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The response to a DNA double-stranded break in mammalian cells is a process

of sensing and signalling the lesion. It results in halting the cell cycle and

local transcription and in the mediation of the DNA repair process itself.

The response is launched through a series of post-translational modification

signalling events coordinated by phosphorylation and ubiquitination. More

recently modifications of proteins by Small Ubiquitin-like MOdifier (SUMO)

isoforms have also been found to be key to coordination of the response

(Morris et al. 2009 Nature 462, 886–890 (doi:10.1038/nature08593); Galanty

et al. 2009 Nature 462, 935–939 (doi:10.1038/nature08657)). However our

understanding of the role of SUMOylation is slight compared with our

growing knowledge of how ubiquitin drives signal amplification and key

chromatin interactions. In this review we consider our current knowledge of

how SUMO isoforms, SUMO conjugation machinery, SUMO proteases and

SUMO-interacting proteins contribute to directing altered chromatin states

and to repair-protein kinetics at a double-stranded DNA lesion in mammalian

cells. We also consider the gaps in our understanding.

This article is part of the themed issue ‘Chromatin modifiers and

remodellers in DNA repair and signalling’.
1. Overview of the SUMO system
The Small Ubiquitin-like MOdifier (SUMO) system has relatively few enzymatic

components, but unlike the ubiquitin system, there are several modifier isoforms

(in mammals: SUMO1–5). SUMO proteins are approximately 12 kDa in size and

have similarities to the three-dimensional structure of ubiquitin; however they

share less than 20% amino acid identity and carry a different surface charge dis-

tribution [1]. Mature SUMO2 and SUMO3 are near identical (referred to as

SUMO2/3) and share 50% identity with SUMO1. All SUMO proteins are

expressed as an immature pro-form which must be cleaved prior to conjugation

(figure 1). Whether SUMO4 is processed to a mature form [5–7] and whether

the recently described SUMO5 is expressed [8] or a pseudogene [9] remains con-

troversial. SUMO isoforms are conjugated to targets through three enzymatic

steps: activation, involving the heterodimer E1 enzyme (SAE1 þ SAE2); conju-

gation, involving the E2 enzyme (UBE2I/UBC9); and substrate modification,

through the cooperation of the E2 with E3 protein ligases (figure 1). PIAS type

SUMO E3 enzymes, which possess an SP-RING motif similar to the RING

domain of many E3 ubiquitin ligases, are the best understood members.

SUMOylation is most frequent at a lysine within cKxE/D-type motifs

(figure 2) (where c represents a small hydrophobic amino acid and x any

amino acid) which are directly recognized by the SUMO E2 UBC9 [12]. SUMO-

ylation can be in the form of conjugation of a single SUMO to an acceptor

lysine, or as in the ubiquitin system in the form of chains as polySUMO. These

chains are generated on SUMO2/3 which, unlike SUMO1, possesses a cKxE-

type motif. SUMOylation can be affected by local environment; many SUMO con-

sensus sites are embedded within patches of negatively charged amino acids [13].

Additionally, alterations in local charge, induced by phosphorylation of Ser/Thr
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Figure 1. The SUMO cycle. SUMO1/2/3 isoforms are processed from their immature ( pro)-forms into mature SUMO exposing the C-terminal GG motif. SENP1 is
proposed to be the dominant SUMO maturing protease, although other SENPs have this ability in vitro [2]. Heterodimeric SUMO E1 enzyme adenylates the
C-terminal diglycine followed by thioester formation with a Cys residue within the SAE2 subunit of the SUMO E1. The thioester is then transferred to a Cys residue
within the E2 enzyme UBC9. SUMO can be conjugated directly to a Lys residue or residues on target proteins through the E2, or with the aid of SUMO E3 ligase. The
E3 improves conjugation by either recruiting E2�SUMO to a substrate or enhancing SUMO discharge from the E2 to the substrate. It is not yet clear if SUMO
polymers are formed sequentially or if specialized E3 elongases (E4 enzymes) such as ZNF451 extend existing SUMO monomers [3,4]. SUMO polymers recruit
multi-SIM-containing ubiquitin E3 ligases such as RNF4 and RNF111 to promote ubiquitination of the SUMO. This ubiquitinated SUMO can target the substrate
for proteasome degradation. At least two de-ubiquitinating proteins, USP11 and USP7, are able to remove ubiquitin from SUMO polymers. SUMO polymers are
disassembled via SENP6 and SENP7, while monomeric SUMO is deconjugated by SENPs1/2/3/5. Free SUMO released from substrates is then available to feed
back into the conjugation cycle.
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SUMO Interacting Motifs (SIMs) (right).
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residues, provide further control over target SUMOylation

[14–16]. Under stress conditions SUMOylation frequently

occurs at non-consensus lysines on target proteins [11].

