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Since its appearance, the Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-
2), the causal agent of Coronavirus Disease 2019 (COVID-19), represents a global
problem for human health that involves the host lipid homeostasis. Regarding, lipid rafts
are functional membrane microdomains with highly and tightly packed lipid molecules.
These regions enriched in sphingolipids and cholesterol recruit and concentrate several
receptors and molecules involved in pathogen recognition and cellular signaling.
Cholesterol-rich lipid rafts have multiple functions for viral replication; however, their role
in SARS-CoV-2 infection remains unclear. In this review, we discussed the novel evidence
on the cholesterol-rich lipid rafts as a platform for SARS-CoV-2 entry, where receptors
such as the angiotensin-converting enzyme-2 (ACE-2), heparan sulfate proteoglycans
(HSPGs), human Toll-like receptors (TLRs), transmembrane serine proteases (TMPRSS),
CD-147 and HDL-scavenger receptor B type 1 (SR-B1) are recruited for their interaction
with the viral spike protein. FDA-approved drugs such as statins, metformin,
hydroxychloroquine, and cyclodextrins (methyl-b-cyclodextrin) can disrupt cholesterol-
rich lipid rafts to regulate key molecules in the immune signaling pathways triggered by
SARS-CoV-2 infection. Taken together, better knowledge on cholesterol-rich lipid rafts in
the SARS-CoV-2-host interactions will provide valuable insights into pathogenesis and the
identification of novel therapeutic targets.

Keywords: COVID-19, SARS-CoV-2 attachment and entry, cholesterol-rich lipid rafts, immune response,
antiviral therapy
INTRODUCTION

The current Coronavirus disease 2019 (COVID-19) emergency is considered a global health threat
(1). COVID-19 includes dyspnea, fever, headache, myalgia, and severe outcomes such as severe
pneumonia, respiratory failure, multiple organ failure, including death (2). Severe Acute Respiratory
Syndrome Coronavirus (SARS-CoV-2), the causal agent of COVID-19, belongs to the family of
Coronaviridae (3) and is translated into four structural proteins (S, E, M, and N) and sixteen non-
structural proteins (NSP1−16) (4). The structural S protein or spike glycoprotein-mediated the
coronavirus entry into host cells and comprised two subunits (5). The S1 subunit poses a receptor-
org December 2021 | Volume 12 | Article 7968551
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binding domain (RBD) that specifically interacts with the host
cell ACE-2 receptor, and the S2 subunit fuses the membranes of
viruses and host cells (5). ACE-2 is a homolog of ACE-1 receptor
that mediates the angiotensin II production to activate the renin-
angiotensin system (RAS) and plays a crucial role in
cardiovascular diseases (6). The ACE-2 receptor is widely
expressed in the heart, lung, and kidney (7) and functions
during SARS-CoV-2 entry (8). Moreover, new evidence
demonstrates the involvement of other receptors and
cholesterol-rich lipid rafts in the SARS-CoV-2 internalization
(9–17).

Due to the lipid rafts containing proteins and high
concentrations of sphingolipids and cholesterol, the plasma
membrane is less fluid than the rest (18). Thus, these rigid
domains in the cell membrane provide a platform for diverse
receptors involved in cell signaling and other functions (19–22).
In addition, the lipid rafts contain specific receptors that mediate
the internalization of pathogens through distinct entry
mechanisms and modulate the lipid raft-dependent immune
response (23, 24).

During SARS-CoV-2 infection, receptors relying on
cholesterol-rich lipid rafts that contribute to the progression of
inflammation are involved in viral entry (9, 11, 15, 16).
Syndecans, a protein of the transmembrane proteoglycan
family, facilitate the SARS-CoV-2 entry (15). Moreover, the
SARS-CoV-2 S protein interacts with heparan sulfate and
ACE-2 at the cell surface (10). Interestingly, receptors involved
in the immune system, such as CD-147 and human Toll-like
receptors (TLR), play an essential role in host cell entry and
activation of the innate immune response to SARS-CoV-2 (11,
25). Hence, cholesterol-rich lipid rafts play an essential role in
regulating the immune response and targeting antiviral therapy
during SARS-CoV-2 infection.

The role of cholesterol-rich lipid rafts in the viral entry,
assembly, and release was elucidated using cholesterol-lowering
treatments (26–28). The efficient removal of cholesterol from
these membrane microdomains leads to a disruption of the
signaling pathways regulated by lipid rafts and the elimination
of proteins associated with them (27, 29–31). In SARS-CoV-2
entry, the integrity of cholesterol-rich lipid rafts can modulate
the interaction between the receptor and viral S protein (32).
However, a better understanding of the role of cholesterol-rich
lipid rafts in the host-SARS-CoV-2 interaction will provide
valuable insights into novel mechanisms of viral entry and the
development of new and alternate antiviral therapies.
LIPID RAFTS AND CORONAVIRUSES

Membrane microdomains enriched in cholesterol and
glycosphingolipids are called lipid rafts (18). The cholesterol-
rich lipid rafts concentrate cellular proteins and lipids (19–22).
In addition, cholesterol-rich lipid rafts are crucial cellular factors
involved in viral replication (31, 33). The concentration of
receptors and co-receptors in cholesterol-rich lipid rafts
Frontiers in Immunology | www.frontiersin.org 2
facilitates the virus fusion with host cell membranes,
promoting efficient viral entry (31, 33, 34).

Coronaviruses are diverse viruses that infect a broad range of
organisms (35). Human coronaviruses (HCoV-229E, HCoV-
OC43, HCoV-NL63, and HCoV-HKU1) circulate worldwide,
causing seasonal and usually mild respiratory tract infections
(36). However, SARS-CoV, Middle East respiratory syndrome
coronavirus (MERS-CoV), and SARS-CoV-2 are highly
pathogenic, producing life-threatening respiratory pathologies
and lung injuries (35, 37).

The cholesterol in the lipid rafts is indispensable for the
internalization of the coronaviruses (38–41). Interestingly,
cholesterol depletion from lipid rafts with cholesterol-lowering
treatments such as methyl-b-cyclodextrin (MbCD) affects the
interaction between the SARS-CoV S protein and the ACE-2
receptor (42). Also, a decrease of ACE-2 on the cell surface and
reduction of the SARS-CoV entry was determined in MbCD
pretreated cells (43). Therefore, based on their research, Glende
et al. suggested that the difference in these data is due to their
protocols, speculating that cholesterol-rich lipid rafts affect ACE-
2 protein conformation and the presentation of antigenic
epitopes (42). Furthermore, the depletion of this cholesterol
affects the spatial localization of ACE-2 in lipid rafts,
demonstrating the importance of cholesterol-rich lipid rafts for
efficient interaction between the viral surface protein and the
cellular receptor (42).

Although Coronavirus envelope (E) protein is not related to
viral entry, this protein plays a prominent role in viral
morphogenesis and pathogenesis (44). SARS-CoV E protein
can be translocated from the Golgi apparatus and endoplasmic
reticulum to the cell surface, specifically in cholesterol-rich lipid
rafts (45, 46). The E protein transmembrane domain is
associated with membrane permeabilizing activity and
inflammasome activation (45, 46). Since E protein is highly
conserved among coronaviruses, this could be related to the
membrane ion channel activity in the SARS-CoV-2 pathogenesis
(47). The cholesterol depletion from lipid rafts decreases the
virus entry and contributes to altering the membrane protein
composition (43, 48); therefore, this process could impact the
pathogenic mechanisms involving the E protein.

