treatment with
A/O for 6 h in immunofluorescence analyses and observed pUb
clustering in the perinuclear region where mitochondrial aggre-
gates accumulate at early stages of mitophagy (30) (Fig. 5B).
Given the relationship of PARK2 to Parkinson’s disease, where

the primary cell types affected are neurons, we assessed the effects of
THAP11 knockout on PARKIN levels and pUb accumulation in
neuronal cell types. As in previous experiments, targeting THAP11 in
SH-SY5Y neuroblastoma cells using the second-strongest sgRNA
from the primary screen resulted in accumulation of both endoge-
nous PARK2 mRNA and protein (Fig. 5 C and D). In addition,
following mitochondrial damage, pUb accumulation was increased
in cells where THAP11 was targeted, compared with cells expressing
a control sgRNA (Fig. 5E). Notably, endogenous PARKIN protein
levels declined upon mitochondrial damage, as observed in
endoGFP-PARKIN cells (Fig. S1 C and D). While we only ob-
served a mild effect on damage-induced MFN2 ubiquitination and
degradation in PARK2-targeted samples, possibly due to other
E3 ligases targeting MFN2 in mitophagy (31, 32), damage-induced
ubiquitinated MFN2 was enhanced in neuroblastoma cells tar-
geted for THAP11 compared with controls.
Finally, we addressed THAP11-mediated transcriptional re-

pression of PARK2 and pUb accumulation in postmitotic human
neuronal noncancer cells. THAP11 was targeted in human iPSCs
carrying iNGN2 for rapid single-step induction of functional
neurons (33) (iPSC iNGN2 cells) (Fig. S5 A and B). TIDE analysis
of iPSC iNGN2 cells infected with viruses allowing expression of a
THAP11-directed sgRNA revealed monoallelic editing in those
cells (iPSC iNGN2 THAP11+/−) (Fig. S5C). To address the effect
of THAP11 editing on PARKIN in postmitotic neurons, iPSC
iNGN2 THAP11+/− cells or iPSC iNGN2 cells expressing a control
sgRNA (iPSC iNGN2 SCR) were differentiated for 10 d. Tran-
scriptional profiling of iNGN2 THAP11+/− and SCR neurons
revealed highly similar expression levels of a panel of neuronal
markers, indicating that monoallelic THAP11 CRISPR had no
major effect on neuronal differentiation (Fig. S5D). However, both
PARK2 mRNA and PARKIN protein levels were significantly in-
creased in iNGN2 THAP11+/− neurons, demonstrating THAP11-
mediated transcriptional repression in those cells (Fig. 5 F and G).
Treating iNGN2 THAP11+/− neurons with the mitophagy trigger
valinomycin for 4 h resulted in a pronounced increase in pUb
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accumulation compared with iNGN2 SCR neurons (Fig. 5H).
Together, these data provide evidence that THAP11-mediated
transcriptional repression occurs in differentiated human neuronal
cells and demonstrate that PARKIN levels are limiting in an en-
dogenous setting for early damage-induced pUb accumulation.

Discussion
Previous genetic screening efforts provided insights into the
regulation of PINK1/PARKIN-mediated mitophagy (12–15). In
these screens, high-level overexpression of GFP-PARKIN in cells
naturally deficient of PARKIN, however, impeded the identification
of regulators of PARKIN abundance. Here, we show that cellular
PARKIN levels regulate pUb accumulation. In a screening cam-
paign employing cells expressing GFP-PARKIN from the endoge-

nous PARK2 promoter and CRISPR/Cas9 technology, we identified
and confirmed hits resulting in a list of 53 positive and negative
steady-state–level regulators. Our functional analysis of the tran-
scriptional repressor THAP11 highlights the impact of endogenous
PARKIN-level regulation on pUb accumulation in multiple cell
types, including postmitotic iPSC-derived iNGN2 neurons.
It has been recently shown that PARKIN participates in a feed-

