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Abstract

Impaired epithelial wound healing has significant pathophysiological implications in several conditions including
gastrointestinal ulcers, anastomotic leakage and venous or diabetic skin ulcers. Promising drug candidates for accelerating
wound closure are commonly evaluated in in vitro wound assays. However, staining procedures and discontinuous
monitoring are major drawbacks hampering accurate assessment of wound assays. We therefore investigated digital
holographic microscopy (DHM) to appropriately monitor wound healing in vitro and secondly, to provide multimodal
quantitative information on morphological and functional cell alterations as well as on motility changes upon cytokine
stimulation. Wound closure as reflected by proliferation and migration of Caco-2 cells in wound healing assays was studied
and assessed in time-lapse series for 40 h in the presence of stimulating epidermal growth factor (EGF) and inhibiting
mitomycin c. Therefore, digital holograms were recorded continuously every thirty minutes. Morphological changes
including cell thickness, dry mass and tissue density were analyzed by data from quantitative digital holographic phase
microscopy. Stimulation of Caco-2 cells with EGF or mitomycin c resulted in significant morphological changes during
wound healing compared to control cells. In conclusion, DHM allows accurate, stain-free and continuous multimodal
quantitative monitoring of wound healing in vitro and could be a promising new technique for assessment of wound
healing.
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Introduction

Epithelial wound healing is a common physiological process. In

particular, within the gastrointestinal tract, there is persistent

regeneration of epithelial cells to compensate physiological

exfoliation of surface cells [1]. Vice versa, impaired wound healing

has a tremendous pathophysiological implications in several

conditions such as gastrointestinal ulcers [2], anastomotic leakage

[3] venous or diabetic skin ulcers [4] and corneal ulcers [5].

Despite great advances in the pathophysiological concepts of

wound healing, the molecular background is still incompletely

understood and development of pharmacological agents to

accelerate wound closure is required. However, evaluation of

drug candidates is hampered since in vivo models can be complex

and of limited availability [6]. Therefore, potential drug candi-

dates are usually assessed in in vitro wound assays, such as the

classical scratch assay established by Burk et al. [7]. Recently,

more sophisticated cell culture systems have been introduced,

more precisely elucidating the extent of migration and prolifera-

tion in vitro [8]. One example includes a silicone cell culture-

inserts onto the cell culture surface generating two reservoirs (see

also section ‘Cell layer wound assays’) that are separated by a

500 mm wall, which on removal leaves a well-defined border [9].

However, valid determination of cell migration commonly

requires cell staining, e.g. Giemsa staining [10,11] or transfection

of the sample with fluorescent chromophores for cell tracking [12]

which both require interaction with the sample.

Recently, bright field images and Zernike phase contrast images

recorded with time-lapse video microscopy were established for
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analysis of wound healing assays in vitro [13]. Both techniques

minimize the interaction between the imaging modality and the

sample, and allow the quantification of the area change during cell

migration into the wound either manually or computer assisted by

image processing algorithms [14]. An electrically analysis

approach based on automated impedance measurement during

wound healing in vitro has been reported by Keese et al. [15].

This non-imaging approach allows the quantitative temporal

observation of large areas covered with cells. However, these label-

free modalities lack the ability for simultaneous assessment of

cellular morphology and mass alterations.

Digital holographic microscopy (DHM), a variant of quantita-

tive phase microscopy, enables not only stain-free quantitative

phase contrast imaging but also assessment of cell thickness and

tissue density by measuring optical path length delay [16–18].

Recently, it has been demonstrated that DHM provides quanti-

tative monitoring of physiological processes through structural

analysis and functional imaging which, for example, gives new

insight into signaling of cellular water permeability [19,20], cell

morphology changes due to toxins [21–24] and infections [25–27]

as well as micro-calcification, cancer and inflammation mediated

tissue alterations [12,28] and bacteria and mammalian single cell

growth [29–32].

The aim of this study was to evaluate DHM as a novel method

to accurately assess wound healing in vitro in a stain-free and

continuous manner and to test its properties for quantitative

determination of cellular changes upon cytokine stimulation. To

the best of our knowledge, this is the first time a multi-parameter

analysis of cellular growth and motility from quantitative phase

images during epithelial wound healing has been performed.

