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Abstract

Background: The aim of this study was to explore if positive-pressure ventilation
delivered by a conventional ICU ventilator at a moderately high frequency (HFPPV) allows
a safe reduction of tidal volume (VT) below 6 mL/kg in a porcine model of severe acute
respiratory distress syndrome (ARDS) and at a lower mean airway pressure than
high-frequency oscillatory ventilation (HFOV).

Methods: This is a prospective study. In eight pigs (median weight 34 [29,36] kg), ARDS
was induced by pulmonary lavage and injurious ventilation. The animals were ventilated
with a randomized sequence of respiratory rates: 30, 60, 90, 120, 150, followed by HFOV
at 5 Hz. At each step, VT was adjusted to allow partial pressure of arterial carbon dioxide
(PaCO2) to stabilize between 57 and 63 mmHg. Data are shown as median [P25th,P75th].

Results: After lung injury, the PaO2/FiO2 (P/F) ratio was 92 [63,118] mmHg, pulmonary
shunt 26 [17,31]%, and static compliance 11 [8,14] mL/cmH2O. Positive end-expiratory
pressure (PEEP) was 14 [10,17] cmH2O. At 30 breaths/min, VT was higher than 6 (7.5
[6.8,10.2]) mL/kg, but at all higher frequencies, VT could be reduced and PaCO2

maintained, leading to reductions in plateau pressures and driving pressures. For
frequencies of 60 to 150/min, VT progressively fell from 5.2 [5.1,5.9] to 3.8 [3.7,4.2] mL/kg
(p < 0.001). There were no detrimental effects in terms of lung mechanics, auto-PEEP
generation, hemodynamics, or gas exchange. Mean airway pressure was maintained
constant and was increased only during HFOV.

Conclusions: During protective mechanical ventilation, HFPPV delivered by a
conventional ventilator in a severe ARDS swine model safely allows further tidal volume
reductions. This strategy also allowed decreasing airway pressures while maintaining
stable PaCO2 levels.

Keywords: Mechanical ventilation; Acute lung injury; Critical care unit; Protective
ventilation; Acute respiratory distress syndrome; High-frequency ventilation
Background
Acute respiratory distress syndrome (ARDS) is a common cause of mortality and mor-

bidity in critically ill patients [1]. Although indispensable in the support of ARDS pa-

tients, artificial ventilation involves the application of mechanical forces to the lung

parenchyma that can further induce injury [2], adding morbidity and mortality [3].
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Reducing tidal volumes (VTs) below 6 mL/kg of ideal body weight could potentially decrease

the cyclic stretch imposed on the lung [4,5]. Conversely, excessively low VTs have the potential

to lead to clinically significant hypercapnia-related acidosis [6] with harmful side effects [7,8].

In this scenario, high-frequency oscillatory ventilation (HFOV) has been tested, because

of its ability to provide adequate gas exchange even at very low tidal volumes [9-13]. This

technique, however, may be cumbersome because it requires a dedicated ventilator and spe-

cial training. Additionally, the VT delivered can be susceptible to variations in airway resist-

ance such as that which occurs with lung secretions [14]. Last but not least, it requires the

use of high airway pressures, which may have deleterious effects, especially on the right ven-

tricle [15]. Recently, two clinical studies in ARDS patients showed neutral [16] or disap-

pointing [17] results in terms of mortality when HFOV was compared to a conventional

mechanical ventilation strategy.

An alternative approach could be to apply moderately high frequency positive-pressure

ventilation (HFPPV) using conventional mechanical ventilators. A similar strategy was ex-

plored in the 1980s [18,19], but with special ventilators and before the well-established rec-

ognition of the importance of lung-protective strategies. HFPPV consists of applying

respiratory rates intermediate between those used conventionally (≤ 35 breaths/min) and

those used during HFOV (180 to 800 breaths/min). Potential advantages over HFOV would

be the possibility to control the VT delivered, the use of conventional mechanical ventilators

obviating the need for specialized training, and maintenance of a low mean airway pressure.

