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Abstract

Autophagy is a self-degradation system of cellular 
components through an autophagosomal-lysosomal 
pathway. Over the last 15 yr, yeast genetic screens led 
to the identification of a number of genes involved in 
the autophagic pathway. Most of these autophagy 
genes are present in higher eukaryotes and regulate 
autophagy process for cell survival and homeostasis. 
Significant progress has recently been made to better 
understand the molecular mechanisms of the autoph-
agy machinery. Especially, autophagy process, in-
cluding the regulation of autophagy induction through 
mTOR and the nucleation and elongation in autopha-
gosome formation through class III phosphatidylinosi-
tol 3-kinase complex and ubiquitin-like conjugation 
systems, became evident. While many unanswered 
questions remain to be answered, here, we summarize 
the recent process of autophagy with emphasis on 
molecules and their protein complexes along with ad-
vanced molecular mechanisms that regulate the au-
tophagy machinery.
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Introduction

Autophagy is an evolutionarily conserved and 
highly regulated lysosomal pathway that degrades 
macromolecules (e.g. proteins, glycogen, lipids and 
nucleotides) and organelles (Cuervo, 2004; Levine and 
Klionsky, 2004). Recent progress has demonstrated 
that autophagy plays an essential role in cellular 
development and differentiation (Levine and Klionsky, 
2004) and its dysregulation is implicated in various 
diseases, including cancer, infectious disease, 
obesity, aging and neurodegenerative disorders 
such as Alzheimer's, Parkinson’s and Huntington’s 
diseases (Huang and Klionsky, 2007; Mizushima et 
al., 2008; Lee et al., 2012).
     Depending on the delivery route of the cytoplasmic 
material to the lysosome, there are three major 
types of autophagy in eukaryotes; 1) chaperone- 
mediated autophagy (CMA), 2) microautophagy 
and 3) macroautophagy, hereafter referred to as 
autophagy (Klionsky, 2005). CMA allows the direct 
lysosomal import of unfolded, soluble proteins 
which contain a particular pentapeptide motif. In 
microautophagy, cytoplasmic material is directly 
engulfed into the lysosome at the surface of the 
lysosome by membrane rearrangement. Autophagy 
involves the sequestration of cytoplasm into a 
double-membrane cytosolic vesicle, referred to as 
an autophagosome that subsequently fuses with a 
lysosome to form an autolysosome for the degra-
dation by lysosomal hydrolases (Klionsky and Emr, 
2000). Autophagy is the major regulated- cellular 
pathway for degrading long-lived proteins and is 
the only known pathway for degrading cytoplasmic 
organelles (Yang and Klionsky, 2009). Autophagy 
consists of several sequential steps, which are 
induction, autophagosome formation, autophagosome- 
lysosome fusion and degradation. Although auto-
phagy has been extensively studied at the cellular 
level for more than four decades, its molecular 
mechanisms have just started to be elucidated in 
the past few years, mainly due to the application of 
yeast genetics. In this review, we summarize the 
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Autophagy-related gene (Atg) - products
                   Mammalian Atg gene                                      Functions

ULK1, ULK2
Atg2
Atg3
Atg4A,B,C,D
Atg5
Beclin-1
Atg7
LC3, GATE-16, GABARAP
Atg9L1, L2
Atg10
Atg12
Atg13
Atg14
Atg16L
FIP200
WIPI-1,2,3,4

Protein Kinase: Atg1-Atg13-Atg17-Atg29 complex
Atg9/Atg2-Atg18 complex
E2-like enzyme for Atg8s-lipidation
Cysteine protease: Atg8s-activation and delipidation
Atg12-Atg5 conjugate: E3-like activity for Atg8s-lipidation
Subunit of Vps34 PI3K complex
E1-like enzyme for Atg12-and LC3-conjugation
Modifier: Conjugates to PE to localize to Autophagosome
Atg9 interacts Atg2-Atg18 complex: membrane-bound
E2-like enzyme for Atg12-conjugation
Modifier: Conjugates to Atg5
mTor signaling: Atg1-Atg13-Atg17-Atg29 complex
Subunit of Vps34 PI3K complex
Complex between Atg16 and Atg12-Atg5 conjugate
Atg1-Atg13-Atg17-Atg29 complex
Atg9/Atg2-Atg18 complex

Table 1. Identification of Atg genes and their functions in mammals.

molecular mechanisms of autophagy process, 
especially focusing on autophagosome formation.

