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Abstract

Microglia dynamically interact with neurons influencing the development, structure, and function 

of neuronal networks. Recent studies suggest microglia may also influence neuronal activity by 

physically interacting with axonal domains responsible for action potential initiation and 

propagation. However, the nature of these microglial process interactions is not well understood. 

Microglial-axonal contacts are present early in development and persist through adulthood, 

implicating microglial interactions in the regulation of axonal integrity in both the developing and 

mature central nervous system. Moreover, changes in microglial-axonal contact have been 

described in disease states such as multiple sclerosis (MS) and traumatic brain injury (TBI). 

Depending on the disease state, there are increased associations with specific axonal segments. In 

MS, there is enhanced contact with the axon initial segment and node of Ranvier, while, in TBI, 

microglia alter interactions with axons at the site of injury, as well as at the axon initial segment. 

In this article, we review the interactions of microglial processes with axonal segments, analyzing 

their associations with various axonal domains and how these interactions may differ between MS 

and TBI. Furthermore, we discuss potential functional consequences and molecular mechanisms 

of these interactions and how these may differ among various types of microglial-axonal 

interactions.
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INTRODUCTION

Microglia are the innate immune cells of the central nervous system (CNS) and the primary 

mediators of the neuroinflammatory response. They are derived from a pool of primitive 

macrophages from the yolk sac that appear during early embryonic development[1–3]. 

Microglia are ontogenetically distinct from the peripheral blood-derived monocytes/

macrophages that reside outside the CNS and mediate the peripheral inflammatory 

response[4,5]. Peripheral blood-derived immune cells are not typically found in the healthy 

CNS. However, peripheral monocytes/macrophages can infiltrate the CNS and exacerbate 

the neuroinflammatory response under pathological conditions. The distinct developmental 

origin of microglia from peripheral monocyte-derived macrophages and the exclusion of 

peripheral immune cells from the CNS underscores the immunological privilege of the CNS 

and the unique functions microglia might exert in the healthy brain and in pathological 

processes[6].

Microglia are cells with highly dynamic process networks that rapidly remodel to survey the 

microenvironment and maintain tissue homeostasis[7–9]. The surveying processes of 

microglia respond to CNS perturbations through rapid protrusion onto the site of insult/

interest[7,10] and microglia undergo “activation”, a complex series of alterations including 

changes in enzyme, receptor, and immune factor expression and altered cellular 

morphology[3,11,12]. Microglia exhibit a variety of morphologies ranging from small cell 

bodies with long highly-branched processes to enlarged cell bodies with short, thick 

processes[3,13]. The spectrum of microglial morphologies is indicative of their activation 

state and is commonly used to characterize activated vs. non-activated microglia in 

histological samples. Surveying (non-activated) microglia exhibit long, highly-branched or 

“ramified” processes that sample the surrounding environment. However, upon activation, 

microglia retract their processes and increase their cell body size, exhibiting morphologies 

defined by short, thick processes and large somas[3,14]. Highly activated, phagocytic 

microglia tend to lose distinctive processes all together and exhibit an ameboid shape[3,14].

Many studies have investigated microglial-neuronal interactions via secreted factors. 

Activated microglia exhibit extensive changes in the expression of their inflammatory 

profile[15]. While some of these secreted factors may provide neurotrophic functions, pro-

inflammatory factors exhibit deleterious effects[16,17]. Various neurotrophic secreted factors 

released from microglia induce neurite outgrowth and have been shown to be involved in 

regulating the cytoarchitecture of the developing brain[18–20]. Pro-inflammatory microglia, 

however, up-regulate cytokines and enzymes that produce reactive oxygen species, which 

have been implicated in axonal injury and disruption[16,21–32].

Microglia also interact with neurons through physical contact under homeostatic 

conditions[7,9,11,33–36]. Microglia have recently been shown to contact dendrites and 

neuronal cell bodies in the normal adult brain[37,38]. Both contact types require purinergic 

signaling through the P2Y12 receptor and appear to be protective in nature[37–40]. In the 

developing somatosensory cortex, it was recently found that microglial process contacts onto 

dendrites precipitates filipodia formation, linking microglia process contacts with synaptic 
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formation[38]. Microglia are also key mediators of synaptic pruning, which alters the 

neuronal excitatory/inhibitory balance[41]. Microglia contact pre- and postsynaptic neuronal 

elements in an activity-dependent manner, and synapses that are contacted by microglia 

more frequently and for longer durations of time are subsequently removed [Figure 1A]
[9,42,43]. Specifically, studies have demonstrated that early during development (Postnatal 

Day 5 in mice) phagocytic microglia engulf synapses of neurons with reduced activity/input 

in a complement-dependent manor[42,43]. Alternatively, later during development (Postnatal 

Day 15 in mice) microglia only appear to remove parts of synapses in a process called 

“trogocytosis”[44]. Another study using zebrafish larva demonstrated that microglial-

synaptic contacts increased with increased neuronal spontaneous activity. Further, the 

zebrafish neurons that were contacted by microglia exhibited a decrease in activity, while 

noncontacted neurons maintained an increased firing rate[36].