In this feasibility study, we tested in a swine model of ARDS whether such a strategy could

result in VT below 6 mL/kg while avoiding further increases in the partial pressure of arter-

ial carbon dioxide (PaCO2) and maintaining a reasonable mean airway pressure (Pmean).
Methods
This study was approved by the Institutional Animal Research Ethics Committees of

Hospital Sírio Libanês and of Faculdade de Medicina da Universidade de São Paulo,

both in São Paulo, Brazil, and was performed according to the National Institutes of

Health (USA) guidelines for the use of experimental animals. The experiments were

done in eight previously healthy Agroceres pigs.
Instrumentation

The animals were fasted overnight before the experiment with free access to water.

They received an intramuscular injection of midazolam (0.3 mg/kg; Dormonid®, Roche,

São Paulo, Brazil) and acepromazine (0.5 mg/kg; Acepran®, Andrômaco, São Paulo,

Brazil). Through an auricular vein, anesthesia was induced with thionembutal (12 mg/

kg; Tiopental®, Abbott, São Paulo, Brazil) and muscular relaxation with pancuronium

bromide (0.1 mg/kg; Pavulon®, AKZO Nobel, São Paulo, Brazil). They were then sub-

mitted to tracheal intubation (cuffed 7.5-French cannula) and connected to the Servo-

300 mechanical ventilator (Maquet, Rastatt, Germany) with the following parameters in

a volume-controlled mode: tidal volume of 8 to 10 mL/kg, positive end-expiratory pres-

sure (PEEP) of 5 cmH2O, inspiratory fraction of oxygen (FiO2) adjusted to keep arterial

saturation between 94% and 96%, and respiratory rate (RR) necessary to keep PaCO2

between 35 and 45 mmHg. Anesthesia was maintained during the study period with

midazolam (0.3 mg/kg/h) and fentanyl citrate (5 μg/kg/h; Fentanyl®, Janssen-Cilag, São
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Paulo, Brazil) and muscular relaxation with pancuronium bromide (0.2 mg/kg/h). The

adequate depth of anesthesia during the surgical period was evaluated with maintenance of

physiological variables (heart rate and arterial pressure) and absence of reflexes (corneal and

hind limb flexion response), as well as unresponsiveness to stimuli during manipulation.

Supplementary boluses of 3 to 5 μg/kg of fentanyl and 0.1 to 0.5 mg/kg of midazolam were

administered as necessary. A continuous drip of 1,000 mL/h of Lactated Ringer’s solution

was infused until the end of the induction of pulmonary injury, and then a continuous

infusion of 5 mL/kg/h of Lactated Ringer was maintained until the end of the study.

Monitoring with continuous electrocardiography, oxymetry, and blood pressures was

done with a multiparametric monitor (Dixtal-Philips DX 2020, São Paulo, Brazil). The left

femoral artery was cannulated for blood pressure monitoring and blood sampling. The right

internal jugular vein was cannulated with a 9-French introducer sheath (Arrow, Reading,

PA, USA) through which a pulmonary artery catheter (Edwards Lifesciences, Irvine, CA,

USA) was introduced for monitoring of the mean pulmonary artery pressure (PAPm),

cardiac output, central venous pressure (CVP), and mixed venous blood gases (SvO2). A

central venous catheter was introduced in the left internal jugular vein. A surgical cystost-

omy was done to quantify the urine output. The animal was connected to the NICO2

device (Novametrix Medical Systems, Wallingford, CT, USA) for airway end-tidal pressure

of carbon dioxide (EtCO2), tidal volume, airway pressures, and airway flow monitoring.

The regional ventilation was monitored with electrical impedance tomography (EIT;

Dixtal-Philips, São Paulo, Brazil) [20,21]. The lungs were split in sternal and vertebral

regions of the same height. The amount of ventilation to the regions studied was

reported according to the ventilator settings used. Arterial blood gas analyses were done

with the ABL 800 device (Radiometer, Copenhagen, Denmark). After the surgical period,

the animals were allowed to rest for 60 min prior to the baseline data acquisition.
Measurements

In all the steps of the study, the following data were collected:

1. Hemodynamic: heart rate, cardiac output, CVP, mean systemic arterial blood pressure

(ABPm), PAPm, pulmonary artery occlusion pressure (PAOP), SvO2, and

norepinephrine use and dosage

2. Respiratory: arterial partial pressure of oxygen (PaO2), PaCO2, EtCO2,VT, airway peak

pressure (Ppeak), airway plateau pressure (Pplateau) through expiratory valve occlusion

after 2 s of inspiratory pause, intrinsic positive end-expiratory pressure (PEEPi) through

expiratory valve occlusion after 4 s of expiratory pause, extrinsic positive end-expiratory

pressure (PEEPe), mean airway pressure (Pmean), inspiratory flow, inspiratory time

(Tinsp), and ventilatory distribution EIT data

3. Metabolic: pH, lactate, temperature, and fluid balance
Calculated variables

To obtain the calculated variables, we used the following formulas:

� Cardiac index (CI) = Cardiac output/Weight

� Systemic vascular resistance index = (ABPm −CVP) × 80/CI
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� Pulmonary vascular resistance index = (PAPm − PAOP) × 80/CI

� Blood oxygen content (C ×O2) = P × O2 × 0.0031 + 1.36 × Hb × S ×O2

� Minute ventilation = VT × RR

� PEEPtotal = PEEPi + PEEPe

� Alveolar oxygen partial pressure (PAO2) = 643 × FiO2/100 − (PaCO2/0.8)

� Alveolar-arterial oxygen [(A-a)O2] gradient = PAO2 − PaO2

� Pulmonary capillary oxygen content (CcO2) = PAO2 × 0.0031 + 1.36 × Hb

� Pulmonary shunt = (CcO2 −CaO2) × 100/(CcO2 − CvO2)

� Static compliance (Cstatic) =VT/(Pplateau − PEEPtotal)

� Dynamic compliance (Cdyn) =VT/(Ppeak − PEEPtotal)

� Resistance (Ppeak − Pplateau)/Inspiratory flow
ARDS induction

After the baseline data collection, ARDS was induced with repeated whole-lung lavage

using 1 L of isotonic saline (37°C) until the PaO2 was below 100 mmHg for at least

10 min. Lung injurious ventilation was then started with the animal ventilated in

pressure control mode with PEEP = 3 cmH2O, FiO2 = 1, inspiratory/expiratory time

ratio (I/E) = 1:1, Ppeak = 42 cmH2O, and a RR of 20 to 30 breaths/min [22]. Arterial

blood gases were obtained every 15 min, and the PEEP could be increased up to

19 cmH2O targeting a PaO2 level between 55 and 80 mmHg, whereas the inspiratory

pressure was limited at 48 cmH2O. The injurious ventilation was maintained until one

of the following parameters was reached:

� An interval of 240 min of injurious ventilation

� A PAPm > 50 mmHg

� A Cstatic < 10 mL/cmH2O (with a PEEP = 10 cmH2O and VT = 6 mL/kg)

� A PEEP persistently ≥ 15 cmH2O for at least two consecutive arterial blood sample

analyses

� An ABPm < 70 mmHg in spite of the use of norepinephrine in a dosage higher than

0.5 μg/kg/min

After lung injury induction, the stabilization step started. The animal was ventilated

according to the recommendations of the interventional group in the "ARMA" study [5]

in a volume-controlled mode, with VT = 6 mL/kg, RR = 35 breaths/min (the maximal

respiratory rate allowed by the protocol - because of hypercapnia and acidosis), initial

PEEP = 10 cmH2O (mean value used in the ARMA study), and FiO2 = 1.

An arterial blood sample was obtained every 10 min. Subsequently, PEEP and FiO2

were titrated according to the ARMA study PEEP table (aiming at a PaO2 = 55 to

80 mmHg) [5]. VT and RR were kept constant during the stabilization step with no at-

tempt to correct the PaCO2 level.
Experimental protocol

After reaching a PaCO2 equilibrium (variation < 5% in three consecutive arterial blood

samples), we considered that the stabilization phase was finished. The same PEEP level

titrated at this time was used in the following steps of the study.
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Four sequences of five different RRs were randomly tested, and these sequences were

chosen to alternate higher and lower respiratory frequencies (Figure 1). The five RRs

(ventilatory modes) randomized were as follows: RR = 30, 60, 90, 120, 150 breaths/min.