The process of autophagy

While autophagy has been studied in mammals 
since the 1950’s, yeast genetics has allowed us to 
understand this process at a molecular level. To 
date, 32 genes that are involved in autophagy 
have been identified in mammals (Table 1) and 
these have been termed as autophagy-related 
genes (Atg) (He and Klionsky, 2009). Among these, 
16 genes (Atg 1-10, 12-14, 16 and 18) are required 
for all types of autophagy mentioned above (Suzuki 
and Ohsumi, 2007; Xie and Klionsky, 2007; Longatti 
and Tooze, 2009). These Atg proteins function at 
several physiologically continuous steps in auto-
phagy and are generally classified into six groups. 
(1) The ULK1 kinase complex (ULK1-mAtg13- 
FIP200-Atg101) for the induction of autophagy, (2) 
Atg9 for recycling membrane, (3) class III phosphati-
dylinositol 3-kinase (PI3K) complex (Vps34-Beclin1- 
Vps15-mAtg14) for vesicle nucleation, (4) phosphati-
dylinositol 3-phosphate[PI(3)P]-binding Atg2-Atg18 
complex (WIPI1/2 in mammals), (5) Atg12-Atg5- 
Atg16L conjugation system and (6) Atg8 conjugation 
system involving phosphatidylethanolamine (Atg8- 
PE) for membrane expansion (Mizushima, 2010).

Regulation of autophagy induction through mTOR 
and ULK1 complexes

Under stress conditions such as amino acid 
starvation, autophagy is strongly induced in many 

types of cultured cells. The effects of individual 
amino acids differ in their abilities to regulate auto-
phagy. Amino acids including Leu, Tyr, Phe, Gln, 
Pro, His, Trp, Met and Ala suppress autophagy in 
ex vivo perfused liver (Mortimore and Pösö, 1987). 
However, such profiles depend on cell types 
showing their different amino acid metabolisms in 
tissues. The questions on how cells sense amino 
acid concentration and physiological significance of 
autophagy regulation by amino acid starvation are 
not fully understood yet. Accumulated reports 
demonstrated that amino acid signaling pathways 
exist, which involve activation of serine/ threonine 
kinase mammalian Target of rapamycin (mTOR) 
and the subsequent regulation of the class III PI3K. 
The mTOR is involved in the control of multiple cell 
processes in response to changes in nutrient 
conditions (Nobukuni et al., 2005). Especially, mTOR 
complex1 (mTORC1) requires Rag GTPase, Rheb 
and Vps34 for its activation and subsequent 
inhibition of autophagy in response to amino acids 
(Wullschleger et al., 2006; Sancak et al., 2010). 
Energy levels are primarily sensed by AMP- 
activated protein kinase (AMPK), a key factor for 
cellular energy homeostasis. In low energy states, 
AMPK is activated and the activated AMPK then 
inactivates mTORC1 through TSC1/TSC2 and 
Rheb protein (Gwinn et al., 2008). Thus, in-
activation of mTORC1 is essential for the induction 
of autophagy and plays a central role in autophagy. 
In addition to amino acid signaling, hormones, 
growth factors and many other factors, including 
bcl-2 (Levine et al., 2008), reactive oxygen species 
(ROS) (Botti et al., 2006), calcium (Green and 
Wang, 2010), BNIP3 (Tracy et al., 2007), p19ARF 
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Figure 1. Molecular regulation of 
autophagosome formation in mam-
malian macroautophagy. Three ma-
jor steps consisting of the initiation, 
nucleation and elongation in auto-
phagosome formation are described. 
ER, endoplasmic reticulum; Mito, mi-
tochondria; PM, plasma membrane; 
PE, phosphatidylethanolamine.

(Sherr, 2006), DRAM (Crighton et al., 2007), 
calpain (Xia et al., 2010), TRAIL (Mills et al., 2004), 
FADD (Pyo et al., 2005) and myo-inositol-1,4,5- 
triphosphate (IP3) (Sarkar and Rubinsztein, 2006), 
have also been reported to regulate autophagy. 
But, not all autophagy signals are transduced 
through mTOR signaling. A recent study showed 
that small-molecule enhancers of the cytostatic 
effects of rapamycin (called SMERs) induce 
autophagy independently of mTOR (Sarkar et al., 
2007).
     The essential process of autophagy is conserved 
from yeast to mammals. A distinct difference 
between yeast and mammalian autophagy is the 
presence of transient pre-autophagosome (PAS) in 
yeast. A protein complex composed of Atg1 
(serine/threonine kinase), Atg13 (scaffold protein), 
Atg17, Atg29 and Atg31 is required for the 
formation of PAS structure and functions in the 
initial step of autophagosome formation in yeast. 
Similarly, the ULK1 kinase complex consisting of 
ULK1 (Atg1), mAtg13 (Atg13), FIP200 (Atg17) and 
Atg101 exists in mammals. Unlike in yeast, 
however, the ULK1 kinase complex in mammal is 
likely to be stably formed for autophagosome 
formation regardless of nutrient conditions (Ganley 
et al., 2009; Mercer et al., 2009; Kuma and 
Mizushima, 2010). 
     Activities of the ULK1 kinase complex are regu-
lated by mTOR, depending on nutrient conditions. 