Overall, these results indicate that cholesterol-rich lipid rafts
are required for entry and pathogenesis of the coronaviruses.
THE ROLE OF CHOLESTEROL-RICH LIPID
RAFTS IN SARS-CoV-2 ENTRY

SARS-CoV-2 is a positive-sense RNA virus with two large
overlapping open reading frames (ORF1a and ORF1b). This
large single-stranded RNA genome of ~ 30,000 nt encodes two
large polyproteins, pp1a (440-500 kDa) and pp1ab (740-810
kDa), which are cleaved into the NSP1 to 11 and NSP12 to 16,
respectively (4). Some NSP contain functional domains,
including the 3C-like cysteine proteinase (3CLpro, NSP5),
RNA-dependent RNA polymerase (RdRp, most of NSP12),
December 2021 | Volume 12 | Article 796855

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
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nidovirus RdRp-associated nucleotidyltransferase (N terminal of
NSP12), helicase (Hel, NSP13), and exonuclease (ExoN, NSP14)
(4, 49). Also, the SARS-CoV-2 genome encodes four structural
proteins: spike surface glycoprotein (S), envelope (E), membrane
(M), and nucleocapsid (N) that are essential for viral entry and
assembly; and nine accessory proteins involved in the host
immune response during infection (4, 49). SARS-CoV-2
attachment is the first step in the infection process, where the
S protein on the envelope of the virus recognizes the host cell
receptors and mediates the viral entry (Figure 1) (49). S protein
is cleaved by cellular proteases into the S1 and S2 subunits to give
rise to trimers of the S1/S2 heterodimer (Figure 1) (54, 55). The
S1 subunit contains the N-terminal domain (NTD) and the C-
terminal domain (CTD), also called the receptor-binding
domain (RBD), since it domain is responsible for binding the
host receptor ACE-2 (54–56). The tip of the NTD of the SARS-
CoV-2 S protein has a ganglioside-binding domain (52 amino
acid residues, 111-162) that could enhance virus attachment to
lipid rafts in the host cell membrane and facilitate receptors
binding (57), which will be discussed below. Moreover, the
cleavage of SARS-CoV-2 S protein at the S1-S2 site produces
the sequence TQTNSPRRAROH, the binding site for neuropilin 1
(NRP1), an entry receptor found in the olfactory neuronal
cells (53).
Frontiers in Immunology | www.frontiersin.org 3
After attachment, the entry to the host cells of SARS-CoV-2
occurs via clathrin-mediated endocytosis in multiple cell types
such as VERO, A549, and HEK-293T cells (58). In contrast, the
caveolin-, clathrin-, endophilin A2-mediated endocytosis, and
macropinocytosis might not be involved in SARS-CoV-2 entry
(59). Bayati et al. used a Lentivirus pseudotyped with purified
SARS-CoV-2 S protein prefusion-stabilized ectodomain (58).
Therefore, the SARS-CoV-2 entry into the cell could depend
on the distinct conformational states of the S protein (Figure 1)
(60, 61).

The clathrin-independent carriers/GPI-anchored-protein-
enriched early endosomal compartments (CLIC/GEEC) is an
essential pathway for cholesterol-rich lipid raft components (62,
63). Li et al. demonstrated that the CDC42-involved CLIC/GEEC
pathway is unlikely to participate in the infection of SARS-CoV-
2 (59). Nevertheless, SARS-CoV-2 entry to host cells is
cholesterol-rich lipid rafts dependent (59). Two pathways can
regulate it: (1) the membrane fusion using proteases such as
TMPRSS2, and (2) the endosomal pathway (where the cathepsin
B and L (CatB/L) is involved), which is less efficient than the
fusion pathway (Figure 1) (64, 65). In this sense, CatL but not
CatB facilities SARS-CoV-2 entry (Figure 1). When the
TMPRSS2 expression is absent, the CatL is critical to viral
entry mediated by S protein; however, if TMPRSS2 is
FIGURE 1 | Schematic representation of SARS-CoV-2 viral entry via receptors located on cholesterol-rich lipid rafts. In the left panel, we represent the different
receptors and co-receptors located in the cholesterol-rich lipid rafts, described to participate and enhance the entry of SARS-CoV-2 (50). In the right panel, we
represent the post-translational modifications of the spike protein enveloped in the attachment and the early and late entry of the virus. Early entry involves the major
receptor ACE-2 and the transmembrane protease TMPRSS2/4 that promotes pH-independent activation of the spike protein, which exposes the fusion peptide
allowing fusion between cell and viral membranes (13, 51, 52). Late entry involves the ACE-2 receptor and a co-receptor such as HSPG (10), Syndecan-1/4 (15),
NRP1 (53), L-SIGN (16), and SR-B1 (12). On the other hand, during the absence of ACE-2, the receptors CD-147 (11), AXL (14, 17), and probably TLR4 (9) activate
the endocytic pathway mediated by clathrin or caveolin. In this endosomal compartment, the SARS-CoV-2 S protein is activated by the pH-dependent protease
cathepsin, releasing the RNA into the cell cytoplasm (8). The graphical was elaborated using BioRender.com.
December 2021 | Volume 12 | Article 796855

https://BioRender.com
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
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expressed, the use of CatL is markedly diminished (66). The
proteolytic activation by CatL depends on endosomal
acidification and is inhibited when the endosomal pH increases
(Figure 1) (66). In contrast, the TMPRSS2-mediated entry
pathway is not affected by pH, and it is more dependent and
preferred over the CatL-mediated pathway for SARS-CoV-2
(66). Ou et al. also demonstrated that the furin-cleavage in the
SARS-CoV-2-producing cell correlates with greater dependence
on TMPRSS2 and lower dependence on CatL (66).

On the other hand, the cells from Nieman-Pick disease type C
(NPC), a lysosomal storage disorder, have reduced lipid rafts.
This could create unfavorable environments for SARS-CoV-2
infectivity (67). Hence, Ballout et al. hypothesized that the NPC
cells might affect the trafficking of SARS-CoV-2 receptors such as
ACE-2 and block SARS-CoV-2 fusion by the CatL leakage or
affecting the proteolytic activity of CatL when the intra-
lysosomal pH increases (67). In this regard, Nieman-Pick
disease type C1 (NPC1) receptor, an endosomal membrane
protein that regulates intracellular cholesterol traffic, interacts
with SARS-CoV-2 N protein (68). The mechanism by which the
SARS-CoV-2 N protein interacts with NPC1 is unknown. One
possibility is that similarly to the interaction between the Ebola
virus (EBOV)-glycoprotein (GP) and NPC1, SARS-CoV-2 could
traffic the endocytic pathway for viral uncoating through the
fusion of late endosomes and lysosomes (68, 69). It is not yet
clear the specific role of NPC1 during SARS-CoV-2 infection.
However, the antiviral compounds that interact with NPC1, such
as carbazole SC816 and sulfides SC073 and SC198 (drugs used to
elucidate the interaction between EBOV-GP and NPC1) can
reduce SARS-CoV-2 infection with a good selectivity index in
human cell infection models (68, 70). This receptor was found in
a genome-scale CRISPR loss-of-function screen performed to
identify host factors required for SARS-CoV-2 viral infection of
human alveolar basal epithelial carcinoma cells (71). Thus, the
role of NPC1 in cholesterol regulation is essential during SARS-
CoV-2 infection (67, 71, 72). Also, the panel of the top-ranked
genes screened by Daniloski et al. revealed that RAB7A regulates
cell surface expression of ACE-2, likely by sequestering this
SARS-CoV-2 receptor in endosomal vesicles (71). RAB7A
interacts with the SARS-CoV-2 NSP7 protein (73), a viral
protein required for the RdRP complex assembly (74). Since
the RAB7A is required for exosome secretion (75), SARS-CoV-2
could use an exosome pathway as a route of entry or egress,
similar to other viruses (76). Exosomes isolated from COVID-19
patients contain the SARS-CoV-2 RNA and proteins implicated
in the exosomal cargo (77). These results suggest that exosomes
are involved in the mechanisms associated with tissue damage
and multiple organ injury in COVID-19 patients (77).