In contrast to the array of proteases in the ubiquitin system

just nine proteins have been identified with ability to process

SUMO conjugates. In mammalian cells the two main classes

of sentrin (SUMO)-specific proteases are related to the

yeast Ulp1 (SENP1-3 and SENP5) and Ulp2 (SENP6 and 7)

SUMO proteases. These enzymes differ in their maturation

(C-terminal hydrolase) versus isopeptide cleavage activity

and also in their preferences for different SUMO paralogues.
Divergent amino termini of SENP proteins also result in

differing sub-cellular localizations thereby restricting substrate

access (reviewed in [2]). In addition a further class of proteases,

named DeSI-1/2 (DeSUMOylated Isopeptidase 1/2) [17],

with isopeptidase but little maturation capacity [18], and the

previously assigned ubiquitin-specific protease (USPL1),

which locates to Cajal bodies, have been revealed as SUMO

isopeptidases [19]. Dramatic increases in SUMOylation profiles

are reproducibly observed when SENP enzymes are blocked.

For example, large increases in protein SUMOylation are

observed in cells expressing mutants of SUMO that are resist-

ant to SENP interaction [20], while heat shock inactivates

SENP catalytic domains [21] and results in global increases

in protein SUMOylation [22]. Thus SUMO proteases seem

constitutively active under resting conditions and SUMO

homeostasis appears to favour deSUMOylation.

SUMO can act as a docking signal promoting protein–

protein interactions (reviewed in [23]). Various iterations of

short hydrophobic patches known as SIMs (SUMO-Interacting

Motifs) have been identified with a common consensus of

[c]-[c]-[x]-[c] where c most commonly represents isoleucine,

leucine or valine [10,24–26] (figure 2). This peptide interacts

with a groove on SUMO isoforms formed between the b2

strand and the first a-helix (reviewed in [27]). Two additional

domains have been shown to interact with SUMO. The MYM

class of zinc finger found in ZMYM3 and ZMYM2 interacts

with the same surface patch on SUMO as SIM motifs [28].

The MYM fingers of ZMYM2 are important for interaction

with HDAC1 within the LDS1/Co/REST/HDAC1 complex
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and are known to interact with multi-SUMOylated proteins

[29,30]. Secondly the ZZ domain, found in HERC2 and acetyl-

transferase CBP, has also been shown to interact with SUMO1,

but using a different surface from SIM motifs [31,32]. Thus

multiple domains could interact with single SUMO moieties.

It seems likely that additional SUMO binding domains

remain to be identified.

Finally molecular mimicry of SUMO in the structurally

related SUMO-like domains (SLDs) has the ability to disrupt

and co-opt aspects of the SUMO conjugation system. The

yeast RAD60 carries three SLD domains each able to interact

with different proteins in the SUMO-conjugation machinery

[33]. RAD60-SLD2, although bearing surface charge different

from SUMO has a similar face for interaction with the SUMO

E2 and through this face may direct SUMOylation [33]. Simi-

larly mouse Nip45 SLD2 interacts with UBC9 and inhibits the

elongation of poly-SUMO chains [34]. The SLDs of UAF1, a

partner protein to many de-ubiquitinating enzymes, is suffi-

ciently similar to SUMO to interact with the SIMs in

RAD51AP1 and in FANCI [35,36].

2. The fate of SUMOylated proteins
The catalogue of the mammalian cellular SUMO proteome,

including targets in the DNA damage response (DDR), has

expanded in recent years thanks to the efforts of several

researchers using improved mass-spectrometry approaches

to overcome the difficulties of mapping endogenous SUMO

conjugation sites [16,22,37–44]. However for most individual

proteins whether the modification has a functional role and

what that role might be are not known. SUMO conjugation

can block other PTMs at particular lysines, for example

p53-K386 SUMOylation blocks its acetylation and subsequent

DNA binding [45]. More often in targeted mutation exper-

iments SUMO conjugation sites are found to be redundant

and loss of a single SUMOylation site, with some exceptions

(e.g. RanGAP [46], Sp3 [47], yeast PCNA (reviewed in [48])),

has little impact on target-protein SUMOylation or target-

protein function [26]. Nevertheless, SUMOylation can impact

the function of a target protein through directing intra- or

inter-molecular contacts via SIMs. Where SIM and SUMOyla-

tion site are found within a protein, SUMOylation can alter

protein conformation. The most prominent example of this is

thymine-DNA glycosylase, which recognizes mismatches in

the process of base excision repair. SUMO conjugated at a

single C-terminal lysine interacts with the nearby SIM

promoting formation of a protruded a-helix within the catalytic

domain, which is associated with reduced DNA binding

[49–52].

When SUMOylation is restricted to a local area, such as at a

DNA double-strand break (DSB), the SUMOylation ‘spray’ can

promote protein group modification. This was first described

in the yeast DDR, in which a SUMO conjugation wave brought

about by the interaction of the E3 SUMO ligase Siz2 with DNA

and Mre11 results in modification of protein groups promoting

SUMO-SIM interactions between members of those groups

[26,53]. Similarly in mammalian cells treatment with the

alkylating agent methyl methanesulfonate (MMS) results in a

network of SUMOylated proteins centred on PARP1 and his-

tone acetyl transferase P300/CBP [11,41]. The ligase(s) that

‘spray’ this network are not yet identified.