Results

Visualization and assessment of epithelial wound healing
by white-light microscopy and DHM

To evaluate the potential of quantitative phase imaging with

DHM for monitoring of epithelial wound healing in vitro, Caco-2

cell wound assays were analyzed (see Figure 1 and description in

the section ‘Cell layer wound assays’) and results compared to

microscope images acquired by white light illumination. Mimick-

ing different physiological situations, cells were stimulated with

either epidermal growth factor (EGF, cell population of the assays

in Figure 2), which is known to stimulate epithelial cell migration

[33,34] or treated with mitomycin c which is a well-known cell

cycle inhibitor (left cell population of the assays in Figure 2) [34].

Figure 2A indicates that conventional visualization of Caco-2

cells by white-light microscopy is of limited feasibility due to the

low contrast. In contrast, segmentation of quantitative DHM

phase contrast images by image processing with the software cell

profiler allowed delineation of the cell-covered surface and partly

enabled single cell identification at different time points (Fig-

ure 2B). Assessment of wound closure 40 h after starting of the

experiment revealed markedly accelerated migration of EGF-

stimulated Caco-2 cells into the cell free gap in comparison to

mitomycin c treated cells (Figure 2B, Video S1). Furthermore the

experiments illustrate the spatial heterogeneous growth behavior

of Caco-2 cells, in particular after treatment with EGF. These

findings are in line with observations from corresponding white

light images. However, a reliable identification of single cells and

cell tracking as described previously, e. g. for epithelial cells [35],

was not feasible due to the specific morphological and growth

properties of Caco-2 cells.

Detection of cellular volume, dry mass and refractive
index alterations upon cytokine stimulation in single cell
suspension by DHM

Zytotoxic agents such as mitomycin c can significantly impair

epithelial migration and proliferation without affecting protein

biosynthesis [36]. Thus, simultaneous measurements of cellular

dry mass and cellular volume are of interest for characterizing the

biological properties of potential drug candidates. However, as

previously shown in Figure 2B, in a confluent layer, DHM analysis

of individual cells was not easily possible and determination of

cellular dry mass, volume and refractive index separately for single

cells could not be achieved. Thus, to measure these individual

parameters, we used a single cell suspension of detached cells.

Quantitative DHM phase contrast images of suspended EGF- and

mitomycin c-stimulated single cells as well as unstimulated control

cells (n = 89 cells for each experiment) were analyzed as described

in the section ‘Determination of the cellular refractive index and the
cell volume’.

Figures 3A-3C depict quantitative DHM phase images of

suspended single cells (coded to 256 gray levels) with representative

size and refractive index. The mean cellular radius and the cellular

volume are illustrated by false color-coded pseudo 3D represen-

tations of the quantitative phase images (Figures 3D–3F). For

unstimulated Caco-2 cells, a mean radius of rcontrol = 7.261.2 mm

was obtained (Figures 3A and 3D). In contrast, the mean radius of

EGF-stimulated Caco-2 cells was found markedly enhanced

(rEGF = 9.161.3 mm; Figures 3B and 3E) while the mean

radius of mitomycin C-treated cells was even more increased

(rmitomycin = 11.761.3 mm; Figures 3E,F). Confirming this, compared

to untreated control cells, the cellular volume of EGF-stimulated cells

was significantly increased (Vcontrol = 17126108 mm3 vs. VEGF =

34456168 mm3; P,0.001, Figure 3I) while the volume of mitomy-

cin C-treated cells was quadrupled (Vmitomycin = 74016502 mm3 vs.

Vcontrol = 17126108 mm3; P,0.001; Figure 3I).

After stimulation with EGF, the refractive index of the treated

cells was comparable to the unstimulated (1.370760.0004 vs.

1.371360.0006; Figure 3 G), in contrast to the difference seen

with cellular volume. However, a significant reduction of the

refractive index could be observed between mitomycin c treated

cells and control (1.367860.0004 vs. 1.371360.0006; P,0.001,

as well as between stimulated and inhibited cells (1.370760.0004

vs. 1.367860.0004; P,0.001).

Finally, the cellular dry mass was determined as described in

section ‘‘Analysis of cellular growth with quantitative phase
microscopy’’. In accordance with the previous findings on cellular

volume and refractive index, a highly significant dry mass increase

of EGF- and mitomycin c-stimulated Caco-2 cells was observed in

comparison to unstimulated control cells (DMEGF = 542627 pg

vs. DMcontrol = 265616 pg and DMmitomycin = 1009651 pg vs.