Microglia may also influence neuronal excitability through contact with the axon initial 

segment (AIS), the axonal domain responsible for action potential initiation and modulation 

[Figure 1A][45]. Microglia appear to establish contact with the AIS early in development and 

maintain this contact through adulthood, strongly suggesting that microglia play a role in 

regulating AIS structure and function[45]. Additionally, when repeated stimulations were 

used to induce neuronal hyperexcitability, microglia extended their processes and wrapped 

around axons[35]. This induced a rapid repolarization in the neuron back to resting levels 

which was lost when microglia were pharmacologically blocked[35].

Neuroinflammatory microglial changes are associated with various pathologies, including, 

but not limited to, spinal cord injury, neurodegenerative diseases, and early-life stress[46–49]. 

Alterations in the form and frequency of physical microglial-axonal contacts, however, have 

been described in the most detail in multiple sclerosis (MS) and traumatic brain injury 

(TBI), therefore this review focuses on these two disease states[45,50–52]. Many of the 

changes in microglial-neuronal contacts appear to be dependent on the disease state, in 

which there are alterations in microglial associations with specific axonal segments. Below, 

we review the interactions of microglial processes with axonal segments, focusing on their 

associations with various axonal domains and the unique alterations of these physical 

interactions in MS and TBI.

NEUROINFLAMMATION IN MS

MS is an autoimmune-mediated disease of the CNS that is characterized by inflammation 

and demyelination. While the cause of MS is not fully understood, it is accepted that 

neuroinflammation, resulting from the accumulation and activation of macrophages (derived 

from microglia or infiltrating monocytes) in the human CNS, is a crucial step in MS 

pathogenesis, which culminates in injury to myelin and axons and disrupts the flow of 

information[53–56]. The autoimmune nature of MS and the role of autoreactive peripheral T 

cells is highly complex and has been reviewed previously[57]. Therefore, we do not discuss 

the autoreactive peripheral immune cells in this review. Furthermore, destruction of myelin 

and axons, as well as oligodendrocyte cell-death, are directly related to the numbers of 

activated inflammatory cells[53,58–60]. The symptoms of MS range widely based on the CNS 

region affected and include a variety of motor or sensory dysfunctions such as muscle 
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weakness, spasticity, tremor, unexplained pain or numbness, vision problems, and cognitive 

deficits[61]. While demyelination is a hallmark of MS, axonal injury is also a prominent 

pathological feature and is a major contributor of chronic disability in patients[59,60,62–64]. 

The types of axonal injuries in MS and its models include the formation of axonal swellings, 

reduced levels of Na+/K+ ATPase, synaptic damage, axon transection, and disruption of 

axonal domains, such as the node of Ranvier (NOR) and the AIS[65–69]. These axonal 

injuries may occur as either a consequence of demyelination[65,70] or as a primary event, 

independent of myelin loss[27,71], although the mechanisms driving primary axonal 

pathology are not fully understood. It is appreciated that soluble factors produced by 

resident microglia and infiltrating monocytes and their interactions with peripheral immune 

cells play a pivotal role in driving axonal injury[59,60,72–75]; however, recent studies have 

implicated a mechanistic role for microglia/monocytes through physical interactions with 

axonal domains[6,27,28].

Studies investigating axonal contact by microglia and/or infiltrating monocytes have utilized 

two common models of MS: a toxin-induced demyelinating model, cuprizone[27], and an 

immune-mediated model, experimental autoimmune/allergic encephalomyelitis (EAE)[6,27]. 

In the cuprizone model, a copper-chelating toxin, cuprizone, is administered through chow 

resulting in oligodendrocyte cell death and, consequently, loss of myelin[75]. Demyelination 

is detectable 1–2 weeks after cuprizone treatment with peak demyelination occurring by 5–6 

weeks of exposure[76–78]. The cuprizone model yields substantial demyelination and, upon 

removal of toxin-containing chow, spontaneous remyelination occurs. While this model does 

not recapitulate immune-mediated aspects of MS, it does allow for the investigation of 

fundamental mechanistic questions of the demyelination/remyelination process and roles of 

myelin in the stability of axonal domains[75]. The EAE model is an immune-mediated model 

that is induced through subcutaneous injection of myelin proteins accompanied by pertussis 

toxin and an adjuvant to ignite an inflammatory response[75,79,80]. The resulting 

neuroinflammation recapitulates key pathological features of MS such as inflammation, 

demyelination, and neuronal insults[75,80,81]. These two models allow for the rigorous 

assessment of MS-associated alterations in microglial-axonal interaction due to 

demyelination both in the presence of and independent from the autoreactive inflammatory 

response.