forward pathway to amplify pUb accumulation during mitophagy
(9). Our work reveals the critical role of cellular PARKIN levels in
modulating the amplification of the pUb output: varying PARK2
copy number or endogenous PARKIN levels by means of THAP11
targeting revealed coupling of PARKIN levels and early pUb ac-
cumulation in a cell type-independent manner.
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pUb is critical for the recruitment of autophagy receptors on
ubiquitinated mitochondria (8). Concomitant with receptor re-
cruitment, the TBK1 kinase is activated and TBK1-mediated re-
ceptor phosphorylation promotes receptor ubiquitin chain binding
and further TBK1 activation, thereby revealing another feed-forward
mechanism (8, 34, 35). The presence of two consecutive signal am-
plifications indicates the importance of rapid preparation of dys-
functional mitochondria for autophagosomal engulfment, and
highlights the significance of PARKIN levels in the entire process, as
efficient TBK1 activation is also dependent on PARKIN expression
(8, 34, 35). Pathogenic mutations in TBK1 as well as PARK2 have
been identified in amyotrophic lateral sclerosis-frontotemporal de-
mentia and Parkinson’s disease, respectively, thereby encouraging
speculation that low signal amplification upon mitochondrial dam-
age is of pathophysiological importance (10, 36, 37). This speculation
is further supported by a recent study reporting compromised pUb
signaling in dopaminergic neurons containing PARK2 or PINK1
mutations (38). Future studies will reveal whether and how variants
of hits identified in the current screen modulate disease risk—for
example, TRIP12 (Figs. 2B and 3B and Fig. S3)—for which SNPs
have been linked to Parkinson’s disease (39, 40).
Bioinformatic analysis of genes found in our screen identified

gene sets related to transcription and protein biogenesis. This is
consistent with the notion that PARKIN steady-state levels are
particularly sensitive to the modulation of synthesis rather than
turnover. Our analysis of THAP11 depletion phenotypes adds
weight to this concept as released transcriptional repression is not
compensated by protein turnover, resulting in PARKIN protein
accumulation. Furthermore, our data suggest that removal of dys-
functional mitochondria by mitophagy is under substantial tran-
scriptional control via PARKIN-level adjustment. Vice versa,
PARKIN level appears to be linked to the functional state of mi-
tochondria: PARKIN depletion was observed in acute mitochondrial
damage conditions, and targeting of mitochondrial genes by
CRISPR knockout likewise resulted in a decrease in GFP-PARKIN.
Whether the latter is due to mitochondrial dysfunction-dependent
triggering of mitophagy concomitant with PARKIN degradation
remains speculative at this point (22). Thus, there appear to be two
main processes accounting for cellular PARKIN levels: gene ex-
pression and mitochondrial dysfunction, respectively. It will be in-
teresting to further investigate other hits which cannot be obviously
attributed to these two processes, including proteins related to the
ubiquitin/proteasome system, such as SIAH1 (Figs. 2B and 3 B and
C and Fig. S3) present in Lewy bodies (41).
A previous chemogenomic screen identified epigenetic agents,

drugs controlling cholesterol biosynthesis, and JNK inhibitors as
chemical classes up-regulating PARK2 transcription (42). JNK
family kinases and cholesterol biosynthesis genes did not score in
the current screen, which may be explained by nonselectivity of
compounds in that screen and different experimental setups.
However, epigenetic regulators including the bromodomain pro-
teins BRD1 and BRD8 were among confirmed hits supporting the
notion that PARK2 transcription is regulated by this class of
proteins (42). Concerning other confirmed hits, a subunit of the
CK2 complex (CSNK2A1) and FBXW7 (Figs. 2B and 3 B and C
and Fig. S3) were also identified in a previous genetic screen as
positive regulators of mitophagy (13). In light of the present data,
PARKIN depletion upon CK2 loss would be a logical explanation
for the observed mitophagy defect.
The role of FBXW7 in mitophagy is unclear, and data presented

here do little to clarify this situation, as FBXW7 appears to neg-
atively regulate PARKIN, an observation at odds with its described
role as a positive regulator of mitophagy. Clearly, further work is
needed to understand the role of FBXW7 in mitophagy; however,
FBXW7 and PARKIN appear to have roles beyond mitophagy, in
cell cycle control. Both proteins interact to cooperate in cyclin E
degradation and PARKIN regulates mitosis and genomic stability
(43, 44). Interestingly, Lee et al. (44) showed that PARKIN levels