DMcontrol = 265616 pg; both P,0.001, Figure 3H). Furthermore,

the dry mass increase of mitomycin c-stimulated cells was

significantly higher as compared to EGF-stimulated cells

DMmitomycin (1009651) pg vs. DMEGF = 542627 pg; P,0.001;

Figure 3H).

Taken together, DHM was not only able to quantify

morphological characteristics like volume and cell density and

dry mass of Caco-2 cells but could additionally reveal alterations of

these features upon stimulating and inhibiting cytokine treatment

as compared to untreated control cells.

Multimodal Assessment of Wound Healing by DHM
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Automated quantification of temporal development of
wound closure by simultaneous monitoring of cell
covered area, cell layer dry mass cell layer mean
thickness and volume as well as cell number

To assess the impact and the duration of stimulating agents on

epithelial wound healing, continuously monitoring of the wound

closure area would be desirable. Simultaneous determination of

changes in cellular dry mass and volume may give additional

insights into cell cycle related processes such as cell division and

cell viability [29,30]. To this aim, in series, quantitative DHM

phase images were obtained every 30 min with the setup

illustrated in Figure 1 and evaluated as described in section

‘‘Analysis of cellular growth and thickness with quantitative phase
microscopy’’. Due to the spatial heterogeneous growth behavior of

the Caco-2 cells (see Figure 2B) the achieved measurement data

on untreated Caco-2 cells and EGF- and mitomycin c stimulated

cells are illustrated in Figure 4 for results from single measure-

ments. In Fig. 4A the relative temporal increase of the cell-covered

area in comparison with the initial wound area is plotted. The area

of wound closure in the control assay with untreated Caco-2 cells

could be successfully determined over a 40 h period to

DSc, control = 37139 mm2. In the assay with EGF- and mitomycin

c-treated cells, increased would closure of EGF-stimulated cells as

compared to mitomycin- inhibited cells could be observed (area

increase of DSc, EGF = 45782 mm2 vs. area decrease DSc, mitomycin

= -10926 mm2. Surprisingly, the area increase of EGF stimulated

cells was comparable to the increase of control cells. Figure 4B

shows the relative development of the cellular dry mass DDM
obtained from the same DHM phase images. This was performed

by subtracting the initial dry mass value that was calculated from the

Figure 1. Utilized off-axis setup for digital holographic microscopy (DHM). A laser beam is divided by a beam splitter into an object wave,
illuminating the specimen through a condenser and an undisturbed reference wave. The object wave interferes with the slightly tilted reference wave
on a charge coupled device sensor (off-axis geometry). Morphological changes of the biological specimen lead to changes of the optical path length
of the object wave, which are coded in the resulting interference pattern (digital hologram).
doi:10.1371/journal.pone.0107317.g001

Figure 2. Visualization of epithelial wound healing by white light microscopy and DHM. (A) Conventional white light microscopy is hardly
able to visualize outer borders of Caco-2 cells. (B) Phase contrast images provided by DHM (upper row) enable recognition of cell outlines, which are
depicted by segmented DHM phase contrast images (lower row).
doi:10.1371/journal.pone.0107317.g002

Multimodal Assessment of Wound Healing by DHM
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first quantitative phase image from all subsequently measured dry

mass values of each time-lapse series. For untreated Caco-2 cells

DDMcontrol = 23.9 ng was obtained at 40 h after start of the

experiment (Figure 4B). Altered dry mass amounts were also

detected with DHM within 40 h after start of EGF- and mitomycin

c-treatment (DDMEGF = 26.1 ng and DDMmitomycin = 2.9 ng; Fig-

ure 4B). Furthermore, a higher dry mass increase for EGF

stimulated cells than for control cells were observed. Figure 4C

depicts the corresponding temporal relations of the mean cellular

thickness �dd of the assays that were calculated by using Eq. 3 using

the mean refractive indices obtained from suspended cells (see

section ‘‘Determination of cellular volume, dry mass and refractive
index alterations upon cytokine stimulation in single cell suspension’’)