Upon cell entry, cholesterol-rich lipid rafts found on the outer
leaflet of the plasma membrane can play an essential role in
membrane fusion between the SARS-CoV-2 particle and the
early endosome to allow the viral genome to be released into the
cytoplasm (Figure 1). In this sense, the upstream helix (UH)
region is removed by S2-proteolytic cleavage to activate
irreversible conformational changes and initiate membrane
fusion (49, 60). This SARS-CoV-2 replication step depends on
Frontiers in Immunology | www.frontiersin.org 4
the cholesterol-rich lipid rafts and endosomal acidification. The
cholesterol-rich lipid rafts are found on the luminal side of the
endosome (78–80). Glycerophospholipid bis(monoacylglycerol)
phosphate (BMP) is also named lysobisphosphatidic acid
(LBPA) (81). BMP is enriched in the internal membranes of
the late endosome/lysosome, regulating cholesterol distribution
on the lipid rafts (81). The accumulation of BMP reduces the
expression of ATP-binding cassette transporter G1 (ABCG1), a
lipid transporter responsible for lung lipid homeostasis and
acting as a protective factor during infections (82, 83).
Cholesterol-rich lipid rafts are determinants for SARS-CoV-2
interaction with the cellular receptor ACE2 (Figure 1) (59). BMP
regulation of these cholesterol-rich membrane domains could
impact viral entry (81). BMP regulates the cholesterol efflux to
HDL in macrophages and the production of oxysterols such as
25-Hydroxycholesterol (25-HC) (84). 25-HC is a potent
inhibitor of SARS-CoV-2 replication by restricting the S
protein catalyzed membrane fusion via blockade of cholesterol
export in the late endosomes (85). 25-HC is the product of
cholesterol oxidation by the enzyme cholesterol-25-hydroxylase
and can control sterol biosynthesis by regulating Sterol
Regulatory Element Binding Protein (SREBP) (86). Zu et al.
suggested that 25-HC could be considered a risk marker for the
severity due to its high concentration in a fatal COVID-19
patient and SARS-CoV-2 infected hACE2 mice (87). 27-
hydroxicholesterol (27-HC) is accumulated in plasma
membrane lipid rafts when exogenously added (88). 27-HC
could have important implications for modifying the structure
and function of membrane lipid-protein clusters during SARS-
CoV-2 infection (88). Although the SARS-CoV-2 particle is not
directly inactive by 27-HC, this modifies cell structures of the
lipid rafts by the accumulation of cholesterol, inducing a
transient modification of the endosomal membrane
composition and function to inhibit SARS-CoV-2 replication
(88). Interestingly, Marcello et al. demonstrated that blood levels
of 27-HC were decreased in patients with severe COVID-19 (88).
Also, they showed an increased serum level of 7-ketocholesterol
and 7b-hydroxycholesterol, recognized in vivo markers of
oxidative stress, was observed in the COVID-19 patients but
not in pauci- and asymptomatic patients (88).

Even though knowledge about SARS-CoV-2 entry still grows
rapidly, the studies presented and discussed above may help
understand the role of cholesterol-rich lipid rafts in this viral
replication process (Figure 1).
CHOLESTEROL-RICH LIPID RAFTS
PROVIDE A PLATFORM TO
CONCENTRATE SARS-CoV-2
RECEPTORS

Cholesterol-rich lipid rafts serve as a platform for the functional
organization of the receptors involved in the cell signaling,
synaptic activity, immune response, membrane trafficking, and
cytoskeleton remodeling (19, 89–92). The pathogen interplay
December 2021 | Volume 12 | Article 796855
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with cholesterol-rich lipid rafts modulates many cellular
processes. During virus entry into the cell, the cholesterol-rich
lipid rafts contain receptors and co-receptors that interact with
viral surface proteins (31, 93). Moreover, the entry of enveloped
and non-enveloped viruses into host cells occurs through fusion
or endocytosis mediated by caveolin or clathrin located in the
lipid-rich microdomains (94). In this regard, the study of
cholesterol-rich lipid rafts is rapidly expanding and has again
become an attractive topic for SARS-CoV-2 research. Hence, the
role of receptors for SARS-CoV-2 entry localized and distributed
on cholesterol-rich lipid rafts during infection will be discussed
below (Figure 1 and Table 1).

Angiotensin-Converting Enzyme-2 (ACE-2)
The ACE-2 protein, localized in cholesterol-rich lipid rafts, is
used as a functional receptor for human coronaviruses (48, 107).
ACE-2 is a homolog of ACE-1 receptor that mediates the
angiotensin II production to activate the renin-angiotensin
system (RAS) and plays a crucial role in cardiovascular
diseases (6). Also, the ACE-2 receptor is widely expressed in
various organs such as the heart, lung, kidney, and liver (108,
109). The interaction between the host cell and SARS-CoV-2 is
closely identical to SARS-CoV, which also uses the ACE-2 as a
cellular receptor (Figure 1). It facilitates virus entry via caveolin-
Frontiers in Immunology | www.frontiersin.org 5
or clathrin-dependent endocytosis. (51, 52). Although the
predominant symptoms of SARS-CoV-2 infection are
respiratory, multiple organ injuries such as renal and hepatic
abnormalities and cardiac lesions are observed among COVID-
19 patients (109). This tropism is attributed to the presence of the
ACE-2 receptor in various organs (108). However, the fact that
the participation of other receptors may enhance the SARS-CoV-
2 entry is not ruled out. Recognizing mannosylated N-glycan and
O-glycan on the S protein by cellular receptors found in the
cholesterol-rich lipid rafts could facilitate the SARS-CoV-2 entry
(Figure 1) (50). Therefore, the quick adaptation of SARS-CoV-2
to cell receptors could be associated with new pathologies or
more severe diseases. In the following, we will describe new
evidence on the role of other receptors in SARS-CoV-2 entry.

Transmembrane Serine Proteases
(TMPRSS)
The TMPRSS subfamily includes membrane-anchored serine
proteases belonging to the serine protease type II family that
possesses an N-terminal transmembrane domain and a C-
terminal extracellular chymotrypsin serine protease domain
(95). This subfamily comprises seven members: TMPRSS1/
hepsin, TMPRSS2, TMPRSS3, TMPRSS4, TMPRSS5/spinesin,
mosaic serine protease large-form (MSPL), and enteropeptidase
TABLE 1 | Summary of the cellular receptors from cholesterol-rich lipid rafts that are involved in SARS-CoV-2 entry.