MICROGLIAL CONTACT WITH THE NOR IN MODELS OF MS

Axonal function requires maintenance of the NOR[82], and a major regulator of nodal axonal 

domain stability is myelin integrity[77,83–89]. For example, cuprizone-induced demyelination 

resulted in loss of nodal and paranodal clustered proteins[77]. Other studies have also 

demonstrated loss of nodal protein clustering as a downstream consequence of 

demyelination in mouse models of MS and postmortem MS tissue[67,69,90,91]. In addition to 

NOR disruption, analyses of human MS tissues have revealed that prominent microglia/

macrophage accumulation correlates with active demyelination[56,59,60,67]. Indeed, myelin is 

required for NOR stability; however, NOR protein clustering can also be disrupted 

independent of demyelination. Howell et al.[67] used immunohistochemical techniques to 

study NOR integrity in normal-appearing white matter of MS cases and in EAE and found 

NOR disruption correlated with local microglial inflammation but was independent of 
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demyelinating lesions and did not correlate with the density of infiltrating lymphocytes. This 

was consistent with other studies demonstrating that numbers of microglia/macrophages 

correlate to EAE severity[27,72–74]. However, the cellular mechanisms by which microglia/

infiltrating macrophages promote disease progression and whether these cells play 

differential roles in initiating demyelination or promoting repair remain unknown[61,92,93]. 

Yamasaki et al.[6] began to elucidate the roles these cell types play in the disease course of 

EAE and their differential roles in myelin disruption. Serial block-face scanning electron 

microscopy of mice, in which the resident microglia fluoresced green and the infiltrating 

monocyte-derived macrophages fluoresced red, was utilized to distinguish the two 

inflammatory cell populations and to investigate their role in demyelination[6]. It was 

demonstrated that both microglia and infiltrating peripheral monocyte-derived macrophages 

contact the axo-glial unit at the NOR in the spinal cord of EAE-induced mice at disease 

onset [Figure 1B][6]. They found that most (73%) of the NOR investigated (both intact and 

disrupted) were physically contacted by some sort of macrophage[6]. Interestingly, 

microglial association with the axo-glial unit was limited, while monocyte-derived 

infiltrating macrophage contact at the NOR was more extensive[6]. Monocyte-derived 

macrophage processes were found extended between the myelin and axolemma, potentially 

uprooting paranodal contacts and initiating demyelination [Figure 1B][6]. In contrast, 

microglial processes contacted the axo-glial unit at the NOR, but the microglial processes 

did not extend beneath the axolemma and, instead, appeared to primarily interact with 

adjacent macrophages and appeared to be involved in debris clearance [Figure 1B][6]. Gene 

expression profiles supported that infiltrating monocyte-derived macrophages were highly 

phagocytic and pro-inflammatory, whereas microglia demonstrated a suppressed cellular 

metabolism and activation phenotype[6]. These findings suggest that, at disease onset, 

infiltrating macrophages initiate active demyelination while microglia perform myelin debris 

clearance, a function that supports tissue regeneration and affects the maturation of 

oligodendrocyte progenitor cells[3].

The differential mechanisms underlying microglial contact at the NOR is still to be fully 

determined. It was shown that C-C chemokine receptor type 2 (CCR2), a chemokine 

receptor essential for monocyte recruitment to CNS tissues during immune-mediated 

inflammation[94,95], was important for recognition of disrupted NOR by infiltrating 

monocyte-derived macrophages[6]. Mice lacking CCR2 demonstrated reduced NOR contact 

by monocyte-derived macrophages and significantly less demyelination at EAE onset. 

Interestingly, CCR2-deficient mice displayed similar nodal pathology during the pre-onset 

stage of EAE (post-EAE induction but prior to onset of motor clinical symptoms), 

suggesting that inflammatory nodal disruption could be reversible if monocyte-derived 

macrophages were prevented from initiating demyelination at those sites[6].

MICROGLIAL CONTACT WITH THE AIS

Microglia contact the AIS during normal development and throughout life, indicating that 

these cells likely play a role in the regulation of AIS structure and/or function in both the 

developing and mature CNS [Figure 1A][45]. A recent study utilizing both EAE and 

cuprizone models of MS to assess MS-related axonal injury and their underlying 

mechanisms found that inflammatory microglia and/or Macrophages physically contact the 
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AIS[27]. It was found that the AIS is a primary target in disease pathogenesis of EAE[27]. In 

this study, mice were induced with either myelin-oligodendrocyte glycoprotein + EAE or 

cuprizone and AIS integrity of cortical neurons was assessed using immunohistochemical 

techniques. The integrity of the AIS was assessed by immunolabeling for ankyrinG (AnkG), 

a protein critical for AIS establishment and maintenance[96–98]. Upon EAE induction, it was 

found that the number and length of AISs were significantly reduced and that the number of 

disrupted AISs was associated with disease severity and progression[27]. This loss of AIS 

integrity, however, was not associated with demyelination, neuronal death, or axonal 

damage, rather appeared to be mediated by inflammatory factors[27–29]. Specifically, AIS 

disruption was preceded by microglial morphological changes suggestive of enhanced 

reactivity and increased contact by Iba-1 positive inflammatory cells but occurred 

independently of demyelination[27]. The nature of microglial interaction with the AIS 

changed substantially following EAE, transitioning from microglial process alignment along 

the AIS and periodic process ends contacting the AIS [Figure 1A] to microglial processes 

completely wrapping around the AIS [Figure 1B][27,99]. Treatment with anti-inflammatory 

Didox, a free-radical scavenger and NF-κB modulator[100–102], resulted in enhanced AIS 

structural integrity and reduction in microglial-AIS contact, indicating that EAE-induced 

inflammation is the driver for AIS disruption and enhanced microglial-AIS contact.