Alternatively the interaction between SUMO-conjugated

target and SIMs of a partner can result in the degradation of
the target protein through the activity of SUMO targeting Ub

(ubiquitin) ligases (STUbls), such as Arkadia/RNF111 or

RNF4 (orthologue of S. pombe Rfp1 and Rfp2 and Saccharomyces
cerevisiae Slx5/8 proteins) [54–56]. This class of protein inter-

acts with the SUMO-modified proteins through tandem SIM

motifs and directs the modification of the protein or the conju-

gated SUMO. STUbls [57,58], and possibly other ligases [59],

may generate hybrid SUMO-Ub chains, indeed Ub is a signifi-

cant target of SUMOylation [41]. Intriguingly the STUbl RNF4

is predominately monomeric and inactive in cells, but is acti-

vated by the presence of SUMO chains. On binding its

tandem SIMs, SUMO chains promote RNF4 dimerization

and ligase activity [60]. Thus RNF4 may ‘read’ highly SUMO-

ylated proteins.

Functionally RNF4-mediated ubiquitination is often

coupled to VCP/p97 (CDC48) activity. VCP is a multimeric

ATPase that, with cofactors, is able to extract ubiquitinated pro-

teins from membranes and protein complexes and direct them

for proteasomal-mediated degradation (reviewed in relation to

DSBs in this issue by Kristijan Ramadan and co-workers [61]).

Deubiquitinating enzymes with the ability to remove Ub from

SUMO-Ub chains include USP11 [57] and USP7 [62] although

the degree to which these enzymes have a particular specificity

for Ub conjugated to SUMO, rather than to another substrate, is

not yet clear. In yeast a cofactor of the VCP homologue CDC48

called Ufd1 also binds SUMO [63]. This protein contributes to

the displacement of SUMOylated proteins from DNA and in

particular acts to restrain Rad51/Rad52 interactions [64]. Ufd1

is conserved in mammalian cells, and may perform a similar

role [64], so that it is possible SUMOylation directs protein

extraction without the need for a Ub conjugate intermediate.

While target-protein interaction with, and activity

of, SUMO ligases versus SUMO proteases determine a pro-

tein’s SUMO conjugation status, what then defines the fate

of a SUMO modification is not yet obvious. Since the

mediators of these fates chiefly interact with the same

groove on SUMO isoforms, SIM-containing partners are

likely to compete for SUMO on the modified protein, predict-

ing that local partner proximity and relative concentrations

are likely to regulate outcome. In addition some interactions

may be a matter of degree, where high levels of

mono-SUMOylation or polySUMOylation, not met with a

competing, and ‘protective’, SIM, may favour interaction

with STUbls resulting in protein extraction and loss (pro-

posed model in figure 3)
3. The SUMO system in the DNA damage
response

At micro-laser lines of DNA damage, prominent UBC9, PIAS1

and PIAS4 SUMO E3 ligase recruitment is observed together

with weak SUMO E1 (SAE1) accumulation [65]. Moreover,

SUMO1 and SUMO2/3 are detected in irradiation

(IR)-induced foci (IRIF), laser-induced damage, and Lac

arrays harbouring DSBs, and can be precipitated from

damaged chromatin [65–70]. SUMO recruitment at damaged

sites is dependent on the SUMO E3 ligases PIAS1/4 and on

their DNA binding SAP domains [65]. In a parallel pathway

the polycomb repressor complex 1 (PRC1) component and

SUMO E3 ligase CBX4 are recruited through poly(ADP-

ribose) polymerase (PARP) activity to sites of DNA damage

[70]. Cells depleted for PIAS1 or PIAS4 have defects in the
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two main mechanisms of DSB repair, homologous recombina-

tion (HR) and non-homologous end-joining (NHEJ) and show

sensitivity to and cisplatin [65,66], while CBX4 is also required

for cellular resistance to IR [70]. Thus at least two pathways of

SUMOylation are essential components of DSB repair.

It is possible that specific SUMO isoforms have particular

roles at different portions of the response. Several reports

have suggested that earlier arriving components of the

DDR are modified by SUMO1 through PIAS4, and later arriv-

ing ones by SUMO2/3 through PIAS1 [31,65,71]. In one

study SUMO2/3 preceded SUMO1 [67], whereas others

observed simultaneous accumulation [66,68], and CBX4 loss

reduces both SUMO1 and SUMO2/3 accumulations at

DSBs [70].

The STUbl RNF4 plays multiple roles in DSB repair. Its

recruitment to sites of DSBs is dependent on its SIM motifs,

on SUMO2/3 and on PIAS1/4 SUMO ligases [68,72], and it

can be detected at laser lines within seconds of exposure, per-

sisting for several hours [68,69,72,73]. The presence of several

DNA repair factors improves RNF4 localization to breaks,

including SUMO targets MDC1, RNF8, 53BP1 and BRCA1

[68,72], whereas RNF4 depletion results in the persistence of

SUMO isoforms at laser line-induced damage [72]. RNF4,

and its yeast orthologues, interact directly with nucleosomes

and DNA and have a role in promoting ubiquitination of

H3 and telomere repair, but whether this activity also relates

to a role in global DSB repair is not known [74,75]. It is

possible RNF4 is primed for chromatin substrates in this way.