At each sequence,VT was adjusted to reach a PaCO2 target of 57 to 63 mmHg.

The randomization was done using sealed envelopes containing the proportion of

1:1:1:1 of the following RR sequences:

� Sequence 1 (60, 150, 90, 120, 30)

� Sequence 2 (90, 30, 120, 60, 150)

� Sequence 3 (120, 150, 90, 30, 60)

� Sequence 4 (150, 90, 30, 120, 60)

During this part of the protocol, the animals were ventilated using volume control

ventilation, with FiO2 = 1 and square inspiratory flow = 1 L/s. At each step, PEEPi was

measured every 10 min, and PEEPe was corrected in order to keep the PEEPtotal equal

to the PEEP obtained during the equilibrium step using the ARMA PEEP table.

After completion of these randomized sequences, the animals were submitted to

HFOV (Figure 1) at 5 Hz (SensorMedics 3100B, Yorba Linda, CA, USA) with a Pmean

set at 30 cmH2O, I/E = 1:2, bias flow = 30 L/min, and the initial pressure amplitude = 80

cmH2O [9]. Unlike the other five RRs, of which the sequence was randomized, HFOV

was always performed last, because of its higher Pmean, which could induce lung

recruitment.

An arterial blood sample was obtained each 10 min throughout the remainder of the

study. After VT changes or after pressure amplitude changes during HFOV, we waited

until there were three consecutive measurements with the PaCO2 levels stable between

57 and 63 mmHg. Data were then collected, and the next step of the sequence was

started. Between consecutive steps, a 40-s disconnection from the ventilator was done

in order to avoid the carryover of the time-dependent alveolar recruitment. At the end

of the experiments, the anesthesia was deepened with propofol overdose, and the ani-

mals were euthanized with a bolus of 10 mL of potassium chloride 19.1%.
5 Hertz

Instrumentation Lung injury induction Stabilization step Random sequences HFOV

ARMA strategy:

VT= 6mL/kg
RR = 35 breaths/min

PEEP titration*
ARMA PEEP-table

Frequencies tested:
(breaths/min)

30
60
90

120
150

PEEPT =  PEEP*

FiO2 = 1, 
xVT =  PaCO2 = 57 – 63 mmHg

Figure 1 Timeline of the study. PEEPT, total end-expiratory positive pressure (intrinsic end-expiratory
positive pressure plus extrinsic end-expiratory positive pressure should be the same as the end-expiratory
positive pressure titrated following the ARMA PEEP table); VT, tidal volume; FiO2, inspiratory fraction of
oxygen; PaCO2, partial arterial carbon dioxide pressure.
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Statistical analysis

The Shapiro-Wilk goodness-of-fit model showed a non-parametrical distribution for

most variables; therefore, data are reported as median [P25th,P75th]. Wilcoxon’s signed

rank test was used to test variables before and after lung injury induction and to com-

pare the upper and lower regional ventilation with the EIT. In order to avoid type I

error, a modified Bonferroni’s correction was used to account for the multiple compari-

sons between upper and lower regions of ventilation. Therefore, the p value considered

significant was 0.007 when comparing upper and lower regions during the various fre-

quencies studied and 0.012 when comparing the effects of inspiratory pauses and the

alveolar recruitment with a RR of 60 breaths/min. The analysis of variance for repeated

measures on ranks (Friedman’s test) was used for analyses during the ventilatory modes

tested. The post hoc analyses were done using Student-Newman-Keuls’ test. A p < 0.05

was considered significant. The analyses and graphs were done with the SigmaPlot 12.0

statistical package software (Systat Software, Inc. San Jose, CA, USA).
Results
Eight pigs weighing 34 [29,39] kg were used. ARDS was induced using 10 [7,16] L of

normal saline followed by injurious mechanical ventilation for 210 [40,225] min. The

respiratory variables at baseline and after the induction of lung injury are shown in

Table 1.

The FIO2 during the stabilization step was 0.7 [0.5,0.9]. The time to PaCO2 equilib-

rium was similar in the different phases of the experiment and equal to 50 [40,75] min.