Under growing and high-nutrient conditions, the ac-
tive mTORC1 interacts with the ULK1 kinase com-
plex (ULK1-mAtg13-FIP200-Atg101) and phos-
phorylates ULK1 and mAtg13, and thus inhibits the 
membrane targeting of the ULK1 kinase complex. 
During starvation condition, on the other hand, the 
inactivated mTORC1 dissociates from the ULK1 
kinase complex and results in the ULK1 kinase 
complex free to phosphorylate components, such 
as mAtg13 and FIP200, in the ULK1 kinase com-
plex, leading to autophagy induction (Mizushima, 
2010) (Figure 1).

The Class III PI3K complex in autophagosome 
nucleation

Autophagosome formation process is composed of 
isolation membrane nucleation, elongation and 
completion steps. In mammals, the class III PI3K 
complex plays an essential role in isolation 
membrane nucleation during autophagy (Mariño 
and López-Otín, 2004), while the class I PI3K 
pathway is also involved in autophagy regulation 
through insulin signaling cascade to activate mTOR 
and PKB (Yang and Klionsky, 2009). The class III 
PI3K (Vps34) is associated with Beclin1 (Atg6) and 
p150, the homolog of Vps15 (phosphoinositide-3- 
kinase, regulatory subunit 4), to form the class III 
PI3K core complex. As the first step of autophago-
some formation, autophagosome nucleation 
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Figure 2. Ubiquitin-like protein conjugation systems in autophagy.

requires Beclin1. Mammalian Beclin1, which was 
identified as an interaction partner of Bcl-2 (Liang 
et al., 1998), associates with the class III PI3K core 
complex to generate PI(3)P (Funderburk et al., 
2010). The interaction of Beclin1 with Vps34 is 
known to promote the catalytic activity of VPS34 
and increase levels of PI(3)P, but is dispensable for 
the normal function of Vps34 in protein trafficking 
or recruitment of endocytic events (Wurmser et al., 
1999; Zeng et al., 2005). 
     Beclin1 plays an essential role in the initiation 
step of autophagy and is also involved in the 
pathogenesis of diseases such as pathogen infection, 
cancer and neurodegeneration (Levine and Kroemer, 
2008). Despite the proposed roles, molecular function 
of Beclin1 is poorly understood. Some hints on the 
molecular function of Beclin1 are likely to be found 
in its many binding partners and several studies 
actually provide biological significance of these 
interactions. Depending on the proteins recruited 
by Beclin1, class III PI3K complexes differentially 
regulate the process of autophagosome formation 
(Proikas-Cezanne and Codogno, 2011). Various 
additional components of Beclin1 complex were 
recently identified. (1) Atg14L (the probable mam-
malian homologue of yeast Atg14) exists primarily 
in a Beclin1-Atg14L- Vps34-Vps15 complex that is 
essential for the formation of autophagosome 
(Itakura et al., 2008; Funderburk et al., 2010). (2) 
UV radiation resistance-associated gene (UVRAG) 
is present in a Beclin1-UVRAG-Vps34-Vps15 com-
plex. Atg14L and UVRAG are located in the 
Beclin1-Vps34-Vps15 complex in a mutually exclusive 
manner (Liang et al., 2008). (3) Activating molecule 
in Beclin1-regulated autophagy (AMBRA1) is a 
positive regulator of the Beclin1-dependent auto-
phagy and regulates developments of the nervous 
system (Fimia et al., 2007). (4) Bax-interacting 
factor 1 (Bif1) interacts with Beclin1 through UVRAG. 
Bif1 positively regulates autophagy and suppresses 
of tumorigenesis (Takahashi et al., 2007). Other 
additional proteins, including PTEN-induced putative 
kinase 1 (PINK1), neuronal isoform of protein- 
interaction, specifically with TC10 (nPIST) (Yue et 
al., 2002), IP3 receptor (IP3R) (Vicencio et al., 
2009), the pancreatitis- associated protein, vacuole 
membrane protein 1 (VMP1) (Ropolo et al., 2007) 
and high mobility group box 1 (HMGB1) (Kang et 
al., 2010), have also been identified as Beclin1- 
interacting proteins.
     In contrast to these positive regulators, there 
are negative regulators among Beclin1-interacting 
partners. (5) RUN domain- and cysteine-rich domain- 
containing Beclin1-interacting protein (Rubicon) 
negatively regulates autophagosome maturation 
by interacting with Beclin1 contrastively to Atg14L 