Receptor Cellular function Proposed entry mechanism References

ACE-2 ACE-2 is a negative regulator of RAS and a catalyst for converting
angiotensin II to angiotensin 1-7. ACE-2 is expressed in various organs
such as the heart, lung, kidney, liver, etc.

ACE-2 binds to the S protein-RBD of SARS-CoV-2, facilitating virus
entry via caveolin- or clathrin-dependent endocytosis.

(8)

TMPRSS2/
4

TMPRSS are vital regulators of mammalian development and
homeostasis in different tissues as the liver, lungs, pancreas, intestinal
tract, and salivary glands.

TMPRSS2 and TMPRSS4 enhance cellular-virus membrane fusion
by inducing protein S cleavage and exposing the fusion peptide,
which interacts with the ACE-2 receptor.

(13, 95)

HSPG HSPG participates in multiple functions such as cellular adhesion and
motility; moreover, they serve as receptors for endocytosis and are
also involved in the control of numerous events that occur during
inflammation

The interaction between SARS-CoV-2 spike protein and HSPG is
necessary for the viral entry via endocytosis ACE-2-dependent.

(10, 96, 97)

Syndecan-
1/4

Syndecans are expressed in various cellular sites and participate
during adhesion between cell and extracellular matrix, cell-cell
adhesion, cell migration, and regulation of the inflammatory response.

Syndecan-1/4 interacts with the S1 subunit of SARS-CoV-2 spike
protein, an essential viral attachment factor, and mediator of viral
entry.

(15, 98)

TLR-4 TLR4 is a key receptor that induces the pro-inflammatory response,
can mediate inflammation by both exogenous and endogenous
ligands, and is associated with chronic and acute diseases, promoting
amplification of the inflammatory response.

TLR4 interacts with the S1 subunit of spike protein and is involved
in SARS-CoV-2 entry, even if the cell line lacks the ACE-2 receptor.
However, evidence on the mechanism of entry used by the virus is
lacking.

(99–102)

CD147 CD147 is a transmembrane glycoprotein member of the
immunoglobulin superfamily implicated in various physiological and
pathological conditions due to its regulation of cell-cell recognition, cell
differentiation, and tissue remodeling.

S protein of SARS-CoV-2 interacts with the CD147 receptor and
facilitates virus entry via endocytosis even in the absence of the
ACE-2 receptor.

(11, 103)

NRP1 NRP1 is a pleiotropic transmembrane polypeptide that acts as a
growth factor or a cofactor in fibroblasts, platelets, hepatocytes, etc.

NRP1 enhances SARS-CoV-2 entry and infectivity only in co-
expression with ACE-2 and TMPRSS2.

(53)

L-SIGN L-SIGN is a type II C-type lectin receptor involved in cell adhesion and
pathogen recognition. It is expressed in dendritic cells, epithelial cells,
lungs, liver, lymph nodes, and placenta.

L-SIGN binds to high-mannose-type N-glycans present in the spike
protein of SARS-CoV-2, favoring the viral entry in the presence of
the ACE-2 receptor.

(16, 104)

AXL AXL is a receptor tyrosine kinase; its activation promotes
homodimerization, causing tyrosine autophosphorylation or
phosphorylation of downstream targets, activating signaling pathways.

The NTD of the SARS-CoV-2 spike protein binds to AXL,
independently of the presence of the ACE-2 receptor. However,
low levels of the ACE-2 receptor synergize with the expression of
the AXL to potentiate SARS-CoV-2 infection.

(14, 17,
105)

SR-B1 SR-B1 is the cell-surface HDL receptor that mediates a selective
uptake system for cholesterol and other lipids in various cells, such as
fibroblasts, hepatocytes, macrophages, adrenal, and alveolar cells.

The RBD of the SARS-CoV-2 S protein has an affinity for
cholesterol and HDL components, enhancing the entry of the virus
into the cell through SR-B1 only when ACE-2 es expressed.

(12, 106)
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Palacios-Rápalo et al. Lipid Rafts in SARS-CoV-2 Entry
(110). TMPRSS receptors are expressed in various tissues such as
the liver, lungs, pancreas, intestinal tract, and salivary glands
(95). In addition, TMPRSS are vital regulators of the mammalian
development, homeostasis, and host factors involved in the entry
of coronaviruses (111).

The TMPRSS2 and TMPRSS4 receptors activate the
glycoproteins of influenza virus, SARS-CoV, and MERS-CoV
to enhance the viral entry, promoting the syncytia formation and
cell tropism since these receptors are expressed in epithelial cells
of the respiratory and intestinal tracts (112–115). Interestingly,
TMPRSS2 contains a potential palmitoylation residue in the
cytoplasmic tail responsible for its localization in cholesterol-rich
lipid rafts (116). Moreover, this receptor is associated with ACE-
2. Thus, both receptors are membrane-embedded of these
microdomains (116). Hence, cellular entry and susceptibility of
the coronaviruses can be defined by the expression of both ACE-
2 and TMPRSS receptors.

Hoffmann et al. demonstrated that SARS-CoV-2 uses the
TMPRSS2 for S protein priming, and that the infection of lung
cells with this virus can be blocked by a TMPRSS2 inhibitor
(Figure 1) (64). TMPRSS2-dependent SARS-CoV-2 entry may
be due to precleavage of the furin-dependent Subunit1/Subunit2,
which is essential for the releasing viral RNA into the cell
cytoplasm (64). Zang et al. described that both TMPRSS2 and
TMPRSS4 enhance membrane fusion by inducing S protein
cleavage, exposing the fusion peptide in gastrointestinal tract
cells after binding to the ACE-2 receptor (13). Also, TMPRSS4,
one of the most significantly correlated genes with the ACE-2
receptor expression (117), enhanced the SARS-CoV-2 entry into
human small intestinal enterocytes, while some COVID-19
patients shed high levels of viral RNA in feces (13). However,
the SARS-CoV-2 particles released in the feces are rapidly
inactivated by the low pH of gastric fluids, consistent with the
previous reports on SARS-CoV and MERS-CoV infections (13).
These findings suggest that the intestine is a potential site of
SARS-CoV-2 replication, where TMPRSS4 plays an important
role, contributing to local and systemic disease and
gastrointestinal symptoms progression (13).

The salivary glands from SARS-CoV-2-infected patients have
the ACE-2 and TMPRSS receptors overexpression (118). Also,
the ultrastructural analysis of the ductal lining cell cytoplasm,
acinar cells, and ductal lumen was performed by electron
microscopy, a tool used to identify viral particles (119),
revealed coronavirus-like particles (118). These findings
demonstrated that the salivary glands are a reservoir for SARS-
CoV-2, supporting the use of the saliva as a diagnostic method
for COVID-19 and the role of this biological fluid in spreading
the disease (118). TMPRSS3, TMPRSS4, TMPRSS5, and
TMPRSS7 correlate with the ACE-2 expression in salivary
glands, and these receptors are overexpressed when the basal
cells in the oral cavity are differentiated to suprabasal cells (120).
However, this cellular differentiation prepares the cells to shed
from the oral cavity (121). Furthermore, the stratified squamous
cells of the oral cavity are not linked to specific symptoms and
shed continuously in the saliva, which could result in
asymptomatic COVID-19 patients (120, 121).
Frontiers in Immunology | www.frontiersin.org 6
The proteolytic activation of S protein was insufficient to fuse
the viral membrane to the cell that does not express TMPRSS
receptor, confirming the importance of TMPRSS in SARS-CoV-2
entry (122). In contrast, the SARS-CoV-2 S protein was
activated, exposing its fusion peptide and facilitating early
penetration of the virus into the cytosol, pH-independent, in
the cells expressing TMPRSS2 (122). Thus, TMPRSS2 expression
dictates the entry route of SARS-CoV-2 to infect the host cells
and could have implications in the adaptation and expanded
tropism of the virus (122).