Intriguingly cycles of SUMO deconjugation appear critical

to the DDR. Expression of SUMO mutants that cannot be

deconjugated are disruptive to DSB repair [76]. Moreover,

knockdown of individual SENP enzymes, with the exception

of SENP3, each results in specific alterations in HR/NHEJ effi-

ciencies measured after a DSB of integrated reporters [76].

Some enzymes are likely to have dramatic impacts on SUMO

availability, either through directing SUMO maturation or by

allowing the release of free SUMO from conjugates. For

example loss of the Ulp2-related protease SENP6 dramatically

increases the amount of high molecular weight SUMO2/3 con-

jugates and enlarges SUMO in promyelocytic leukaemia

protein (PML) nuclear bodies, suggesting it is responsible for

a large proportion of cellular SUMO2/3 editing [77]. The
requirement for SENP6 in assays of NHEJ and HR repair is res-

cued by supplying exogenous SUMO isoforms, suggesting

SUMO supply through SENP6 activity is required in the

DDR [76]. Other enzymes are likely to restrain SUMOylation

of a restricted subset of substrates. For example the requirement

in HR repair for the Ulp2-related protease SENP7 cannot be res-

cued by increased SUMO supply and instead SENP7 has a role

in the chromatin relaxation required to allow DNA repair [76].

Non-redundancy and clear differences in localization and iso-

form specificity suggest further investigation will identify

specialist functions for SUMO proteases in DNA repair.
4. SUMO repression of chromatin at DSBs
Chromatin context is critical for DNA repair outcome and chro-

matin-related ontologies are consistently highly ranked in

SUMO proteomes, with many of the most highly SUMOylated

proteins having roles in chromatin architecture. SUMO modifi-

cation contributes to transcriptional repression in several

contexts [78–80], and SUMO is central to the maintenance of

heterochromatin [81,82]. Moreover, SUMO is found coupled

to multiple repressor complexes, in which SIM-bearing pro-

teins are also enriched [83]. SUMOylation induced by DNA

damage can influence patterns of gene expression through

specific factors such as HIC1 (Hypermethylated In Cancer 1)

[84–86]. Further, SUMO is part of the repressive chromatin

environment associated with the rapid and transient recruit-

ment of complexes to chromatin around DSBs. These include

NuRD and HDACs, the Suv39H1/KAP1/HP1 complex,

lysine demethylases and polycomb repressor complexes

(figure 4). Together these induce histone deacetylation and

increased H3K9me2/3 and increase nucleosome packing.

This initial repressive state is thought to prevent inappropriate

chromatin movement, to maintain the relationship between

DNA ends, and to contribute to local transcriptional silencing

(reviewed in [87]). However for DNA repair to proceed an open

chromatin structure is needed and overcoming SUMO-

mediated repression is part of the transition to a permissive

chromatin environment [88]. Examples of SUMO in chromatin

repression and release are described below.

SUMOylation of the polycomb repressor complex 1 (PRC1)

contributes to its recruitment to sites of DNA damage [70].

SUMOylation of the PRC1 Ub ligase component BMI1 at K88

in response to IR requires the PRC1 component and SUMO

ligase CBX4. BMI1, together with its partner RING1A/B, func-

tions as a Ub ligase, and ubiquitinate H2A at K119 both at

promoters and at sites of damage [89–91]. At damage sites it

contributes to local transcriptional repression [92–94] and

influences DDR Ub-signalling [90,95]. PRC1 recruitment had

been thought to be hierarchical though the methylation of chro-

matin via the PRC2 complex; however recent findings indicate

that PRC2 can be recruited by PRC1 modification of H2A-

K119-Ub [96,97]. Thus an initial recruitment of PRC1 promoted

by PARP activity and SUMO [70] could seed further spreading

of the complex at sites adjacent to DSBs.

Methylation on H3K4, H3K36 and H3K79 is generally

associated with active gene expression [98] with H3K4me3/2

residues marking the transcriptional start sites of actively

transcribed genes. Intriguingly the H3K4m2/3 demethylases

JARID1B and JARID1C are both SUMOylated in cells exposed

to MMS but with differing consequences. SUMOylation

of chromatin localized JARID1B is associated with its
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RNF4-mediated proteasomal degradation. In contrast

SUMOylation of the nucleoplasmic JARID1C coincides with

its chromatin recruitment and with global demethylation of

H2K4me3 and transcriptional downregulation. In addition

the H3K9me3 mark, increased on DNA damage [99] and

associated with transcriptional repression, may be associated

with SUMOylation of MBD1 and SETDB1 [41].