Microglial-AIS contact increased prior to and concomitant with changes in AIS structure, 

although it does not appear that contact alone drives AIS disruption. In the cuprizone model, 

demyelination and inflammation are present in the cortex; however, AISs were spared, 

suggesting the AIS, unlike the NOR, is not maintained by myelin presence[27,103]. 

Interestingly, in the cortex of cuprizone-fed mice, reactive microglia also enhanced contact 

with AISs but AIS structure was preserved[27]. Thus, the consequence of microglial-AIS 

contact appears to be stimulus dependent. In other models, microglia are recruited to and 

make contact with the initial portion of the axon and soma of hyperexcitable cells[35,36]. 

Microglial-axonal contact is activity dependent and results in a protective phenotype, 

preventing the neuron from excitotoxic death[35,36]. While live-imaging and physiological 

experiments have not been performed in MS models, analysis of AIS plasticity in EAE 

revealed structural changes of the AIS, such as decreased length[27], which can occur in 

response to hyperexcitable environments[104–106]. Thus, the nature of microglial-AIS 

contacts may be context dependent and could either drive disruption or confer protection. 

Since the AIS is the axonal domain where action potentials are generated, this consistent 

microglial-AIS contact in both health and disease strongly implicates microglia as a 

regulator and/or modulator of neuronal function and further studies are needed to investigate 

the role of enhanced microglial interactions with the AIS in MS and its models.

The mechanisms mediating microglial contact with either the NOR or AIS remain 

undefined; however, as the molecular architecture is highly conserved between these two 

axonal segments, it is likely that the molecular mechanisms involved in associations with 

either region are similar. The fractalkine receptor CX3CR1 mediates microglial synaptic 

pruning and microglial contact with neuronal somatic-dendritic domains, and was, therefore, 

a prime candidate for mediating microglial-AIS contact[107–109]. However, absence of 

CX3CR1 fractalkine receptors on microglia did not alter contact with the AIS in the healthy 

mouse brain, suggesting that microglial-AIS interactions are not mediated through the 
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fractalkine receptor[45]. Loss of brevican and versican, specialized extracellular matrix 

molecules surrounding the AIS, also did not alter microglial contacts onto the AIS[45]. In an 

effort to determine if AIS proteins are necessary for microglial contact, the AIS master 

scaffolding protein AnkG was knocked down, which disrupted AIS protein clustering and 

significantly reduced the number of microglial-AIS contacts, suggesting that molecules 

normally restricted to the AIS are important for microglial-AIS contact[45]. Thus, some 

progress has been made in eliminating candidates that mediate microglial-AIS contact and in 

determining that an intact AIS is important for microglial contact, but these experiments[45] 

focused on microglial contact specifically with the AIS.

NEUROINFLAMMATION IN TBI

TBI affects millions of people and is associated with devastating financial and societal costs 

linked to the long-term morbidities that develop and persist for years after the initial 

insult[110–113]. Recent studies have demonstrated the impact of inflammatory cascades in 

regulating many of these TBI-mediated outcomes[114–118]. While astrocytes and infiltrating 

peripheral monocytes/macrophages do play a role in TBI-induced neuroinflammation, 

microglia are thought to be the critical mediators of these TBI-induced neuroinflammatory 

processes and, therefore, have been the primary focus of TBI-related neuroinflammatory 

investigations. However, as it is difficult to specifically identify resident microglia from 

peripheral infiltrating monocytes following TBI, many studies call both populations 

“microglia” for simplicity. In the following sections, we do the same unless the population is 

specifically known to be infiltrating monocytic in origin.

Studies have also demonstrated neuroinflammation in various brain regions within the 

human population following TBI[119–122]. Molecular imaging studies have demonstrated 

microglial activation in populations of TBI patients as visualized via positron emission 

tomography using ligands for the mitochondrial translocator protein, TSPO, following brain 

injury[114,119–121]. While the TSPO ligands used in these studies have been shown to 

significantly increase binding to activated microglia post-TBI, they also bind to other 

neuroinflammatory cells following trauma[114,119–121]. Complementary histopathological 

studies investigating the extent and localization of various neuroinflammatory makers, 

including microglial CD68 and/or complement receptors, as well as morphological 

indications of microglial activation also demonstrated significant inflammation following 

brain injury in humans[123–125]. Many of these studies also indicate that neuroinflammation 

persists and evolves years after the initial head injury and that inflammation may become 

more severe with time post-injury[117,121,125,126].