and nmedium = 1.339. For control cells, the increase of �dd was nearly

linear. Similarly, a linear increase of mytomycin c-treated cells was

observed while the mean thickness of EGF-stimulated cells was

slightly decreased during the observation period. In contrast to the

results in Figures 4A–4C, no difference of �dd was observed between

mitomycin c-inhibited cells and control cells while the mean

thickness of EGF-stimulated cell layers was almost doubled. In order

to calculate the mean volume V of the cell layers, the absolute data

for the area Sc covered by the cells in Figure 4A and the mean cell

thickness �dd in Figure 4C were multiplied (see Figure 4D). The cell

layer volume of unstimulated Caco-2 cells increased within the

observational period and was determined to be 317147 mm3 at the

end of experiment. In correspondence to Figure 4A, the cell layer

volume increase of EGF-treated cells was comparable to the control

cells, while mitomycin c-stimulated cells showed a constant cell layer

volume over time (40 h: 433280 mm3 vs. 97994 mm3). The similar

increase of Sc and cell volume for EGF stimulated cells and control

cells may be explained by inhibitory effects of mitomycin c on the

EFG stimulated cells, as stimulated and inhibited cells were

observed in a single assay with the same cell culture medium.

Figure 3. Refractive index, dry mass and cellular volume of stimulated and unstimulated Caco-2 single cells in suspension. (A–C)
Representative quantitative DHM phase images of suspended single Caco-2 cells (coded to 256 gray levels), (A) untreated control cells, (B) after
treatment with either epidermal growth factor (EGF) or (C) mitomycin c. (D–F) The me an cellular radius r as assessed by false color coded pseudo 3D
representations of quantitative phase images was slightly increased after EGF stimulation and markedly more enhanced after mitomycin c treatment.
(G) The refractive index ncell of mitomycin c-stimulated cells was significantly decreased as compared to EGF-stimulated cells and untreated control
cells. (H, I) Dry mass DM and cellular volume V of EGF-treated Caco-2 cells were significantly increased as compared to untreated cells but were
reduced as compared to mitomycin c-stimulated cells. Data are means 6SE; N = 89, ***P,0.001 (the numerical data of diagrams G, H, I are
summarized in Table S1).
doi:10.1371/journal.pone.0107317.g003

Multimodal Assessment of Wound Healing by DHM
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Finally, we estimated the total number of cells in the wound gap

by dividing the relative dry mass (Figure 4B) through the mean

single cell dry mass retrieved from the suspended single cells

(Figure 3H). In Figure 4E the resulting temporal relation of the

total cell number in the wound is plotted. The results in Figure 4E

show that DHM is able to provide a reliable automated assessment

of the number of cells in the wound. In addition, results for EGF

stimulated cells indicate marked enhancement of cells in the

wound gap as compared to the number of mitomycin c-inhibited

cells which was constant. In line with the previous findings, after

40 h a slightly higher number of control cells than for EGF

stimulated cells was found in the wound.

All temporal dependencies in Figure 4 show a mainly linear

temporal dependency. Therefore, the mean change of the cell

covered area, the dry mass, the mean thickness of the cell layer

and the cell volume per minute were determined by linear

regression from averaged data of three independent experiments

(Figure 5). For the assay with unstimulated control cells, the area

increase was obtained to be LSc,control=Lt = 23.160.5 mm2/min. A

significantly enhanced area increase after EGF stimulation as

compared to mitomycin c treatment was observed

(LSc,EGF=Lt = 15.360.3 mm2/min vs. LSc,mitomycin=Lt = 4.66

0.2 mm2/min; P = 0.01; Figure 5A). Fig. 5B shows the dry mass

change per minute for untreated Caco-2 cells which was

determined to LDMcontrol=Lt = 18.360.7 pg/min. With regard

to cytokine-stimulated cells, a significantly increased dry mass change

of EGF-treated cells when compared to mitomycin c-stimulated cells

could be corroborated (LDMEGF=Lt = (12.960.5) pg/min vs.

LDMmitomycin=Lt = 5.260.1 pg/min; P,0.01; Figure 5B). Finally,

for untreated control cells, the cell layer thickness was

L�ddcontrol=Lt = 0.5160.03 nm/min (Figure 5C) while a volume

change of LVEGF=Lt~11169 mm3/min was retrieved (Figure 5D).