One of the most abundantly SUMOylated proteins in

human cells is the transcriptional repressor and heterochroma-

tin nucleator protein KAP1/TRIM28 ([11] and figure 4). KAP1

possesses auto-SUMO ligase activity within its PHD domain

and the majority of its SUMOylated lysines are found in the

C-terminal bromodomain (figure 4) [100]. SUMOylation of

KAP1 promotes interaction with the SIMs of the NuRD subunit

CHD3 and the methyltransferase SETDB1 [100]. This recruit-

ment promotes histone deacetylation and chromatin
remodelling via the HDACs and CHD helicases contained

within the NuRD complex and H3K9 trimethylation by

SETDB1 which in turn promote gene silencing and chromatin

compaction. KAP1 interacts with HP1a, which binds to tri-

methylated H3K9 [101–103] so that the propagation of the

H3K9me3 along chromatin attracts additional HP1a proteins

which then recruit additional KAP1 molecules, allowing

spreading of heterochromatin, or a heterochromatin-like

state [104].

KAP1 localizes to sites of damage [105], and initially

spreads a repressive environment along tens of kilobases

[106]. Critically, the repressive influence of the SUMOylated

protein in this context is then attenuated by the DDR. This

occurs through activation of the Tip60 acetylase and activation

of ATM. ATM activity evicts the H3K9me2/3 methylase

SUV39H1, and releases the repressive HP1/KAP1 complex



rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

372:20160281

6
[106] via phosphorylation of chromatin- associated KAP1 at

Ser824 adjacent to its bromodomain [107]. This phosphorylation

event also disrupts the SUMO-SIM interaction with CHD3 of

the NuRD complex. The subsequent release of CHD3, like

depletion of KAP1 itself [108], promotes chromatin relaxation

and allows DNA repair [107]. Heterochromatin contains

more repressive complexes and exhibits slower DSB repair

(reviewed in [109]) and the impact of ATM-mediated KAP1

phosphorylation on repair kinetics is most dramatically

observed in these more condensed regions [107,110,111].

Such a finely balanced mechanism suggests perturbation of

SUMOylation at chromatin might impact chromatin state and

subsequent DNA repair proficiency. Indeed cells depleted of

the chromatin-associated SUMO protease SENP7 fail to relax

chromatin following DNA damage [76]. Consequently, this

enzyme is required for resistance to DNA damaging agents

and to promote HR repair [76]. Like KAP1, SENP7 also inter-

acts with HP1a [76,112] and is enriched in heterochromatin

[112]. It acts to deSUMOylate KAP1 [76] and HP1a [112,113].

Chromatin association of the NuRD component CHD3

is increased in cells without SENP7 and importantly the

requirement for SENP7 in promoting chromatin relaxation,

HR-repair and resistance to IR is diminished if CHD3 is

depleted [76]. Thus it appears that SENP7 is needed to restrain

KAP1-CHD3 interaction by cleaving KAP1-SUMO conjugates.

Accessibility in euchromatin (transcribed genes) is severely

reduced without SENP7, but DNA damage markers also persist

for longer in regions of heterochromatin [76], suggesting it too is

critical to DSB repair in heterochromatin. KAP1-SUMO is also

counteracted by the RNF4-VCP pathway. Both RNF4 and

VCP/p97 interact with pS824-KAP1-SUMO and RNF4 pro-

motes the degradation of SUMOylated KAP1 [114,115],

providing a further mechanism of chromatin derepression.

Thus the promotion of repressive chromatin by SUMO

interactions appears initially co-opted in the DDR, to pro-

mote the transient accumulation of repressive complexes

and to mediate DSB-associated transcriptional repression.

However it must then also be overcome to permit adequate

repair. Perhaps consistent with this notion is the finding

that SUMO conjugation sites in many proteins involved in

chromatin organization and modification are lost following

MMS treatment [41]. Thus widespread deSUMOylation or

SUMO-mediated degradation of chromatin-associated targets

appears a significant, and still largely unexplored, cellular

response to DNA damage.

5. SUMO in non-homologous end-joining
Throughout the cell cycle the most prominent form of DSB

repair is the error-prone pathway of non-homologous end-

joining (NHEJ). This process is reviewed extensively elsewhere

[116], but in simplified form the Ku70/80 heterodimer initiates

end binding, encircling the DNA, and recruits the DNA-PK cat-

alytic subunit. Complex ends are then trimmed to blunt ends

by proteins such as Artemis or PNKP and the XRCC4/XLF/

PAXX complex stabilizes DNA ligase IV which joins the

DNA ends together. Several NHEJ factors are SUMO modified

in mammalian cells (figure 4) but any influence on function

is understood for just a few factors. XRCC4 SUMOylation is

linked to its nuclear localization [117]. Cells expressing a

form of XRCC4 with an arginine at the K210 SUMOylation

site show a cytoplasmic localization coupled with sensitivity

to IR and poor V(D)J recombination. Importantly fusing
SUMO to the C-terminus restores normal localization of