The SARS-CoV-2 S1/S2 cleavage site is mutated when the virus
is serially passaged in TMPRSS2-deficient cells (123). This event
led to a loss of sensitivity to the TMPRSS2 receptor (123). Also,
this mutation prevents direct fusion mediated by TMPRSS2,
showing a narrow range of the cell tropism (123). Therefore,
more attention should be paid to Vero cells in the isolating and
propagating SARS-CoV-2, developing vaccines, and in vitro
evaluation of the antiviral activity of drugs against this virus due
to the possibility that some viral genomes accumulate mutations in
the S gene by the absence of the TMPRSS2 receptor (123). In
summary, TMPRSS receptors located in cholesterol-rich lipid rafts
are critical host factors involved in the mechanisms of SARS-CoV-
2 entry. They can be an essential study target to understand the
pathogenicity of COVID-19.

Heparan Sulfate
Heparan sulfate proteoglycans (HSPG) are linear sulfated
polysaccharides found on the cholesterol-rich lipid rafts (97).
HSPG participates in the cellular adhesion and motility,
endocytosis, and the control of numerous events during
inflammation (96, 97). Due to the negative charge attributed
by the sulfated chains, HSPG can interact electrostatically with
the basic residues of viral glycoproteins and capsid, favoring the
interaction between the viral particle and their specific entry
receptor (124). HSPG facilitates initial viral particle-host cell
interactions with influenza virus, dengue virus, herpes virus, and
some human coronaviruses (124).

The S protein from NL63 and SARS-CoV binds to HSPG, an
important co-receptor that facilitates virus internalization. The
sialic acid is used as an attachment factor for MERS-CoV entry
(125–127). The SARS-CoV-2 S protein binding to the ACE-2
receptor is an HSPG-dependent pathway and necessary for
efficient viral replication (Figure 1) (10). Interestingly, the
RBD of the SARS-CoV-2 S protein can bind HSPG in a
length- and sequence-dependent manner (128). This
interaction can be drastically reduced by treating heparin
lyases that degrades cell-surface HSPG (10). Additionally, a
variety of HSPGs may further modulate the tissue tropism and
susceptibility to COVID-19 in the population (10).

Syndecans
Syndecans are membrane surface proteins that belong to the
proteoglycan family, located in cholesterol-rich lipid rafts (129).
However, syndecans can be found at various cellular sites,
containing other glycosaminoglycan structures and participating
in adhesion between cell-extracellular matrix, cell-cell, cytoskeleton-
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syndecan proteins, and cell migration (98, 129). Syndecan-1 can
mediate the inflammatory response by binding to inflammation-
related factors, negatively regulating leukocyte migration and
adhesion, and modulating the cytokine gradient activity (130).

Syndecan-4 negatively modulates the activation of the
antiviral immune response, inhibiting especially the type 1
interferon response (IFN-1) induced by retinoic acid-induced
gene 1 (RIG-1) (131). Syndecans are involved in the viral
attachment of other viruses (132–135).

Due to the role of syndecans in viral infections, Hudák et al.
explored the possible interactions between SARS-CoV-2 S
protein and the isoforms of syndecans, identifying that
syndecan-3 and -4 facilitated the uptake of SARS-CoV-2
(Figure 1), and syndecan-4 specifically interacts with the S1
subunit of the S protein to mediate SARS-CoV-2 internalization
(15). Moreover, syndecan-1 mediates cell attachment of S protein
in lung epithelial cells (136). The hypoxia could modulate the
expression of ACE-2 and syndecan-1 receptors, suggesting that
low oxygen levels in COVID-19 patients are a defense
mechanism to reduce the expression of entry receptors and
attachment factors located in cholesterol-rich lipid rafts (136).
Notably, the distribution of syndecan-4 is ubiquitous, and its
expression is abundant in the lungs, one of the target organs of
SARS-CoV-2 (137). Syndecan-4 would enhance the virus entry
into lung epithelial cells and the modulation of the immune
response, contributing to the pathogenesis and the severe lung
damage in SARS-CoV-2-infected patients (138). The crucial role
of syndecan receptors in SARS-CoV-2 entry is evident; however,
it remains to be elucidated whether syndecan-1 and -4 in SARS-
CoV-2 entry can modulate negatively or positively the signaling
of the antiviral immune response (Figure 2).

Human Toll-Like Receptors (TLRs)
TLRs are a family of integral membrane glycoproteins involved
in the innate immune response (147). TLR possesses a leucine-
rich extracellular region that interacts with a ligand such as
pathogen-associated molecular patterns (PAMPs) from various
pathogens, including bacteria, fungi, parasites, and viruses,
promoting receptor dimerization and subsequent recruitment
signaling molecules (147). The TLR family comprises 12
members , which are expressed in dist inct cel lu lar
compartments. TLR1, TLR2, TLR4, TLR5, and TLR6 are
expressed on the cell surface, whereas TLR3, TLR7, TLR8, and
TLR9 are expressed in vesicles and the endoplasmic reticulum
intracellularly (148). The TLRs are localized in the cholesterol-
rich lipid rafts on the cell surface (101). In this place, the
cyclodextrins (MbCD) can sequester cholesterol, affecting the
activation of inflammatory response and cytokine secretion and
chemokines (101). In this regard, the proteins related to vesicular
trafficking, such as the Soluble N-Ethylmaleimide-Sensitive
Factor Attachment Protein Receptor (SNARE), syntaxin 4, and
SNAP-23, are clustered in cholesterol-rich lipid rafts where they
participate in cytokine release (149, 150). When the cholesterol-
rich lipid rafts localized in the macrophage plasma membrane
are disrupted, the phagocytic cup formation is altered, and TNF
secretion is reduced (149, 150). During SARS-CoV-2 infection,
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cholesterol depletion of lipid rafts with MbCD could affect the
TLR clusters and the effective activation of kinase complexes
(IKK) (Figure 2) (59). It could also have an impact on the
transcription factors (Nuclear factor-kappa b (NF-kB) and
Interferon regulatory factor (IRF), involved in the activation of
genes related to pro-inflammatory response and secretion of
cytokines and chemokines (Figure 2) (101). TLR4 is a key
receptor that induces the pro-inflammatory response by
exogenous and endogenous ligands and is associated with
chronic and acute diseases, promoting amplification of the
inflammatory response (100).

The viral glycoproteins or capsid proteins can interact with
TLR4 to activate its signaling pathway and an uncontrolled
inflammatory response, leading to virus disease severity (151).
Interestingly, the TLR4-mediated signaling pathway could
benefit multiple steps of the virus life cycle, such as enhancing
viral particle release from the cell or preventing premature cell
apoptosis, since cell survival factors can also be activated via
TLR4 (151).