change during the cell cycle, providing a possible explanation for
the identification of cohesin-regulating genes in the screen per-
formed here (Figs. 2B and 3 B and C and Fig. S3), which have been
linked to cell cycle progression (45). Given the importance of
PARKIN levels for pUb accumulation, it will be interesting to
assess mitophagy at different stages of the cell cycle. Thus, the
current data are of relevance not only for mitophagy research but
also for research regarding cell cycle biology and cancer where
PARK2 gene dosage reduction is a common event (43, 46).
THAP11 (also known as Ronin) contains a Thanatos-associated

protein (THAP) domain, an atypical zinc finger motif with
sequence-specific DNA binding activity, and was reported to be a
transcriptional repressor (47). THAP11 requires HCFC1 (also
known as HCF-1) to be functionally active, and HCFC1, in turn, is
proteolytically matured by the O-GlcNAc transferase OGT (48,
49). Recruitment of an HCFC1-containing complex enables
THAP11 to either up-regulate or repress target genes (49). Data
presented here are in line with THAP11 acting in concert with
HCFC1 downstream of OGT in the repression of PARK2 tran-
scription. Furthermore, profiling of THAP11-depleted cells revealed
both up- and down-regulated transcripts, consistent with a versatile
role of THAP11 in transcriptional regulation (49). THAP11 was
reported to be essential for mouse embryonic stem cell self-renewal
and cell-growth regulation in human colon cancer cells (47, 49, 50).
Data presented here indicate that THAP11 transcriptional programs
are primarily cell- and/or species-specific. However, the identification
of 31 THAP11-dependent genes in both mouse samples and human
cells indicates some conservation of THAP11-mediated regulation
and points to a THAP11 core transcriptional program that is not cell-
and/or species-restricted. In this regard, THAP11-mediated regula-
tion of PARK2, the gene most strongly repressed among the 31, is of
particular interest as it represents a mechanism to regulate pUb
accumulation in all cell types tested, and suggests that regulation of
mitophagy is a core function of THAP11. Whether the spatially and
developmentally restricted THAP11 expression contributes to time-
and tissue-specific control of PARKIN, mitophagy, and concomi-
tant processes remains an interesting question at this point (8, 51).
Finally, both PACRG and PARK2 were reported to be up-regulated
in response to oxidative stress and a ∼300-bp fragment of the
common promoter has been determined to mediate the response
(20). As this fragment contains the THAP11-binding site we are
tempted speculate that THAP11-mediated repression of PARK2
(and PACRG) is released upon oxidative stress, a prominent sus-
ceptibility factor for the neurons affected in Parkinson’s disease.

Materials and Methods
endoGFP-PARKIN cells were obtained by selecting a clone of JumpIN TI
293 cells stably expressing Cas9 (parental cells) additionally transfected with a
pcDNA3.1-based plasmid expressing EGFP-PARKIN from 4.5 kb of the en-
dogenous PARK2 promoter. For flow cytometry, endoGFP-PARKIN cells were
harvested, resuspended in PBS supplemented with 2 mM EDTA, passed
through a 40-μm filter, and analyzed on a BD FACSCanto II or a BD FACSAria
Fusion. endoGFP-PARKIN cells transduced with lentiviruses were fixed using
BD Cytofix (diluted 1:1 in PBS; BD Biosciences) according to the manufac-
turer’s instructions, resuspended in BD Stain buffer (BD Biosciences) sup-
plemented with 2 mM EDTA, and passed through a 40-μm filter before
analysis by flow cytometry. Detailed methodology for cell culture and cell
line generation, pooled CRISPR screening, confirmation of individual
sgRNAs, TIDE editing efficiency assays, qPCR, RNA sequencing, DNA motif
enrichment analysis, cell reprogramming, iPSC maintenance and differenti-
ation, generation of iNGN2 iPSCs, generation of iNGN2 SCR iPSCs and
Thap11+/− iPSCs, differentiation of iNGN2 neurons, Western blotting, con-
focal immunofluorescence microscopy, and statistical analyses are described
in SI Materials and Methods. No experiments requiring informed consent or
institutional committee approval were performed during this study.
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