No statistical difference was observed regarding the change

of cell layer thickness and volume per minute between EGF- and

mitomycin c-stimulated cells (L�ddEGF=Lt = (0.1460.04 nm/min vs.

Ldmitomycin=Lt = 0.5560.02 mm/min; and LVEGF=Lt~9463 mm3/

Figure 4. Simultaneous monitoring of cellular key characteristics during epithelial wound closure illustrated by results from a
single measurement. (A) The cell covered area Sc after start of the wound healing assay is markedly decreased after stimulation with mitomycin c
as compared to untreated control cells, and EGF-treated cells. (B) Over the period of 40 h, the slope of the cellular dry mass DDM of EGF-stimulated
cell in the wound gap is slightly decreased in comparison to unstimulated control cells whereas mitomycin c-treated cell only reveal a modest
increase in cellular dry mass. (C) The average cell layer thickness �dd as well as temporal thickness increase of mitomycin c-treated and unstimulated
control was comparable while EGF-stimulated cell show a dramatically increased cell layer thickness that slightly decreased during the observation
period. (D) The cellular volume V of mitomycin c-stimulated cells was constant during the 40 h observation period. In contrast, V of unstimulated
control cells and EGF stimulated cells increased continuously and were almost doubled after 40 h. (E) The quotient of total dry mass in the gap and
mean dry mass of single cells for each condition reveals the absolute cell number n in the wound. Unstimulated and EGF stimulated cells indicated a
marked increase while mitomycin c treatment resulted in an almost constant cell number.
doi:10.1371/journal.pone.0107317.g004

Multimodal Assessment of Wound Healing by DHM
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min vs. LVmitomycin=Lt~5661 mm3/min, Figure 5C,D). Finally, it

has to be mentioned that the average values in Figure 5 for the area

change rate and the thickness change rate appear partly to be in

disagreement with the results from the single measurement in

Figure 4. This is caused by the heterogeneous growth behavior of the

Caco-2 cells in the underlying individual DHM measurements (see

illustration in Fig. 2B) and also demonstrates the need for a sufficient

number of independent measurement repetitions to achieve statisti-

cally reliable data sets under the conditions of our experiments.

Alteration of cellular thickness of stimulated and
inhibited Caco-2 cells

Finally, DHM examinations also allowed assessing spatial

changes in cellular thickness during the wound healing process.

Figure 6A shows averaged profiles through the cell thickness of

untreated control cells at 0, 20 and 40 h. Additionally, Figure 6B

depicts averaged profiles from mitomycin c-inhibited cells (left)
and EGF-stimulated cells (right) from a single representative single

experiment. Upon stimulation with EGF, cellular thickness of

Caco-2 cells was markedly increased as compared to mitomycin c-

treated cells. Figures 6C,D and Video S2 illustrate these finding by

false color coded pseudo 3D images of representative quantitative

DHM phase contrast images.

Discussion

In this study, we prove DHM to enable continuous, stain-free

monitoring of intestinal epithelial wound healing in vitro and to

provide simultaneous quantification of key cellular characteristics

such as cell volume, cell thickness, dry mass and cell density which

may help to characterize therapeutic effects of potential drug

candidates.

Proliferation and migration are two major steps required for

successful wound closure following ulceration and inflammation

[1] and numerous agents have been proposed to stimulate wound

healing [37,38]. Preclinical evaluation of potential drug candidates

in vitro is traditionally performed by the use of mechanically

Figure 5. Time constants of key cellular characteristics during epithelial wound closure. (A) While the change of cell-covered area per
minute LSc=Lt of mitomycin c-stimulated cells was significantly diminished as compared to untreated control cells, no significant difference was
detected between EGF- and untreated control cells. (B) The temporal dry mass change LDM=Lt of mitomycin c-stimulated cells was significantly
decreased as compared to EGF-stimulated and untreated control cells. (C,D) No significant differences in the temporal changes of cell layer thickness
L�dd=Lt and cellular volume LV=Lt were detected between EGF or mitomycin c-stimulated cells and untreated control cells. Data are means 6SE; *, P,
0.05; (the numerical data of the diagrams A–D are summarized in Table S2).
doi:10.1371/journal.pone.0107317.g005