Due to the acute inflammation in SARS-CoV-2 pathogenesis,
Choudhory et al. performed an in silico analysis of the interaction
between the S protein and cell surface receptors of the innate
immune response, especially TLRs. Choudhory et al.
demonstrated by molecular docking a significant binding
between the S protein and TLR1, TLR4, or TLR6, of which the
SARS-CoV-2 S protein-TLR4 interaction possessed the strongest
binding energy (Figure 2) (140). Even though experimental
evidence confirming the interaction between the S protein and
TLRs is lacking, the main cytokines involved in patients with
severe COVID-19 are products of TLR4 viral signaling: IL-6 and
TNF-a (Figure 2) (140). In addition, the S1 subunit of S protein
promotes TLR4 activation inducing the expression and secretion
of TNF-a mRNA, which was significantly suppressed with a
TLR4 antagonist (Figure 2). Curiously, this effect was not
observed when a TLR2 antagonist was used. Thus, SARS-CoV-
2 S protein-TLR4 interaction is involved in the inflammatory
response triggered by COVID-19 (102). Also, this interaction
would promote endocytosis of the virus and activation of the
TLR4 signaling cascade to trigger the pro-inflammatory response
(Figure 2) (101). SARS-CoV-2 can infect the cerebral cortical
neurons, cells that do not express ACE-2 receptor but contain
TLR4 receptor, and activate the pro-inflammatory response,
suggesting that the TLR4 is involved in SARS-CoV-2 entry and
could be related to the neurological manifestations of COVID-19
(99). Further studies are needed to clarify the involvement of
TLR4 as a co- or receptor for SARS-CoV-2. Moreover, TLRs are
involved in the activation of the immune response causing a
cytokine storm in COVID-19 patients, where TLR-3, -7, -8
through viral RNA recognition triggers the activation of JAK/
STAT, NF-kB, AP-1 signaling pathways resulting in the
amplification of pro-inflammatory cytokines (152, 153). Thus,
TLR7/8 antagonist drugs (Hydroxychloroquine, HCQ; a TLR
blocker) could limit SARS-CoV-2 infection (152, 153). In this
sense, HCQ can inhibit endosomal TLR3, -7, -8, and -9 signaling,
controlling inflammation in COVID-19 patients and mitigating
the detrimental effects of viral infection (152, 153).
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Dendritic Cell-Specific Intercellular
Adhesion Molecule-3-Grabbing
Nonintegrin Related (L-SIGN or
DC-SIGNR)
Also known as CD209L, L-SIGN is a type II C-type lectin
receptor found in cholesterol-rich lipid rafts and expressed in
dendritic cells, epithelial cells, lungs, liver, lymph nodes, and
placenta (104). L-SIGN can bind to high mannose
oligosaccharides through its carbohydrate recognition domain,
and it is involved in the attachment of viral glycoproteins (104).
L-SIGN participates in SARS-CoV infection and pathogenesis,
where the presence of ACE-2 is required for efficient virus entry
into the cell (154). Thus, the role of L-SIGN as a co-receptor
enhances viral entry (154). Interestingly, a genetic risk
association study revealed that individuals homozygous for the
CD209L receptor tandem repeats were less susceptible to SARS-
CoV infection (155). Hence, the ligand-binding capacity
dependent on homo- or heterozygosity of L-SIGN plays a
protective role in affecting the susceptibility to SARS-CoV
infection (155).
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L-SIGN is an endothelial receptor for SARS-CoV-2 that could
contribute to the COVID-19 associated coagulopathy (16).
Notably, high-mannose-type N-glycans present in the SARS-
CoV-2 S protein play a decisive role in the binding to L-SIGN
(Figure 1), suggesting that blockade of L-SIGN would serve as a
novel antiviral therapy option (16). The SARS-CoV-2 mutation
at the D614G glycosylation site is one of the more infectious
dominant variants in the early phases of the pandemic (156). In
this regard, this mutation raises the glycosylation of S protein,
enhancing virus entry into the cell, contributing to the severity of
SARS-CoV-2 infection (156, 157).

AXL Receptor Tyrosine Kinase (AXL)
AXL is localized in cholesterol-rich lipid rafts, and its activation
promotes homodimerization, causing tyrosine auto- or
phosphorylation of downstream targets (105). AXL is
expressed ubiquitously in several cell types, and its function
depends on the specific cell/tissue type (105). This receptor
participates in (1) virus binding and internalization; and (2)
viral replication by antagonizing the IFN-1 pathway (158). The
FIGURE 2 | The potential therapeutics of drugs targeting cholesterol-rich lipid rafts in SARS-CoV-2 infection. Therapeutic strategies to inhibit viral replication,
including the use of lipid-lowering drugs as antivirals candidates, are based on the study of lipids and their importance in the viral cycle (139). The lipid raft
microdomains are primarily associated with the viral entry and play an essential role during other viral cycle stages, such as cellular signal transduction. SARS-CoV-2
entry depends on binding to ACE2; other receptors such as TLR4 or Syndecan 1/4 are involved in pro-inflammatory cytokines (140) and inflammation response
(141). Interestingly, cholesterol depletion of lipid rafts using cholesterol-lowering treatments such as methyl-b-cyclodextrin (MbCD) (42, 59), statins (41), and
hydroxychloroquine (HQC) (142) affect the interaction between the SARS-CoV-2 spike protein and the ACE-2 receptor. Metformin (143) and HQC (144) can increase
the pH values of endosomes acting on the Vacuolar ATPase (V-ATPase) and endosomal Na+/H+ exchangers (eNHEs). This mechanism inhibits the viral infection by
increasing the cellular pH and interfering with the endocytic cycle (143, 145, 146). The graphical was elaborated using BioRender.com.
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AXL receptor, expressed on lung epithelial cells specifically, can
bind to the SARS-CoV-2 spike protein through their N-terminal
domain to promote viral entry, independently of the presence of
the ACE-2 receptor (Figure 1) (17). Therefore, the interaction
between the SARS-CoV-2 S protein and the AXL receptor may
support an essential role of AXL during infection of human
pulmonary and bronchial tissues (17). In addition, low levels of
the ACE-2 receptor synergize with the expression of the AXL
receptor to potentiate SARS-CoV-2 infection (14). Together,
these studies confirm that the AXL receptor is essential in
SARS-CoV-2 entry into lung cells, and this mechanism could
be effectively disrupted in human lung cells by the
AXL inhibitors.

High-Density Lipoprotein (HDL) Scavenger
Receptor B Type 1 (SR-B1)
SR-B1 is the cholesterol-rich lipid rafts HDL receptor that
mediates a selective uptake system for cholesterol and other
lipids in various cells, such as fibroblasts, hepatocytes,
macrophages, adrenal, and alveolar cells (106). The RBD of the
SARS-CoV-2 S protein has a particular affinity for cholesterol
and HDL components, enhancing the virus entry into the cell
through SR-B1, suggesting that this interaction is dependent on
the presence of membrane cholesterol (Figure 1) (12). In
addition, ACE-2 and SRB-1 are co-expressed in multiple
susceptible tissues (159). Therefore, this evidence further
supports the important role of cholesterol-rich lipid rafts and
receptors that regulate lipid entry into the cell to enhance the
SARS-CoV-2 entry.