The most important respiratory data with different RRs are shown in Figure 2 and

Table 2. During the stabilization step, PaCO2 was 81 [78,92] mmHg. In all other ex-

perimental phases, the PaCO2 was kept in the planned range of 57 to 63 mmHg

(Figure 2A). VT could be progressively reduced with increasing RRs (Figure 2B), as did

regional ventilation (Figure 3). The ventilation to the dependent parts of the lung re-

duced to a greater extent leading to an increase in the sternal/vertebral ratio of regional

ventilation (Figure 4). Additionally, low values of plateau and driving pressures were

maintained at all RRs (Figure 2C,D, respectively). The HFOV led to the highest oxygen-

ation, the lowest VT, and the most homogeneous distribution of ventilation (Table 2,

Figures 2B and 4, respectively).

Only one animal needed norepinephrine during HFPPV, and the dose varied between

2.4 μg/kg/min (HFPPV = 60) and 3.2 μg/kg/min (HFOV). The hemodynamic and meta-

bolic data with different RRs are shown in Table 3. Of note, the stabilization step with
Table 1 Respiratory variables at baseline and after the induction of lung injury

Variable Baseline After lung injury

P/F ratio (mmHg) 427 [368,473] 97 [67,130]*

Shunt (%) 13 [12,15] 23 [16,32]*

Tidal volume (sternal) 4.8 [3.7,5.9] 4 [4.5,3.5]

Tidal volume (ventral) 4.2 [3.0,5.4] 2.5 [2,3]

Cstatic (mL/cmH2O) 27 [15,30] 12 [9,14]

Resistance (cmH2O/L/s) 8 [7,10] 18 [14,26]*

Values are presented as median [P25th,P75th] Cstatic and P/F denote static compliance and the ratio of arterial oxygen
concentration to the fraction of inspired oxygen, respectively. *p < 0.05 vs baseline, Wilcoxon’s signed rank test.
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Figure 2 Respiratory variables during the ventilatory modes tested. (A) PaCO2 (mmHg; Friedman’s
test, p = 0.011). (B) Tidal volume (mL/kg; Friedman’s test, p < 0.001). (C) Plateau pressure (cmH2O; Friedman’s
test, p < 0.001). (D) Driving pressure (cmH2O; Friedman’s test, p < 0.001). VT, RR, HFPPV, and HFOV denote
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analysis, p < 0.05 vs stabilization step (VT = 6 mL/kg and RR = 35 breaths/min); #Student-Newman-Keuls’ post
hoc analysis, p < 0.05 vs HFPPV = 150.
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VT = 6 mL/kg and RR = 35 breaths/min was associated with higher pulmonary artery

pressures and lower pH.

Discussion
Our main finding was that, during protective mechanical ventilation of a severe ARDS

swine model, the use of HFPPV with a conventional ventilator allows further reduc-

tions in VT and PaCO2, leading to reductions in driving pressures and plateau pressures

without increasing mean airway pressure. We did not identify any significant detrimen-

tal effect of the high RRs applied, even after careful assessment of hemodynamics, re-

spiratory system mechanics, and gas exchange.

The possibility of further reducing the ventilator-associated lung injury is of utmost

importance, with possible implications in terms of reducing death and multiple organ

failure in ARDS patients [23]. Ventilation with low VTs (6 mL/kg) is still the standard

support for those patients [5], although lower VTs might produce additional protection

[6,24]. Of note, one third of ARDS patients under protective ventilation still have lung

hyperdistention, which is associated with increases in systemic inflammatory markers

[25]. This subset of patients, usually more severely injured, could possibly benefit from

further VT reductions [24].