XRCC4 and radio-resistance [117]. In yeast, SUMOylation

enhances the DNA association of Ku70 [118] and in mammalian

cells increased expression of SUMO conjugation components

causes Ku70 stabilization, although this effect may be indirect

[119]. Nevertheless, a role for SUMO interactions in mammalian

NHEJ is suspected as expression of SIM-peptides can block

NHEJ and increase cellular radio-sensitivity [120]. These pep-

tides immunoprecipitate SUMO-Ku70, suggesting an as yet

unidentified interaction with modified Ku70 may be significant

in the repair process [120]. Perhaps consistent with these obser-

vations is the finding that loss of RNF4, which bears tandem SIM

motifs, reduces NHEJ repair outcomes through an as yet

unknown pathway [72,115]. Ku70/Ku80 encircle DNA ends

[121], where they prevent extensive resection, and promote

DNA-PKcs (DNA-dependent protein kinase, catalytic subunit)

recruitment. However after DNA ligation Ku70/80 rings

remain locked on the DNA and are deleterious unless removed

[122]. RNF8, RNF138 and SCF ubiquitin ligases have been impli-

cated in the disengagement of Ku80 [123–125] and VCP/p97

and its ubiquitin binding receptors have been shown to be

required for extraction of both Ku70 and Ku80 from damaged

DNA [126]. As each Ku subunit independently encircles the

DNA [121], an attractive, but as yet untested, model for removal

of Ku70 is its SUMO-mediated Ub targeting and subsequent

extraction.

6. SUMO in DNA damage response signalling
DNA double-stranded breaks (DSBs) are also recognized by a

signalling complex composed of NBS1, RAD50 and MRE11A

(MRN). MRN helps to recruit the kinase ATM which phosphor-

ylates multiple components of the DSB pathway, including the

histone variant H2AX at Ser139 [127]. MDC1 is recruited to

phosphorylated H2AX through its BRCT domain and is critical

to subsequent DSB signalling [128–131]. It begins a Ub signal-

ling cascade involving the E3 Ub ligases RNF8/RNF168, Ub

conjugating enzyme, UBE2N/UbcH13, and two factors that

promote RNF8 interactions, HERC2 and JMJD1C (reviewed

elsewhere [132]). SUMO-dependent recruitment of the PRC1

complex brings the BMI1 : RING1A/B Ub ligase [70] which

then contributes to activation of the Ub signalling pathway

[90,92,95,133] (although its recruitment has been disputed

[134]). This Ub cascade results in the recruitment of the

BRCA1-A complex and 53BP1.

MDC1, HERC2 and RNF168 are SUMO modified by PIAS4

following DNA damage [31,40,43,68,71]. The demethylase

JMJD1C which binds to RNF8 and MDC1 [135], the Ub E2

enzyme UBE2N/UbcH13 which cooperates with RNF8 and

RNF168, and RNF8 itself are also SUMOylated at multiple

sites, although it is not known which ligases are responsible,

nor what function their SUMOylation may have [15,31].

These proteins could be seen as a protein group, co-located

in time and space and therefore an example of the SUMO

spray model [53]. However, in a departure from that model,

SUMOylation of at least some individual components has

distinct functional outcomes.

MDC1 SUMOylation drives RNF4 interaction after

exposure to IR [68,71]. A single lysine, K1840, appears to be

the major site of MDC1 SUMOylation [71] and in cells without

RNF4 or PIAS4, or expressing K1840R-MDC1, the protein

shows slowed clearance from sites of damage [71,72]. More-

over, K1840R-MDC1 fails to rescue radio-sensitivity of
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MDC1-deficient cells. The RNF4-mediated ubiquitination of

SUMOylated MDC1 is antagonized by the DUB ATXN3

which is recruited to DSBs in a SUMO-dependent manner.

ATXN3 therefore acts as a brake on MDC1 turnover at DSB

which is essential for proper downstream signalling and

HR/NHEJ repair efficiencies [73]. The consequences of

prolonged association of MDC1 at damage sites is reduced

HR repair, potentially through an increased 53BP1 association

[71]. In contrast SUMOylation of HERC2 relates to the pro-

motion of an inter-molecular structural interaction, in which

the ZZ-type zinc finger in HERC2 is suggested to mediate

interaction with SUMO-modified HERC2, resulting in either

a conformational change or novel interaction that regulates

its ability to interact with RNF8 [31]. In yet another functional

outcome the SUMO E3 ligase PIAS4 supports RNF168 protein

stability and promotes its transcription [31].