Other Immune Receptors
CD147 is a member of the immunoglobulin superfamily, located
in cholesterol-rich lipid rafts (103). CD147 facilitates SARS-CoV
infection (160). It can bind to SARS-CoV-2 S protein to promote
the endocytosis-dependent viral internalization even in the
absence of the ACE-2 receptor, revealing a novel virus entry
route (11).

Ahmetaj et al reported that the cardiorenal tissues and
endothelial cells express the CD147 and ACE-2 genes required
for SARS-CoV-2 entry (Figure 1) (161). Interestingly, ACE-2
decreases with age in some tissues, and CD147 increases with age
in endothelial cells, suggesting that CD147 expression in the
vasculature may explain the heightened risk for COVID-19
severe with age (161). Moreover, CD147 is expressed in the
kidney of COVID-19 patients, where its distribution is expanded
from the basolateral to the circumferential pattern, including
interfacial and apical sides (162). Thus, CD147 apical
presentation likely contributes to SARS-CoV-2 internalization
from that lumen side into the cytoplasm of tubular epithelial
cells (162).

Neuropilin-1 (NRP1) is a pleiotropic transmembrane
polypeptide that acts as a growth factor or cofactor in
fibroblasts, platelets, and hepatocytes (163). NRP1 is involved
in the SARS-CoV-2 infection, and in contrast with ACE-2 and
TMPRSS2 receptors, NRP1 does not enhance SARS-CoV-2 entry
in cell lines that only express this receptor (53). However, when
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NRP1 is co-expressed with ACE-2, and TMPRSS2 the SARS-
CoV-2 infection significantly increases, defining its role as an
essential co-receptor for viral entry (Figure 1) (53). Since there is
limited evidence, further studies are needed to clarify the
interaction between the SARS-CoV-2 S protein and NRP1
receptor and how it facilitates viral entry (50, 53).
TARGETING CHOLESTEROL-RICH LIPID
RAFTS AS POTENTIAL THERAPEUTICS IN
SARS-CoV-2 INFECTION

Lipidomic evidence suggests a remodeling of lipid metabolism in
coronavirus-infected human cells (164). This alteration is
associated with aberrant lipid metabolism in obese patients
who develop a decreased immune response, which increases
the severity of COVID-19 (165). Cholesterol localized in the lipid
rafts is an essential entry factor for coronaviruses, both in vitro
and in vivo (42, 48, 166), and a determinant of the SARS-CoV-2
pathogenesis and replication (167).

Therapeutic strategies to inhibit viral replication, including
the use of lipid-lowering drugs as antivirals candidates, are based
on the study of lipids and their importance in the viral cycle
(139). Although, as previously discussed, this review is focusing
on cholesterol-rich lipid rafts and the SARS-CoV-2 entry (9–17),
the essential role of cholesterol during SARS-CoV-2 replication
and egress cannot be ruled out (71, 85, 168–171). It is essential to
mention here that although a notable amount of work has been
carried out on the relationship between SARS-CoV-2 entry and
lipid rafts, few studies have been published focusing on the role
of the lipid rafts in SARS-CoV-2 replication and egress.

Cholesterol is an essential component of host cell membranes
involved in tuning membrane fluidity, thickness, and
permeability to regulate membrane function (172). The viral
replication complexes are RNA virus-induced membrane
structures where viral genome replication and morphogenesis
occur (119). The formation of the replication complex requires
cholesterol, a product of fatty acid metabolism (26, 173).
Williams et al. demonstrated that the inhibition of fatty acid
metabolism by orlistat [Food and Drug Administration (FDA)-
approved drug that inhibits gastric lipases and fatty acid synthase
(FASN)], TOFA [a competitive inhibitor of acetyl-CoA
carboxylase (ACC)], A922500 (a potent inhibitor of
diacylglycerol acyltransferase 1 (DGAT1) or VPS34-IN1 [an
inhibitor of vacuolar protein sorting 34 (VPS34-IN1)],
interferes with the formation of dsRNA-positive SARS-CoV-2
replication complexes (171). Transmembrane protein 41B
(TMEM41B) likely contributes to SARS-CoV-2 replication
complexes formation through cholesterol trafficking to
facilitate host membrane expansion and curvature (173).

Lipid droplets store neutral lipids and cholesterol, and they
are a platform for SARS-CoV-2 assembly and replication (174).
Additionality, modulation of lipid droplets formation by
inhibition of DGAT1 using A922500 can block SARS-CoV-2
replication and reduce the production of mediators pro-
inflammatory response (171, 174).
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On the other hand, Daniloski et al. identified a group of host
genes (RAB7A, NPC1, ATP6AP1, ATP6V1A, CCDC22, and
PIK3C3) implicated in the upregulation of the cholesterol
synthesis pathway during SARS-CoV-2 infection (71). A
parallel genome-scale CRISPR-Cas9 knockout screen revealed
genes involved in sensing and biosynthesis of cholesterol, such as
Sterol Regulatory Element Binding Transcription Factor 2
(SREBF2) and SREBP cleavage activating protein (SCAP)
which are required for SARS-CoV-2 infection (170). This
finding agrees with Hoffmann et al., who performed a focused
high-coverage CRISPR-Cas9 library targeting 332 host proteins
identified as high-confidence SARS-CoV-2 protein interactors
(175). Interestingly, Wang et al. also identified clusters linked to
cholesterol metabolism (low-density lipoprotein receptor
(LDLR), NPC1, SCAP, and SREBF2) as a critical host pathway
through a genome-wide CRISPR screen in SARS-CoV-2-infected
cells (176). The SREBP family of transcription factor control
cholesterol and lipid metabolism (177). The treatment with
SREBP pathway modulators such as PF-429242, 25-HC, and
Fatostatin reduces the SARS-CoV-2 replication and entry,
suggesting that cellular cholesterol is required (176). Also,
amlodipine, a calcium-channel antagonist, increases cholesterol
levels and blocks SARS-CoV-2 infection (71). This finding is
consistent with the Zhang et al. study, where amlodipine and
other calcium channel inhibitors blocked the post-entry
replication events of SARS-CoV-2 in vitro (178). Zhang et al.
associated the amlodipine therapy with a decreased case fatality
rate in COVID-19 patients (178). Also, a cholesterol
accumulation by treating 25-HC and NPC1 inhibitors
itraconazole (ICZ) and U18666A restricts SARS-CoV-2
replication (85).

Some FDA-approved cholesterol-lowering drugs have
antiviral properties and are safe for use in humans, which
reduces the time and requirements for their study in clinical
trials (179). In this regard, statins and metformin are promising
candidates for the treatment of infections caused by enveloped
viruses, such as Dengue virus (DENV), Zika virus (ZIKV),
hepatitis C virus (HCV), Japanese encephalitis virus (JEV),
influenza A virus (IAV), and recently for the treatment of
SARS-CoV-2 (180–184). These drugs interfere in different
metabolic pathways for lipid synthesis by inhibiting critical
cholesterol and fatty acid synthesis (185).