The majority of preclinical TBI models can be divided into focal and diffuse injury models, 

with some of the most used models being the controlled cortical impact (focal), central fluid 

percussion injury (diffuse), lateral fluid percussion injury (mixed focal and diffuse), and 

head rotational (diffuse) models; however, the specific models used to induce TBI are highly 

varied. For a review of the different types of TBI preclinical models, please see[127,128]. 

While the occurrence of microglial activation following TBI is rather well accepted, the role 

of activated microglia in the post-injury brain is far more enigmatic. A wide range of studies 

using various rodent models of brain injury have demonstrated that activated microglia can 
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have a host of functions. For simplicity’s sake, these functions were lumped into two 

historical categories: M1, or pro-inflammatory microglia, that were involved with cytokine 

release that lead primarily to neuronal damage and M2, or anti-inflammatory microglia, that 

were associated with release of neurotrophic factors and cytokines downregulating the 

inflammatory responses[129–132]. These binary definitions, however, appear too simplistic 

for the complex interactions between the pro- and anti-inflammatory signals coming from 

activated microglia following TBI[133]. While the nomenclature for microglia falling along 

the inflammatory spectrum is still up for debate, studies do indicate that location, time 

following TBI, and systemic factors, including stress and infection, can push activated 

microglia toward a more pro-inflammatory state[131,132,134,135]. Information regarding these 

microglial populations is covered in greater detail in the following reviews[129,133,134].

Many well-designed studies using rodents have indicated that reduction of activated 

microglial and/or targeting various neuroinflammatory signaling pathways ameliorates 

downstream pathology and behavioral morbidity[136–149]. One of the most common 

compounds used to assess the role of microglial activation following TBI is the second 

generation tetracycline drug, minocycline[129]. Minocycline is traditionally used clinically as 

an antibiotic; however, it has various other uses/effects including as a powerful anti-

inflammatory compound[140]. Various studies demonstrate significant reductions in damaged 

or dying neurons, reduced lesion volumes, enhanced behavioral scores, and drastic reduction 

in pro-inflammatory cytokine expression following administration of minocycline, 

indicating that interactions between activated microglia and neurons could precipitate 

neurodegeneration[141–143]. In fact, minocycline is currently being assessed for safety in 

clinical trials for the treatment of TBI-associated morbidities thought to be regulated by 

inflammation[144]. However, other studies indicate that prolonged microglial inhibition via 

minocycline administration precipitates enhanced neurodegeneration and inflammation or no 

effect at all, demonstrating the complexity of neuroinflammatory responses following 

TBI[145–147]. Based on the fact that minocycline has a multitude of effects, it is also possible 

that the variability in these studies’ findings highlight the potential that non-inflammatory 

minocycline-induced reductions in TBI-mediated pathology in turn reduce inflammation and 

microglial activation[140,147,148]. In support of this possibility are studies showing little or no 

effect of genetic microglial elimination or direct microglial inhibition using compounds 

targeting the CSF1 receptor in altering TBI-induced pathology[135,149,150]. Additionally, 

administration of pro-inflammatory stimuli into the ventricle, surpassing induction of 

peripheral inflammatory responses, does not result in enhanced post-injury 

neurodegeneration, indicating that the peripheral inflammatory response, more than direct 

microglial activation, precipitates proinflammation-mediated secondary insults[134,151]. 

Overall, these studies underscore the intricacies of TBI-induced microglial activation and 

our limited understanding of microglial-neuronal interactions following brain injury.

PHAGOCYTOSIS FOLLOWING TBI

One of the most well-studied physical interactions between microglia and neuronal segments 

following TBI is phagocytic engulfment. As in the non-injured brain, activated microglia 

serve a prominent and vital role in the clearance of cellular debris following brain injury. 

Upon the initial TBI insult, a multitude of cellular pathologies progress. One of the most 
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well studied pathologies, and the hallmark of diffuse brain injury following TBI, is diffuse 

axonal injury/traumatic axonal injury[125,152–156]. Axonal injury first manifests as disruption 

of molecular transport anterogradely down the axon and progresses over hours, days, and 

months following injury to a disconnection at the point of initial transport disruption, 

resulting in a proximal axonal segment that remains connected to the neuronal cell body and 

a distal axonal segment that undergoes Wallerian degeneration[157–159]. Phagocytosis by 

activated microglia is required to engulf and clear away the axonal and myelin debris from 

the Wallerian degeneration of the distal axonal segment and involves the toll-like receptors, 