Multimodal Assessment of Wound Healing by DHM
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induced wounds and healing assessed by the number of cells

beyond the wound edge [39–42]. However, this experimental

approach is limited due to its inability to discriminate migrating

from proliferating cells and the necessity of staining to identify cell

borders, which excludes repetitive measurements of migrating cells

[10,11]. While acceleration of epithelial migration benefits wound

closure [43], enhanced proliferation may be associated with

adverse side effects such as malignant transformation and

morphological changes. In our hands, quantitative DHM phase

contrast images in combination with time lapse analysis allowed

quantification of the cell-covered area as well as accurate

identification of proliferation cells by quantification of cellular

dry mass and morphology (Figure 2, Video S1). During prolifer-

ation of Caco-2 cells, a significant increase of protein amount has

been described previously [44]. Notably, the protein amount

within a single cell generates up to 80% of the total dry mass of the

cell [45] and whole protein amount of a cell population correlates

well with the number of cells [46]. By using suspended cells, we

were able to determine dry mass and volume for single cells.

Interestingly, we observed a moderate increased in dry mass upon

EGF stimulation as compared to the dry mass of unstimulated cells

while mitomycin c treatment resulted in highly significantly

increased cellular dry mass. This finding is in line with a study

by Mir et al. demonstrating that human osteosarcoma U2OS cells

double their dry mass before entering mitosis and detecting that

daughter cells possess exactly one half of the parental cell mass

[47]. The high increase in dry mass of mitomycin c-treated cells is

most likely the result of the mitosis inhibitory effect of this agent

[48]. Consequently, the wound closure of EGF-treated cells was

accelerated as compared to untreated cells and cells treated with

mitomycin c.

In [47], it is reported that the cellular dry mass is directly

dependent on the growth rate. Moreover the accuracy of optically

assessed cellular dry mass by quantitative phase imaging as well as

the possibility to quantify cell growth noninvasively by optical

imaging alone has nicely been demonstrated earlier [49].

Furthermore, non-invasive DHM measurement of dry mass can

be performed repetitively from living cells and may be continued

over a longer period of time as we demonstrate [21]. In addition,

the DHM-based approach for determination of the dry mass is

independent of the intracellular water content which may be

influenced by the osmolality of the cell culture medium or the

tested agent [50]. Importantly, simultaneous determination of

cellular dry mass changes during wound healing in vitro is not

provided by traditional approaches.

There is evidence, that wound healing is significantly influenced

by the environment, surrounding cells and tissues. Recently, it was

demonstrated that deformation and extracellular pressure can

stimulate intracellular enzyme activity [51,52] and may influence

cell proliferation and healing. For example, in a murine model,

intestinal obstruction resulted in decreased wound healing of

chemically induced mucosal ulcers [53]. Thus, beside measure-

ment of migration and proliferation, a comprehensive evaluation

of epithelial wound healing requires the assessment of cellular

morphological features such as thickness. Interestingly, cellular

thickness may also be used to evaluate proliferation since doubling

of dry mass and increase in cell size is routinely observed before

each division [54].

Recently, Pavillon et al. demonstrated that DHM may also be

used to differentiate between apoptosis and necrosis by assessment

of cellular volume [22]. While apoptosis is initially associated with

a reduced cellular volume, necrosis is characterized by a significant

increase of cellular volume prior the cell collapse. It has been

shown that alterations of cellular volume are modulated by ionic

pathways [55,56] and changes of cellular volume as assessed by

DHM were successfully linked to apoptotic rates in murine cortical

Figure 6. Alteration of cellular thickness of stimulated Caco-2 cells during wound healing. (A) Averaged profiles S through the cell layer
thickness d of control cells and (B) cell layers after treatment with mitomycin c (left) and EGF (right). (C,D) False color-coded pseudo 3D plots of
corresponding representative quantitative DHM phase contrast images.
doi:10.1371/journal.pone.0107317.g006

Multimodal Assessment of Wound Healing by DHM
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neurons in vitro [22]. Moreover, toxic effects of methanol were

detected by optical thickness measurements since altered optical

thickness of epithelial HeLa cells was indicative of pyknosis within

these cells [24]. Similarly, Kühn et al. demonstrated DHM to be

ready to use for assessment of cytotoxicity and cell viability by

determination of morphological and biomolecule (protein and

nucleic acid) changes. The authors additionally report DHM to be

a magnitude faster than automated standard fluorescence micros-

copy [57].