(Matsunaga et al., 2009). (6) Bcl2 and BclXL also 
bind to Beclin1 through their BH3 domain and 
inhibit autophagy by disrupting the interaction 
between Beclin1 and class III PI3K complex 
(Pattingre et al., 2005; He and Levine, 2010). 
Despite identification of numerous aforementioned 
molecules, it is not clear how class III PI3K complex 
regulates autophagosome nucleation. According to 
a recent study, one of Beclin1-interacting protein, 
Barkor/ Atg14(L), was suggested to directly bind to 
membrane composed of PI(3)P generated by 
PI3KC3 (Fan et al., 2011). By binding preferentially 
to the curved membranes incorporated with PI(3)P, 
Barkor may be capable of sensing and maintains 
membrane curvature to initiate autophagosomal 
membrane formation. However, the assembly of 
the class III PI3K complexes and how they act with 
other components in the class III PI3K complex 
need to be further characterized.

Ubiquitin-like protein conjugation systems in 
autophagosome expansion

The expansion of the isolation membrane is basi-
cally the simultaneous elongation and nucleation of 
little cistern. It is not known yet how the Atg12-Atg5 
complex recruits additional membranes, but two 
ubiquitin-like protein conjugation systems are in-
volved in the expansion of autophagosome mem-
branes (Figure 2). The first ubiquitin-conjugation 
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system is Atg12-Atg5-Atg16L which is essential for 
the formation of pre-autophagosomes. Atg12 is a 
186-amino acid protein and is conjugated to Atg5 
(Kuma et al., 2002). The carboxy-terminal glycine 
residue of Atg12 is activated by E1-like Atg7 
through a high energy thioester bond in an 
ATP-dependent manner (Mizushima et al., 1998; 
Kim et al., 1999; Yuan et al., 1999; Tanida et al., 
2001). Atg12 is then transferred to E2-like Atg10 
(Shintani et al., 1999) and finally attached to lysine 
149 of Atg5 via an isopeptide bond (Mizushima et 
al., 1998). The Atg12-Atg5 conjugate further inter-
acts with Atg16L1 to form a ~350 kDa multimeric 
Atg12-Atg5-Atg16 protein complex through the ho-
mo-oligomerization of Atg16 (Mizushima et al., 
1999) (Figure 2, left). Once autophagosome for-
mation is completed, Atg proteins are released 
back to the cytoplasm by a yet uncharacterized 
mechanism.
     The second ubiquitin-like protein conjugation 
system is the modification of LC3 (a mammalian 
homolog of Atg8) by the phospholipid phosphatidy-
lethanolamine (PE) (Ichimura et al., 2000), an es-
sential process for the formation of autophago-
somes (Figure 2, right). LC3 is cleaved by cysteine 
protease Atg4 and then conjugated with PE by 
Atg7 and Atg3, a second E2-like enzyme. This lipi-
dated LC3-II then associates with newly forming 
autophagosome membranes. LC3-II remains on 
mature autophagosomes until its fusion with lyso-
somes (Burman and Ktistakis, 2010). The con-
version of LC3 to LC3-II is thus well-known as a 
marker of autophagy-induction. However, the in-
crease of LC3-II alone is not enough to show au-
tophagy activation because the inhibition of LC3-II 
degradation in the lysosome by the impaired au-
tophagy flux can also cause its accumulation.
     While the origin of autophagic vacuoles remains 
disputable, several hypotheses have been pro-
posed for the source of autophagosomal membrane 
during autophagosome formation. The first hypoth-
esis is “de novo” formation of autophagosome by 
Atg9 reservoirs (Mari et al., 2010). In the second 
hypothesis, various organelles such as ER (Hayashi- 
Nishino et al., 2009), mitochondria (Hailey et al., 
2010) and plasma membrane (Ravikumar et al., 
2010) are used as an origin for the formation of the 
phagophore (Figure 1). Recently, cup-shaped struc-
tures called omegasome, a discrete region of the 
ER, was identified as a platform for autophago-
some formation (Tooze and Yoshimori, 2010). The 
Atg5 complex, LC3 and ULK1 were shown to be 
recruited into the omegasome after starvation, and 
Atg5- and LC3-positive membranes seem to emerge 
from the omegasome. It was also observed that 
omegasomes form in close proximity to the Vps34- 