Table 2 Respiratory variables through the ventilatory modes tested

Variable VT =
6 mL/kg

RR =
30

HFPPV =
60

HFPPV =
90

HFPPV =
120

HFPPV =
150

HFOV p
valuea

P/F ratio
(mmHg)

95
[87,105]

151
[117,181]b

141
[102,189]b

132
[95,169]b

111
[86,162]b

112
[90,171]b

193
[146,216]b,c

P =
0.003

Gradient
(A-a)O2

480
[465,493]

396
[383,452]b

427
[378,468]b

427
[394,466]

455
[406,481]

458
[394,478]

365
[350,420]b,c

P =
0.014

Minute
ventilation
(L/min)

6.9
[6.6,8.8]

8.7
[7.4,10.0]

11.1
[11.0,11.5]b

15.6
[14.0,17.5]b

18.6
[13.0,19.2]b

20.2
[19.5,21.3]b

27
[23.5,28.4]b,c

P <
0.001

Shunt (%) 43
[41,45]

29
[26,34]b

34
[30,40]

31
[28,44]

34
[31,45]

38
[30,43]

27
[25,32]b,c

P =
0.003

EtCO2

(mmHg)
58

[52,60]
43

[32,47]b
41

[37,49]b
40

[30,45]b
40

[31,48]b
34

[28,36]b
27

[23,30]b,c
P <
0.001

Cstatic (mL/
cmH2O)

12
[10,14]

12
[9,14]

10
[9,13]

10
[9,12]b

10
[7,11]b

9
[8,11]b

- P =
0.001

Cdyn (mL/
cmH2O)

8
[7,9]

9
[6,10]

7
[6,9]

7
[6,8]

6
[5,7]b

6
[5,7]b

- P <
0.001

Resistance
(cmH2O/L/s)

8
[8,10]

10
[9,12]b

9
[8,9]b

9
[8,9]b

8
[8,11]b

9
[8,13]b

17
[13,20]b,c

P <
0.001

PEEP total
(cmH2O)

14
[11,17]

14
[10,17]

14
[10,17]

13
[10,16]

13
[10,17]

13
[10,17]

- P =
0.744

PEEP intrinsic
(cmH2O)

0 0 0 0
[0,1]

0
[0,1]

2
[1,3]b

- P <
0.001

PEEP extrinsic
(cmH2O)

14
[11,16]

14
[11,16]

13
[10,17]

13
[10,16]

13
[10,16]

12
[9,14]

- P <
0.001

Peak pressure
(cmH2O)

45
[44,48]

54
[47,58]b

44
[42,47]

44
[41,45]

41
[38,44]

41
[38,43]

59
[51,79]b,c

P <
0.001

Pmean

(cmH2O)
17

[15,20]
18

[16,22]b
18

[15,22]b
20

[18,23]b
20

[18,24]b
20

[17,23]b
29

[28,30]b,c
P <
0.001

Inspiratory
flow (L/s)

1 1 1 1 1 1 - P =
1.000

Tinsp/Ttot (%) 15
[14,17]

19
[14,22]

24
[20,28]b

34
[30,37]b

38
[33,44]b

42
[37,49]b

56
[50,67]b,c

P <
0.001

Values are presented as median [P25th,P75th]. aThe p value was obtained through Friedman’s test; bStudent-Newman-Keuls’ post
hoc analysis, p< 0.05 vs VT = stabilization step (VT = 6 mL/kg and RR = 35 breaths/min); cStudent-Newman-Keuls’ post hoc analysis,
p< 0.05 vs HFPPV= 150.
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Increasing the RR at constant alveolar ventilation, we obtained a progressive decrease in

VTs reaching levels below 4 mL/kg. This finding challenges the paradigm - promulgated by

the design of many clinical trials that RRs should be kept equal to or less than 35 breaths

per minute [5,26-28]. In our model of severe ARDS, the standard of care [5] settings of VTs

at 6 mL/kg and a maximum RR of 35 breaths/min led to a median PaCO2 value of

81 mmHg with a median pH of 7.13. Targeting a PaCO2 of 60 mmHg, we were able to re-

duce VTs by 36% with a RR of 150 breaths per minute. Other authors have shown, in an ex-

perimental model of ARDS, that higher RRs allow for a reduction in VT when associated

with a strategy to lower the dead space (aspiration of dead space) [29,30]. Similarly, a recent

study in patients with ARDS showed that protective VT around 4 mL/kg can be achieved

with modest increments in RR, provided that care is taken to minimize the circuit dead

space [31]. These studies combined increases in RR with other measures to decrease the

dead space. Our findings on the isolated effect of RR on the reduction of tidal volume help

understand the independent effect of manipulating the RR.
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Table 3 Hemodynamic and metabolic variables during the ventilatory modes studied