The RNF8/RNF168 Ub cascade results in the recruitment

of the BRCA1-A complex to sites of DSBs through the K63-Ub

linkage and SUMO sensor RAP80, a component of the

BRCA1-Acomplex [136–142]. In addition to a dual Ub-interacting

motif (UIM) [139,143] RAP80 carries a SUMO-interacting

motif (SIM). These bind Ub-SUMO hybrid chains with high

affinity [143]. Both the SIM and UIM domains are required

for efficient recruitment of RAP80 to DSBs immediately

after damage and confer cellular resistance to ionizing radi-

ation [67]. The K63-Ub-SUMO bound by RAP80 is reported

to be provided by RNF4 [58], which is capable of generating

K63-linked Ub chains [144]. Further work is needed to estab-

lish the degree to which SUMO binding mediates the

interaction of RAP80 with the K63-Ub chains generated by

RNF8/168, which are also required for RAP80 recruitment

[145], and whether SUMO-Ub hybrids occur on any specific

substrate(s).

BRCA1 and 53BP1 recruited to sites of DSBs are cell cycle

specific gate-keepers to the critical HR step of DNA resection,

where the 50 ends of the DSB are subject to nuclease proces-

sing. 53BP1 acts to restrain resection in G1, and BRCA1 acts

to promote it in late S and G2 [146–149]. BRCA1 is SUMO-

ylated in response to IR and other DNA damaging agents

[41,65,66,68] through PIAS1/4 SUMO ligases at several sites

including at its N-terminus (figure 4). SUMOylation is associ-

ated with increased BRCA1 : BARD1 Ub ligase activity

in vitro [66] although whether this increased activity relates

to SIMs in Ub conjugating enzymes, or is structurally related

to a similar potentiation of ligase activity induced by auto-

ubiquitination [1,150], is not clear. The functional role of the

Ub ligase activity of BRCA1 in DDR has for many years

been controversial, but recent reports suggests it promotes

Ub modification of the extreme C-terminus of H2A [151],

which in turn encourages the recruitment and activation of

the remodeller SMARCAD1 resulting in increased long-

range DNA resection [95,152]. Whether SUMOylation of

BRCA1 : BARD1 also potentiates resection remains to be

seen and the relationship of BRCA1 SUMOylation with the

different BRCA1 complexes, of which only one is expected

to promote resection, is currently unknown. SUMOylated

BRCA1 is a substrate for RNF4 [69], suggesting its clearance

also requires SUMOylation.

53BP1 is a reproducible substrate of SUMO modification

on DNA damage [65,68] with several sites mapped

(figure 4). Currently there are no reports of mutation of the

sites, or SUMO fusion, or any impact of RNF4 or VCP/p97

directly on 53BP1. Loss of PIAS4 reduces 53BP1 localization
[65], but this may be an indirect effect through the ligase’s

impact on RNF168 [153]. 53BP1 acts to promote NHEJ and inhi-

bit resection of DNA ends through its effector proteins, PTIP,

RIF1, Artemis and Rev7. These have not yet been identified

as SUMOylated and the role, if any, of 53BP1 SUMOylation

awaits investigation.
7. SUMO in resection and recombination
In late S-phase and G2 stages of the cell cycle error-free DNA

repair is possible using the sister chromatid as a template for

HR repair. The 50 resection of the double-stranded DNA to pro-

duce 30 overhangs, required for HR, employs the enzymatic

activities of Mre11-CtIP, EXO1 and BLM/DNA2 (reviewed

extensively elsewhere [154]). The single-stranded DNA

(ssDNA) produced is first bound by RPA, and then exchanged

by the action of BRCA2 for RAD51. Recent data suggest an emer-

ging role for SUMO in this process, as most proteins with a direct

role in resection are SUMO modified. Components of the MRN

complex, including MRE11, are SUMOylated following infec-

tion with adenovirus 5 (Ad5), which triggers a DSB response

as the ends of the viral genome mimic host cell DSBs [155,156]

and multiple SUMO sites have been identified on the MRN com-

ponents from SUMO site-mapping screens (figure 4). BLM is

SUMO modified in response to IR and replication stress

[69,157] and after replication fork collapse SUMO-modified

BLM is implicated in promoting RAD51 foci formation

[157,158]. EXO1 is SUMOylated by PIAS4 which reduces its

stability, whereas loss of the SUMOylation sites of EXO1

improves the protein’s stability [159]. In addition the ssDNA

binding protein subunit RPA70/RPA1 itself bears a critical

SUMO-modification site which is required for subsequent

RAD51 accumulation [160]. Moreover, both RPA1 and EXO1

are bound by the SUMO protease SENP6 which is reported to

promote their hypoSUMOylation [159,160].

These observations suggest that the resection process is

SUMO rich, and might be ‘read’ by specific mediators. Intri-

guingly both the scaffold protein for many structure-specific

endonucleases, SLX4, and RAD51 carry SIM motifs critical to

their function [161,162]. SLX4 localization to laser-induced

damage requires its SIMs and the SUMO pathway [162].

The SLX SIMs are required for normal cell resistance to

camptothecin, suggesting a role related to DSBs associated

with replication-associated DNA damage. SUMO binding

increases SLX4 interaction with MRN and RPA [162] and

although SLX4 binds to SUMOylated forms of these proteins

recruitment is also thought to be promoted by other SUMO

targets, to account for its SUMO-dependent recruitment.