TREM-2, complement receptors 3 and 4, as well as MAC-2, for the engulfment of myelin, 

and the purinergic receptor P2RY6 [Figure 1C][160,161]. Ultrastructural assessments of the 

injured brain have demonstrated significant phagocytosis of Wallerian debris by activated 

microglia following TBI[52,116,162]. Microglia with ameboid morphologies, indicative of 

phagocytic activity, were found primarily in proximity to the distal axonal segment 

sustaining dieback, but not the proximal axonal segments, following TBI-induced optic 

nerve damage[163]. Further, expression of mRNA indicative of phagocytic activity is 

significantly increased following trauma[150]. It should be noted, however, that both 

microglia and astrocytes containing phagocytic material have been observed, demonstrating 

that, while microglia may be the primary phagocytic cells in the brain, astrocytes also 

phagocytosis debris following injury[162]. Additionally, not all activated microglia were 

observed to be phagocytic following TBI, indicating that phagocytosis is not the only 

microglial-axonal interaction upregulated following TBI[116].

ROD MICROGLIA AND TBI

The readily identifiable, yet mysterious, “rod microglia” have been noted following TBI in a 

variety of pre-clinical models and in the human population. This subset of microglia appear 

following injury and are defined exclusively by their rod-like morphology and chain-like 

associations that form long microglial trains of several rod microglia lined up end-to-end 

[Figure 1C][164]. These rod-shaped microglia have been described following a variety of 

neurological diseases, including neurosyphilis, and appear to be both non-phagocytic and 

reversible[165]. Both rod microglia and microglial trains appear primarily in brain regions in 

which the fiber tracks are linear, such as the neocortex, brainstem, and 

hippocampus[124,166–168]. This subset of rod microglia, however, appear to be absent in 

areas that are not linearly arranged, such as the thalamus[166]. The formation of microglial 

trains appears to be associated with p38; however the function of these microglial trains 

remains unknown[169]. Recently, it was found that microglial trains formed by rod microglia 

align with the apical dendrite, but not the axon as was previously thought, of pyramidal 

neurons in the rodent cortex [Figure 1C] and spatially associate with astrocytes, indicating 

that this subset of microglial-neuronal interaction is neuronal-segment specific and could be 

involved in an additional interplay between neuroinflammatory cell types[150]. However, the 

study of rod microglia following TBI is still in its infancy and requires further investigation 

into the timing and function of this microglial-axonal interaction subtype.
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TBI-INDUCED PROCESS CONVERGING AND DIVERGING MICROGLIA

Over the last several years, another subtype of microglial-neuronal interaction has been 

observed following brain injury. This interaction subtype manifests as physical contacts 

between activated microglia and the proximal axonal segment of injured axons following 

TBI[51]. Using a micro pig model of central fluid percussion-generated diffuse TBI, paired 

with multiplexed immunohistochemical quantitative image analysis, recent studies found 

processes from activated microglia converge onto adjacent injured thalamic axons acutely 

(hours to one day post-injury) following injury, a phenomenon termed “microglial process 

convergence” (MPC; Figure 1C)[50,52]. These process converging (PC) microglia were 

neither ameboid nor rod shaped, rather they displayed shortened processes, with fewer 

process branches, morphological changes indicative of activation without progression to 

phagocytosis[13,51,52]. Ultrastructural assessments confirmed that PC microglia were non-

phagocytic in nature[50,52]. Additionally, a single injured axon could have processes 

converging from multiple PC microglia[50,52]. As the majority of diffuse axonal injury 

following TBI appears to occur in or adjacent to the AIS, it is likely that the proximal axonal 

swellings in which this subtype of PC microglia are converging are nearer to the AIS than to 

more distal points along the axon [Figure 2][170,171]. Another group using a micro pig model 

of head-rotation-induced diffuse TBI found indications of potential PC microglia associated 

with injured neurons following brain injury[172]. Specifically, also using multiplexed 

immunohistochemical quantitative image analysis, they observed that microglia were in 

closer proximity to injured neuronal soma in multiple brain regions following TBI compared 

to neurons in sham injured micro pigs [Figure 1C][172]. These PC microglia also appeared 

activated without falling into the morphological categories of phagocytic or rod 

microglia[172]. Another recent study found that MPC onto cell bodies of injured neurons is 

associated with protection. Specifically inhibition of this MPC increased ischemia-induced 

lesion volume, behavioral morbidity, and calcium influx[37]. Additionally, ischemic injury 

results in microglial process contacts with injured synapses that are nearly 10 times longer in 

duration than the 4–5-min-long contacts observed in non-injured animals using a thinned-

skull live imaging approach[9]. Therefore, it is likely that MPC could involve an increase in 

both the number of microglial processes as well as the duration of these contacts onto 

injured axons.