Variable VT =
6 mL/kg

RR =
30

HFPPV =
60

HFPPV =
90

HFPPV =
120

HFPPV =
150

HFOV p
valuea

Hemodynamic

Heart rate
(bpm)

144
[125,165]

165
[124,182]

173
[144,181]

169
[130,189]

164
[128,196]

173
[142,196]

145
[122,155]

P =
0.210

Cardiac index
(mL/kg/min)

138
[128,153]

126
[121,145]

145
[120,169]

127
[115,158]

141
[118,166]

132
[116,168]

126
[101,142]

P =
0.363

SV
(mL)

28
[26,42]

27
[24,41]

27
[26,35]

26
[23,44]

27
[26,34]

30
[26,35]

31
[22,44]

P =
0.916

ABPm
(mmHg)

90
[75,107]

86
[75,112]

84
[72,97]

91
[77,100]

83
[70,112]

78
[69,105]

82
[72,98]

P =
0.320

PAPm
(mmHg)

43
[38,52]

34
[31,37]b

34
[28,36]b

36
[33,37]b

33
[30,47]b

38
[30,43]b

31
[30,40]b

P =
0.018

CVP
(mmHg)

9
[9,12]

8
[7,12]

8
[6,10]

9
[6,10]

8
[7,10]

9
[7,10]

11
[10,12]c

P =
0.017

PAOP
(mmHg)

12
[11,15]

12
[11,15]

12
[9,14]

12
[10,14]

12
[10,15]

12
[10,15]

14
[12,17]

P =
0.042

SvO2

(mmHg)
54

[47,70]
70

[49,79]
68

[48,71]
63

[48,66]
64

[43,74]
65

[55,73]
65

[50,75]
P =
0.140

SVRI (dynes.s-1

(cm5)-1.kg-1
51.8

[41.8,56.4]
47.1

[39.8,65.6]
47.0

[35.0,50.9]
52.7

[36.7,61.4]
41.7

[33.4,63.6]
42.4

[28.8,66.5]
50.4

[31.6,55.8]
P =
0.558

PVRI (dynes.s-1.
(cm5)-1.kg-1

22.3
[17.5,25.7]

15.7
[13.0,16.8]

15.6
[10.9,17.7]

16.7
[13.9,17.7]

14.2
[12.4,20.8]

16.8
[12.0,20.7]

13.6
[10.9,18.2]

P =
0.133

Metabolic

Lactate
(mEq/L)

1.7
[1.1,2.1]

1.3
[0.8,1.7]

1.6
[0.8,2.0]

1.7
[1.1,2.0]

1.4
[1.0,1.9]

1.6
[0.9,2.3]

1.5
[1.1,1.8]

P =
0.762

pH 7.13
[7.08,7.2]

7.25
[7.24,7.33]b

7.25
[7.24,7.35]b

7.26
[7.23,7.33]b

7.27
[7.2,7.3]b

7.26
[7.21,7.34]b

7.25
[7.2,7.32]b

P =
0.002

Temperature
(°C)

38.6
[37.3,39.2]

39.7
[38.0,39.8]b

39.4
[37.6,39.6]b

39.2
[38.1,39.6]b

38.8
[37.6,39.6]b

39.0
[37.8,39.5]b

39.2
[38.1,39.8]b

P =
0.007

Fluid balance
(mL)

−50
[−242,−5]

170
[101,278]

40
[−22,102]

100
[67,110]

60
[5,108]

40
[−58,88]

30
[−21,50]

P =
0.044

Values are presented as median [P25th,P75th]. aThe p value was obtained through Friedman’s test; bStudent-Newman-Keuls’
post hoc analysis, p < 0.05 vs VT = stabilization step (VT = 6 mL/kg and RR = 35 breaths/min); cStudent-Newman-Keuls’ post hoc
analysis, p < 0.05 vs HFPPV = 150.
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The increases in RR were not associated with significant changes in gas exchange.