containing vesicles which may synthesize the 
PI(3)P. This hypothesis is also supported by a no-
tion of a physical association between the ER and 
early autophagic membranes (Hayashi-Nishino et 
al., 2009).

Vesicle completion and lysosomal degradation

Autophagosome then fuses with lysosomes/vacuoles, 
which is an essential process for completion of the 
autophagy pathway. Sequestration of cytoplasm in-
to a double-membrane cytosolic vesicle is followed 
by the fusion of the vesicle with a late endosome or 
lysosome to form an autophagolysosome (or auto-
lysosome). Then, inner membrane of the autopha-
gosome and autophagosome-containing cytoplasm- 
derived materials are degraded by lysosomal/va-
cuolar hydrolases inside the autophagosome. The 
molecular mechanisms underlying the transport and 
fusion of autophagosomes are just beginning to be 
understood, and through active investigations, sev-
eral major events involved in the process have re-
cently been clarified. 
     In yeast, the fusion of autophagosomes with the 
vacuole requires SNARE machinery and proteins 
such as the vacuolar syntaxin homologue Vam3 
(Darsow et al., 1997), the SNAP-25 homologue 
Vam7 (Sato et al., 1998), the Rab family GTP- 
binding protein Ypt7 (Mayer et al., 1997) or the 
orthologue of the N-ethylmaleimide-sensitive fusion 
(NSF) protein, Sec18 (Ishihara et al., 2001). In 
mammalian cells, autophagosome maturation is a 
prior step for the fusion between autophagosomes 
and lysosomes. Like in yeast, the activity of 
monomeric GTPases such as Rab22 and Rab24 is 
required for autophagosome maturation (Petiot et 
al., 2000), and mammalian orthologues of SNARE 
protein family members and the NSF protein may 
also be involved in the maturation of autophagic 
vesicles. 
     Recent studies have identified new regulators of 
autophagosome maturation and degradation, in-
cluding UVRAG (Liang et al., 2008), Rubicon 
(Matsunaga et al., 2009), presenillin-1 (Lee et al., 
2010), valosin-containing protein (VCP) (Tresse et 
al., 2010) and syntaxin-5 SNARE complex proteins 
(Renna et al., 2011). In addition, the endosomal 
sorting complex required for transport (ESCRT), 
which had originally been identified in the recog-
nition and sorting of ubiquitin-modified cargo pro-
teins into multivesicular bodies (MVBs) (Rothman 
and Wieland, 1996), was recently found to play a 
role in autophagosome-lysosome fusion (Rusten et 
al., 2007). Furthermore, ESCRT machinery was 
shown to be required for phagophore closure 
(Raiborg and Stenmark, 2009), autophagosome fu-
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sion (Lee et al., 2007) and lysosome biogenesis 
(Raiborg et al., 2008). The degradation products, 
including macromolecules, are then exported to 
the cytosol for re-utilization by the cell. This proc-
ess is poorly understood.

Conclusion

In the past decade there has been an extraordinary 
advance in our understanding of the molecular 
signaling involved in mammalian autophagy. Actually, 
genetic screens in yeast have identified numerous 
Atg genes that regulate autophagy process. In spite 
of those outcomes, many outstanding questions 
remain to be elucidated, including the origin of the 
membrane source for autophagosome formation, 
mechanism of phagophore expansion and autophago-
some formation and regulation of ubiquitin-like 
conjugation system in autophagy process (Chen 
and Klionsky, 2011). Recently, two interesting 
approaches have been employed to identify new 
autophagy regulators: small molecules screening 
(Zhang et al., 2007; Farkas et al., 2009) and 
studies on structural information of Atg proteins. 
From our knowledge, autophagy is a major 
contributor to maintain cellular homeostasis and 
metabolism. It is also involved in the pathogenesis 
of human diseases. Thus, continued studies to 
identify key molecules regulating autophagy and a 
better understanding for the process at molecular 
level are required to be further proceeded.
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