The mechanisms involved in regulating MPC onto neuronal and axonal segments has 

primarily been studied in mouse models of epilepsy. The number of microglial process 

contacts appear to be directly related to the level of neuronal activity, in that MPC was 

significantly reduced upon reduction in neuronal activity via either temperature reduction or 

tetrodotoxin administration in thinned-skull live-imaging studies[9]. Induction of neuronal 

hyperexcitability to the point of excitotoxicity also promoted MPC[173]. Hyperexcitability-

induced MPC resulted in reduced neuronal activity and overall increased neuronal survival 

in the face of otherwise excitotoxic events that were not seen following microglia 

elimination or inhibition of MPC[173,174]. Neuronal excitation precipitates higher 

extracellular and lower intracellular Ca2+ concentrations and increased extracellular ATP 

concentrations around the active neuron, which appear to be primary molecular mediators of 

hyperexcitability-induced MPC[173–176]. ATP-mediated MPC was found to promote 
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polarization of microglial process outgrowth toward the location with high ATP levels 

[Figure 1C][177]. Elimination of the purinergic receptor P2Y12 or the fractalkine receptor 

CX3CR1 drastically reduced MPC onto hyper-excitable neurons, indicating that microglial 

P2Y12 and CX3CR1 are required for ATP-mediated MPC[176,178]. Excitatory neurons also 

release glutamate upon excitation. Concentration of extracellular glutamate has also been 

found to mediate hyperexcitability-induced MPC potentially via activation of N-methyl-D-

aspartate (NMDA) receptors[174,178]. Glutamate/NMDA-mediated MPC was also found to 

require microglial P2Y12, but not CX3CR1[177]. Glutamate-mediated MPC also promoted 

nonpolarized outgrowth of microglial processes, indicating that different molecular 

mechanisms of hyperexcitability-induced MPC may result in different forms of MPC 

[Figure 1C][177]. Further, these mechanisms appear distinct from those involved in 

microglial phagocytosis, as knocking out or inhibiting P2Y12 or NMDA inhibited MPC 

without affecting phagocytosis[178]. While epilepsy and TBI are different CNS diseases with 

distinct neuropathologies, the molecules and mechanisms discussed above are prime 

candidates for regulation of TBI-induced MPC. In fact, the Jacobs group found that both 

axotomized and intact neurons demonstrate hyperexcitability one day following TBI in mice 

that appears to resolve in the axotomized population, but not the intact neurons, by two days 

post-injury[179,180]. While TBI-induced MPC onto the proximal axonal segments of 

axotomized neurons has yet to be thoroughly investigated, these findings indicate the 

potential that similar mechanisms might be at play in TBI and epilepsy-induced MPC.

It appears that TBI-induced MPC may be species dependent, as it was found that rats 

sustaining the same central fluid percussion injury paradigm as their pig counterparts did not 

demonstrate MPC[50]. Rather, at the same time points following injury, there was a 

significant decrease in microglial contacts onto injured proximal axonal segments in the rats, 

indicating microglial processes that diverged from injured axons or microglia process 

divergence (MPD)[50]. This MPD observed in rats is in alignment with previous observations 

in injured rats and mice that activated microglia do not physically associate with proximal 

segments of injured axons following brain injury[116,163]. TBI-associated MPD was also 

observed by a group assessing the occurrence of microglia associations with the AIS, 

regardless of axonal injury, following TBI in mice[45]. They demonstrated that microglial 

contacts onto the AIS of axons significantly decreased following TBI in mice, indicating 

MPD similar to that observed by the other groups following TBI in rodents[45,50,116,163]. In 

contrast to those studies, however, these AIS-associating, or “AXIS”, microglia were not 

specific to injured axonal segments and appeared ramified (morphologically not activated), 

indicating that these AXIS microglia could represent a distinct subtype of MPD 

microglia[45,50]. The interaction between the AXIS microglia and the AIS appears to be 

ankrin-G and GABA mediated, while the fractalkine receptor, CX3CR1, does not appear 

necessary for the AXIS microglial interactions[45].

There are reports indicating that microglia physically interact with injured axons following 

TBI in the human brain. In 2014, a study demonstrated co-labeling of microglia with injured 

proximal axonal swellings in brains of veterans who had histories of blast injury 

exposure[181]. Another study showed potential PC microglia contacting injured axonal 

swellings when employing double-labeling techniques in human TBI tissue[182]. These 

studies indicate that microglial processes may contact axonal swellings in the human brain 
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following TBI; however, further investigation is needed to comprehensively assess potential 

alterations in microglial-neuronal physical interactions in the human population and address 

how those changes compare to those observed pre-clinically.

Additionally, a study investigating the expression of neuronal outgrowth marker, GAP43, in 

injured axonal segments as it related to the density of microglia in brain tissue from people 

diagnosed with MS or TBI demonstrated a positive correlation between neuronal 

regeneration and microglial density following TBI in clinical samples [Figure 1C][183]. 

Other studies have also observed GAP43 expression in proximal axonal swellings following 

injury in both human tissue and following induction of TBI in pre-clinical models[184–186]. 

Ultrastructural assessments further demonstrated morphological alterations indicative of 

active axonal sprouting of proximal axonal swellings following TBI, demonstrating that 

axonal process outgrowth following TBI is possible and potentially likely [Figure 2][184,185]. 