We did notice a not significant but progressive fall in the median PaO2/FiO2 (P/F) ratio

with increases in RR above 30 breaths per minute amounting to a fall of 26% at a RR of

150 breaths per minute (Table 2). Concurrently, the Tinsp/Ttot ratio increased from 19%

to 42% when RR increased from 30 to 150 (Table 2), due to the fixed inspiratory flow

rate and the need for higher minute ventilation at high RR. These increases in the

Tinsp/Ttot ratio would favor a change in the P/F ratio in the opposite direction of the

trend we found. These observations emphasize that with our relatively small sample

size, we might have been underpowered to detect some differences such as the P/F ra-

tio variation. If such trend proved significant in a larger study, it is possible that the

lower tidal volumes at higher RR have favored the development of absorption atelec-

tasis, although we cannot exclude that hemodynamic factors may played a role.

HFOV, a more classical strategy than HFPPV to provide adequate gas exchange at

very low VTs [32,33], has been recently shown to provide no benefit or even cause harm

to patients with ARDS [16,17]. Our results showed that HFOV = 5 Hz could stabilize

the PaCO2 with VTs 26% lower than HFPPV = 150, however, with a RR twice as high



Cordioli et al. Intensive Care Medicine Experimental 2014, 2:13 Page 11 of 13
http://www.icm-experimental.com/content/2/1/13
and a Pmean 30% higher [15]. This is illustrative of the disproportionate increases in RR

to maintain alveolar ventilation at progressively lower VTs, especially when close to the

dead space, and the need to increase Pmean, which may have deleterious hemodynamic

effects. The consequence of this ventilation inefficiency might be an increased dissipa-

tion of energy in the lungs, potentially leading to more lung injury even at reduced

stress and strain per breath. Therefore, reducing VT without increasing mean airway

pressure might be of special interest. In that sense, HFPPV might offer a better com-

promise between VT and RR than HFOV.

Ventilation decreased more in the gravitation-dependent regions, a finding suggestive

of reabsorption atelectasis, air trapping, or incomplete filling of those regions due to

airway narrowing. Even after taking this ‘functional baby lung’ into account, the net result

was likely a lesser degree of tidal lung stretch as suggested by the decrease in driving

pressures and plateau pressures. Additionally, despite a preferential reduction in

dependent ventilation (Figure 4), HFPPV could result in lower regional VT in non-

dependent regions (Figure 3).
Limitations

Our study has several limitations. First, the arbitrary choice of the target CO2 level dur-

ing HFPPV can be criticized. The CO2 value can be a confounding factor of the ventila-

tory settings during ARDS ventilation, with some studies showing a protective [34,35]

and others a potentially deleterious role [36,37]. We chose a narrow range of 57 to

63 mmHg to avoid such potential confounding effect and to avoid significant acidosis

(pH < 7.15), a goal we achieved in all experimental conditions. Likely, the main findings

of the study would maintain had a normocapnia target been applied. Second, our study

design, with sequential changes in the ventilator settings, was susceptible to carryover

phenomena. We tried to avoid that effect through the randomization of sequences, the

disconnection from the ventilator between the steps, and through a prolonged wait to

the PaCO2 equilibrium. Third, the performance of conventional ventilators declines at

very high RRs and low VTs, especially if low-compliance tubing is not employed [38].

Fourth, we did not rule out that histological damage to the lungs might have happened

at those very high RRs. Fifth, HFOV was the last step of the study due to logistic issues

and at this time the animals had significant positive fluid balances. This could be one

explanation why HFOV was not associated with hemodynamic alterations, even with

the use of higher Pmean. Finally, we cannot directly extrapolate these experimental find-

ings to patients, who have longer time constants than pigs and might not tolerate RRs

as high. Interestingly, those with the most severe lung injury tolerate better very high

RR, because of their low time constants. Even so, in our experience, it is difficult to

apply RR > 60 breaths per minute to patients without leading to intrinsic PEEP.
Conclusions
In an animal model of severe ARDS, as compared to the standard protective ventila-

tion, high-frequency positive-pressure ventilation delivered by a conventional ventilator

allowed further reductions in tidal volume and in inspiratory pressures. As such,

HFPPV could be a well-suited alternative in the treatment of severe ARDS with very

low lung compliance, although its impact on lung inflammation still awaits evaluation.
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