Similarly SUMO concentration may promote the ability

of RAD51 to ‘read’ resection. A direct interaction between

RAD51 and SUMO was first established by yeast two hybrid

interaction [163]. RAD51 contains a conserved C-terminal

SIM (VAVV 261–264) and mutation of this sequence abrogates

RAD51 accumulation at laser lines and reduces HR-mediated

repair [164]. The interaction partner(s) of this SIM is not

known but candidates in the resection processes are appealing.

The potential for SUMO-targeting Ub ligases to regulate

aspects of resection and recombination is therefore significant

and indeed several studies agree that loss of the STUbl RNF4

is associated with reduced RAD51 foci formation and poor

HR outcome [68,71,72]. However while two studies suggest

the defect in cells without RNF4 is at the level of reduced
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resection [68,71], perhaps due to a failure to clear MDC1 and in

turn 53BP1 [71], another suggests RNF4-mediated turnover of

SUMO-RPA1 determines RPA residency at already resected

DNA, resulting in reduced RAD51 loading [72]. Taking resec-

tion and recombination together it would appear that SUMO

plays several, sometimes counteracting, roles, promoting

protein stability and interaction but also clearance, depending

on the substrate. It is perhaps not surprising that different

studies locate different DDR pressure points that the RNF4

‘wrecking ball’ is required to transit. Indeed it seems likely

that there are yet further roles for RNF4 in this pathway to be

discovered.
 il.Trans.R.Soc.B
372:20160281
8. Conclusion and questions
Insight into how SUMO modification coordinates the funda-

mental process of DNA double-strand break (DSB) repair is

emerging. Indeed this may contribute to further understand-

ing of the established role SUMOylation has in ageing and

senescence [165], and neurological disorders [166]. The role

of SUMO in transcriptional repression and maintenance of

heterochromatin appears co-opted in the acute response to

damage but is then overcome to open chromatin structure.

Given the differing chromatin environments that DSBs

arise in, the possibility that SUMO influences different repair

outcomes in differing contexts appears likely.

The catalogue of SUMOylated proteins in the DDR is

expanding [11] but a striking conclusion of surveying examples

of SUMO modification in the mammalian DDR is the varied

ways in which SUMO impacts protein function, even when

an apparent protein group is modified. The DDR uses all

variants of SUMO target fate to drive interactions and tran-

sitions that permit the response to proceed. Our current

overview of SUMO function in the DDR points to several

points of precision and instances of opposing functional out-

come of SUMO modification of similarly located proteins.

Thus an indiscriminate SUMO ‘spray’ and subsequent protein

group modification directing the accumulation of SUMO :

SIM-associated complexes prevalent in the yeast DDR [26]

would appear to be a less dominant mechanism of SUMO

function in the mammalian response.

The steady-state of target-protein SUMO modification

is a consequence of conjugation/deconjugation and target-
protein stability, and thus the majority of our cataloguing of

SUMOylated targets perhaps represents sites less amenable

to isopeptidase or STUbL access. While work developing our

understanding of SUMO conjugation is growing, an under-

studied area is SUMO protease regulation. The constitutively

high activity of these enzymes means that regulation at the

level of modification removal may be as significant to target

proteins and protein groups as the conjugation itself. Since

SUMO proteases are potential targets for small molecules

[167–169], with potential utility in several human disease

states, there is a need to further establish their roles. Future

SUMO site-mapping experiments, identifying SUMO targets

in cells with removal or inhibition of specific SUMO proteases

and STUbls, will greatly improve our understanding of the

dynamics of SUMOylation in different sub-nuclear-

compartments and after particular stimuli, such as DSBs.

SUMOylation exhibits considerable cross-talk between

PTM pathways, as described herein with Ub modification,

but also with phosphorylation [15,16] and thus investigation

of SUMO and SUMO targets is necessary to gain an integrated

view of how DSB repair is orchestrated. This point is conspic-

uous when thinking about the dense signalling environment

of chromatin. For example H2AX is also SUMOylated by

PIAS4 in response to various DNA damaging agents [170]

with major conjugation sites at K128 and K135 [15,37].

SUMO is a bulky adduct relative to histones and nucleosome

structure with potential to impact packing or affect interactions

with nearby phosphorylated S139 or Ub-modified K119/120.

Finally, as SUMO site mapping reaches saturation a key goal

for the future is to establish the mechanisms and circuits of

SUMOylation in the DDR and their integration into our wider

understanding of the response. By these means, how SUMO

dynamics contribute to maintaining a stable genome, and how

these circuits might be exploited, will become clear.
Data accessibility. This article has no additional data.

Authors’ contributions. A.J.G. and J.R.M. wrote the manuscript.

Competing interests. The authors have no competing interests.

Funding. A.J.G. is funded by CRUK (C8820/A19062) and J.R.M. by the
University of Birmingham.

Acknowledgements. The authors thank R. Densham for critical reading of
the manuscript.
References
1. Huang WC, Ko TP, Li SS, Wang AH. 2004 Crystal
structures of the human SUMO-2 protein at 1.6 Å
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