It should be mentioned that our results revealed that EGF-

stimulated Caco-2 cells grow with a similar dry mass rate like

untreated control cells but show different morphological features

which is indicated by a significant difference in the cell layer

thickness. These findings may be explained by the specific design

of our experiments in which EGF and mitomycin c were applied in

a single assay. Nevertheless, the obtained results also demonstrate

that the accuracy of the applied DHM method is sufficient to

detect, for example interference of different cytokine in an assay.

In summary, our results demonstrate that DHM provides

several advantages with regard to previously established methods

for monitoring of wound healing in vitro. Although the detection

of individual cells is limited as successful identification depends

strongly on the morphological properties of the individual cell

type, DHM can continuously quantify minimally invasive prolif-

eration and migration of an ensemble with only low exposure of

the sample to light. Furthermore, DHM is able to distinguish

between both processes by biophysical information that is

retrieved by optical path length changes without molecular

markers. In addition, DHM can detect cellular hypertrophy as

well as atrophy and due to the working principle of DHM, direct

monitoring of cell motility and simultaneous determination of their

key morphological characteristics can be performed. Moreover,

the use of DHM may not be limited to monitoring of mammalian

cells but was has already been shown feasible for assessment of

bacteria [58], yeast cells [59] or parasites [27]. Finally, traditional

methods often measure one or a few parameters simultaneously,

which may impair the statistical power of the experiments. In

contrast, DHM allows retrieval of several parameters in parallel.

Conclusions
In conclusion, we propose that the above-presented parameters

give significantly advanced insights into cellular characteristics

during wound healing in in vitro assays using label-free

quantifying proliferation and migration with biophysical param-

eters. As DHM is able to simultaneously assess cellular character-

istics by continuously monitoring and quantifying cell migration,

morphological alterations and proliferation, DHM can assist in the

evaluation of potential therapeutics, help elucidate the specific role

of certain cytokines for wound healing, and help dissect cellular

alterations which may be related to distinct cellular functions,

enabling investigators to perform automated, cost-efficient and

minimally invasive quantitative assays with minimized sample

interaction in a flexible and more sophisticated way.

Materials and Methods

Cell culture
Caco-2 cells (passages 22-28) (purchased from ATCC, Manas-

sas, VA, USA) were cultured in Dulbecco’s Modified Eagle

Medium (DMEM, Gibco-Invitrogen, Cergy Pontoise, France)

supplemented with 20% foetal bovine serum (FBS; Gibco-

Invitrogen), 1% non-essential amino acids and 1% penicillin/

streptomycin in a 5% CO2, 95% humidity environment at 37uC.

Cells were seeded on ibidi dishes (35 mm with high culture-insert

coating) at a density of 46105 cells/cm2 for wound healing assay.

Three days after seeding, the medium was changed every third

day. Experiments were conducted on the 4th day of culture.

Cell layer wound assays
In vitro wound assays were performed using IBIDI Culture-

Inserts according to Shih et al. [60]. Briefly, when confluent

monolayers of Caco-2 cells were established on ibidi dishes

(35 mm with high culture-insert coating), cells were washed twice

with phosphate buffered saline (PBS) to remove residual cell

debris. In a first set of experiments, untreated Caco-2 cells were

investigated to prove feasibility of DHM to accurately monitor

wound healing and determine morphological cell characteristics.

Furthermore, to evaluate the ability of DHM to detect alterations

in wound healing behaviour upon stimulating or inhibiting

cytokine exposure, cells were treated either with epidermal growth

factor (EGF) [48] or mitomycin c [34] in a single assay. In detail,

wounded monolayers were then cultured for 24 h in fresh serum-

deprived medium (0.1% FBS) supplemented with 20 ng EGF/ml

serum [61] or 2 mg mitomycin c/ml serum. Cells treated with

medium alone served as controls. Subsequently, culture inserts

were removed and holograms of the remaining gaps were taken for

40 h. Migration and proliferation were measured as described

below. For examination of in vitro wound healing assays with

DHM, the cell culture medium was replaced by HEPES (4-(2-

hydroxyethyl)-1-piperazineethanesulfonic acid) buffered medium

(20 mM HEPES) and Caco cells were observed in time-lapse series

for 40 h with the experimental setup described in section

‘Quantitative phase imaging with digital holographic microscopy’.