Microglia have been shown to express neurotrophic factors, such as nerve growth factor, 

following TBI, supporting a potential role for MPC in post-injury axonal outgrowth[187]. 

Microglia may also release exosomes that induce neurite outgrowth[19]. The role of MPC 

and/or MPD in potential post-injury axonal sprouting, however, remains speculative.

CONCLUSION

It is well accepted that microglia mediate neuroinflammatory processes in health and disease 

via proand anti-inflammatory cytokines and chemokines. However, microglia also appear to 

mediate neuronal function through physical contacts onto various neuronal segments, 

including dendrites, synapses, cells bodies, and axons. While the study of microglial-axonal 

contacts is still in its infancy, there are indications that these contacts play diverse and 

important roles during normal development and in the healthy CNS as well as following TBI 

or in disease states, such as MS. Analysis of microglia in experimental and human tissues 

demonstrate that microglia exhibit a spectrum of morphologies including ramified, rod-like, 

hypertrophied, and ameboid that all exert unique contact subtypes onto axonal segments 

indicative of the diverse roles microglial-axonal interactions play. Microglia and infiltrating 

monocytes contact various axonal segments in unique and specific ways that appear tied to 

the axonal region contacted, the morphology of the microglia, and the disease state. Further, 

it appears that the presence of microglia contacts at axonal domains may confer protection. 

Some of the immediate questions for this burgeoning field focus on the potential 

ameliorative effects of microglial contacts onto axonal and other neuronal segments as well 

as the timing of these interactions following various pathologies. Future examinations of 

axonal interactions using functional assessments and live imaging techniques could refine 

the distinction between axonal contacts of resident microglia and those formed by peripheral 

monocyte-derived infiltrating macrophages and help elucidate the nature of these 

interactions. Furthermore, identifying the molecules mediating contact between microglia 

and the axon will point toward new strategies to treat disease and promote repair in diverse 

inflammatory pathologies. The studies reviewed herein underscore the importance of 

microglial-axonal contacts in the regulation of neural signaling and the need for further 

investigation into these variable interactions in both the healthy and injured CNS.
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Figure 1. 
Schematic representation of microglial process contacts in health and disease. Illustration 

demonstrating various microglial and monocytic contacts onto axonal segments. A: in the 

healthy brain, resident microglia (green) contact the neuronal cell body and axon initial 

segment. These microglia potentially express TNF-α and CSF1 and are involved in 

reduction of hyperexcitability in neurons. The dynamic surveying processes of non-activated 

ramified microglia also contact various areas of the axon in the healthy CNS. During 

development, contacts by resident microglia are involved in pre- and postsynaptic pruning; 

B: in MS, both resident microglia (green) and infiltrating peripheral monocytes (red) contact 

the nodes of Ranvier. Note that the processes of monocytes are found between the layers of 

myelin and the axon sheath, while the resident microglial processes are primarily in contact 

with adjacent monocytes and/or involved in debris clearance. Neuroinflammatory cells that 
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have yet to be identified as either resident microglia or infiltrating monocytes (teal) that 

express TNF-α, INOS, Nox2, and higher levels of activated calpain, wrap the axon initial 

segment. This wrapping is involved in a notable reduction in the length of the axon initial 

segment; C: following TBI, macrophages (monocytes and/or microglia) phagocytosis the 

Wallerian debris from the degenerating distal axonal segments of an injured axons. Potential 

hyperexcitability of neurons following TBI induces microglial process convergence onto the 

neuronal soma via elevated ATP levels and/or glutamate levels. Rod microglia (green) are 

also common along the apical dendrite following injury; however, their function is currently 

unknown. Microglial process convergence onto the proximal injured axonal segment is 

associated with P2Y12 and potentially confers neuroprotective effects on the damaged axon 

leading to axonal sprouting. CNS: central nervous system; MS: multiple sclerosis; TBI: 

traumatic brain injury; TNF: tumor necrosis factor; CSF1: colony stimulating factor 1; 

INOS: inducible nitric oxide synthase; Nox2: NADPH oxidase 2
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Figure 2. 
Ultrastructure of microglial process contacts onto axonal segments following TBI. Electron 

micrographs of Iba-1 immuno-labeled microglia contacting: A: intact non-injured axons in 

sham-injured micro pig thalamus; B: injured axonal segment in the thalamus of micro pigs 

acutely (one day) following diffuse TBI. Iba-1-labeled microglial processes are pseudo-

colored blue and the injured axon is pseudo-colored yellow for clarity. While few microglial 

processes were observed in direct contact with axons normally, microglial processes were 

observed in direct contact various segments of the neuron, including the soma (N = nucleus), 

AIS, and the proximal axonal swelling (X) of the injured neuron. Note that the proximal 

axonal segment of the injured neuron demonstrates ultrastructural characteristics of axonal 

sprouting (*). Scale bar: 5 μm. AIS: axon initial segment; TBI: traumatic brain injury
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