Digital holograms were recorded every 30 min. The obtained

quantitative DHM phase contrast images were further evaluated

to quantify cell proliferation and migration as described in section

‘Cell proliferation rates during wound healing’. Experiments were

repeated in triplicate as a minimum.

Quantitative phase imaging with digital holographic
microscopy

An inverted microscope (iMIC, Till Photonics, Gräfelfing,

Germany) with an attached DHM module based on a principle

described in [16] was applied for bright field imaging and

quantitative DHM phase contrast imaging. Figure 1 shows the

scheme of the experimental setup and illustrates the utilized off-

axis DHM configuration. The coherent light source was a

frequency-doubled Nd: YAG laser (l = 532 nm, Coherent Com-

pass 315M, Coherent, Luebeck, Germany). The cell cultures were

observed in special Petri dishes for wound healing observations

(ibidi m-Dish with culture-Insert, ibidi GmbH, Munich, Germany).

The sample was illuminated with laser light in transmission (object

wave) and imaged by a microscope lens and a tube lens on a

charge-coupled device camera (DMK 41BF02, The Imaging

Source, Bremen, Germany). The object wave was superimposed

with the slightly tilted reference wave for the generation of off-axis

holograms which were recorded by the camera sensor and

transferred to an image-processing system using custom built C++
based hologram acquisition software. For imaging of adherent cells

during wound healing a 106 microscope lens (Zeiss EC Plan-

Neofluar 1060.3, NA = 0.3) was utilized while suspended cells

were observed with a 206 microscope lens (Zeiss LD Achroplan

20x/0.4 Korr, NA = 0.4).

The reconstruction of the digitally captured holograms was

performed by spatial phase shifting reconstruction in combination

with optional holographic autofocusing as described with details

elsewhere (see [16,62,63] and included references). The resulting

quantitative phase images quantify the change of the optical path
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length delay caused by thin mainly transparent (phase) objects

such as the investigated living cell cultures. The cell induced phase

contrast DQ depends on the cell thickness d, the integral cellular

refractive index ncell, the refractive index nmedium of the cell culture

medium [16,18] and the wavelength l of the laser light used in the

DHM system:

D x,zð Þ~ 2p

l
(ncell{nmedium)d x,zð Þ ð1Þ

Determination of the cellular refractive index and the cell
volume

The determination of the cell thickness with Eq. 1 requires

information about the integral cellular refractive index ncell. In

addition, ncell quantifies the cell density as it is directly related to

the intracellular solute concentration [64]. Also the cellular

volume (V) can be related to the cellular response to drugs. Thus,

ncell and V were analyzed for inhibited and stimulated Caco-2 cells

as well as for untreated control cells. For determination of ncell and

V, cells were detached (trypsinized) and suspended in cell culture

medium with an osmolality of 320 mOsmol/kg in petri dishes

(ibidi m-dishes GmbH, Martinsried, Germany). For each sample,

digital holograms of N = 89 selected single cells with spherical

appearance were recorded. From the resulting quantitative DHM

phase contrast images, the integral cellular refractive index ncell

and V were determined by numerical fitting of Eq. (1) as described

with details previously [65].

Analysis of cellular growth and thickness with
quantitative phase microscopy

In order to analyze cellular growth and morphology changes,

three parameters were calculated from quantitative DHM phase

contrast images. First the area Sc covered by the cells was

determined in quantitative DHM phase images by image

segmentation using the free software cell profiler (www.

cellprofiler.org, [66]. Then the averaged phase contrast D
caused by the cells in the area Sc was calculated.

In addition, from D and Sc the cellular dry mass DM was

retrieved [29,30]:

DM~
10l

2pa

ð

Sc

D ds~
10l

2pa
D Sc ð2Þ

following approaches as described in [47,59]. For the parameter a,

the value 0.002 m3/Kg was estimated.

Furthermore, from D and ncell and nmedium and Eq. (1) the

average thickness �dd was determined from Eq. (1):

�dd~
l

2p

1

(ncell{nmedium)
D ð3Þ

Statistical analysis
Data were analyzed using SPSS 20.0 (IBM). Results are

expressed as means 6 standard error. Using the Mann-Whitney

U-test and the x-squared test appropriate comparisons between

different data sets were performed. P-value ,0.05 was considered

to be statistically significant.
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