Statins directly inhibit the HMGCR enzyme, responsible for
de novo cholesterol synthesis inducing alteration of cholesterol-
rich lipid rafts (Figure 2) (186, 187) and, by a consequence,
inhibits infection caused by coronaviruses (41). Interestingly, the
use of statins is associated with a lower risk of mortality among
people with COVID-19 (188, 189); however, its use to treat these
diseases remains controversial (190–192). Although the antiviral
mechanism of statins is unknown, it could affect viral replication
and morphogenesis, as occurs with other viruses (193–196).
Furthermore, the immunomodulatory properties of statins are
another advantage for treating viral diseases, such as those
caused by influenza and Ebola viruses (182, 197, 198).

Metformin is another drug with lipid-lowering effects that
have gained interest in recent decades due to its pleiotropic
Frontiers in Immunology | www.frontiersin.org 10
effects and antiviral properties (199). Metformin inhibits
cholesterol and fatty acid synthesis by activating the AMP-
activated protein kinase (AMPK), involved in multiple
energetic pathways in the cell (200). Similar to statins, its lipid-
lowering effect, coupled with the immunomodulatory effects of
Metformin, could be responsible for the benefits reported in
COVID-19 patients with type 2 diabetes and insulin resistance
(201–203). Thus, the use of Metformin could benefit the survival
of older adults infected by SARS-CoV-2 compared to those who
do not take this drug (204–206). Metformin could increase the
endosomal and lysosomal pH values. Acting directly on two
crucial membrane compartments found in cholesterol-rich lipid
rafts to maintain and regulate the endosomal acidic pH
(Figure 2): (1) using the Vacuolar ATPase (V-ATPase) as a
proton-pumping or acidifier compartment; (2) following the
endosomal Na+/H+ exchangers (eNHEs), as proton leaking or
alkalizing compartment on the endosomal membrane (143).
These mechanisms lead to the inhibition of viral infection
through increasing the cellular pH and subsequently
interfering with the endocytic cycle (143, 145, 146). In
addition, metformin and the fatty acid synthase (FASN)
inhibitor orlistat can inhibit coronavirus replication and reduce
systemic inflammation to restore immune homeostasis (165).

SARS-CoV-2 entry depends on binding to ACE2 localizes to
both monosialotetrahexosylganglioside1 (GM1) lipid rafts and
PIP2 domains embedded in cholesterol-rich lipid rafts (141).
Drugs such as HC directly perturb ordered GM1 (142),
inhibiting viral entry by alteration of the cholesterol-rich lipid
rafts where the SARS-CoV-2 receptors are located (Figure 2)
(142, 144). Another effect is the capability to negatively alter
endocytosis, maturation of endosomes, and transport virions
(Figure 2) (144). Moreover, cholesterol depletion of membranes
with MbCD reduces the SARS-CoV-2 infection (59). All these
reports confirm the role of cholesterol-rich lipid rafts as
therapeutic targets for COVID-19.

At present, there is no scientific evidence that treatment with
these drugs can worsen covid-19 disease; on the contrary, it may
improve the outcome of SARS-COV2-infected patients
(Table 2). Therefore, the risk of their use is limited to the side
effects already known for each drug (Table 2) (188, 189, 204–
208). Regarding statins, some of the side effects increased the
incidence of diabetes and cataracts and frequent muscular side
effects (209, 210). In the case of metformin, the main side effect is
lactic acidosis (211). It should be noted that their use as antivirals
suggests an acute and short-term treatment, reducing the side
effects associated with long periods of treatment (209, 211–213).
Preclinical studies are necessary to evaluate its safety during viral
infections, as currently metformin is evaluated during ZIKV
infections (184, 214, 215).

On the other hand, empirical evidence for HCQ effectiveness
in COVID-19 is limited. Currently, a few studies reported the
antiviral activity of HCQ against SARS-CoV-2 (144, 216).
Following the promising results, the usage of HCQ for certain
COVID-19 patients improve. However, HCQ is well known to
have severe complications and side effects in some cases. Reports
raise concerns that SARS-CoV-2 causes liver and renal
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impairment, and using HCQ for COVID-19 treatment might
increase the risk of toxicity (217). Despite these, clinical trials
currently investigate the effectiveness of HCQ in treating
COVID-19 (218) because it confers antiviral and anti-
inflammatory effects with fewer side effects. However, proper
randomized controlled trials of HCQ and individual immune
profiles of COVID-19 patients are needed and should be
thoroughly evaluated and considered (144).
CONCLUDING REMARKS

It is well known that coronaviruses interact with a large and
diverse repertoire of receptors located on lipid rafts, which are
regions on the membrane that provide a platform that
concentrates receptors that serve as an entry portal into the cell.
This review focuses on the role of cholesterol-rich lipid rafts as a
platform for SARS-CoV-2 entry. Cholesterol is vital in the SARS-
CoV-2 entry and pathogenesis. Several reports demonstrated that
deprivation of cellular cholesterol significantly affects SARS-CoV-
2 attachment and internalization due to a redistribution of
receptors and co-receptors found in the cholesterol-rich lipids
rafts, which would attenuate COVID-19 symptoms. Therefore,
Frontiers in Immunology | www.frontiersin.org 11
deciphering the SARS-CoV-2 receptors in cholesterol-rich lipid
rafts is vital for developing antiviral strategies that inhibit
viral replication.
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Palacios-Rápalo et al. Lipid Rafts in SARS-CoV-2 Entry
47. Sarkar M, Saha S. Structural Insight Into the Role of Novel SARS-CoV-2 E
Protein: A Potential Target for Vaccine Development and Other Therapeutic
Strategies. PloS One (2020) 15:e0237300. doi: 10.1371/journal.pone.0237300

48. Lu Y, Liu DX, Tam JP. Lipid Rafts Are Involved in SARS-CoV Entry Into
Vero E6 Cells. Biochem Biophys Res Commun (2008) 369:344–9.
doi: 10.1016/j.bbrc.2008.02.023

49. V’kovski P, Kratzel A, Steiner S, Stalder H, Thiel V. Coronavirus Biology and
Replication: Implications for SARS-CoV-2. Nat Rev Microbiol (2021)
19:155–70. doi: 10.1038/s41579-020-00468-6

50. Gadanec LK, McSweeney KR, Qaradakhi T, Ali B, Zulli A, Apostolopoulos
V. Can SARS-CoV-2 Virus Use Multiple Receptors to Enter Host Cells? Int J
Mol Sci (2021) 22:992. doi: 10.3390/ijms22030992

51. Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S, et al. Structure of the SARS-CoV-2
Spike Receptor-Binding Domain Bound to the ACE2 Receptor. Nature
(2020) 581:215–20. doi: 10.1038/s41586-020-2180-5

52. Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor Recognition by the
Novel Coronavirus From Wuhan: An Analysis Based on Decade-Long
Structural Studies of SARS Coronavirus. J Virol (2020) 94:e00127–20.
doi: 10.1128/JVI.00127-20

53. Cantuti-Castelvetri L, Ojha R, Pedro LD, Djannatian M, Franz J, Kuivanen S,
et al. Neuropilin-1 Facilitates SARS-CoV-2 Cell Entry and Infectivity.
Science (2020) 370:856–60. doi: 10.1126/science.abd2985

54. Duan L, Zheng Q, Zhang H, Niu Y, Lou Y, Wang H. The SARS-CoV-2 Spike
Glycoprotein Biosynthesis, Structure, Function, and Antigenicity:
Implications for the Design of Spike-Based Vaccine Immunogens. Front
Immunol (2020) 11:576622. doi: 10.3389/fimmu.2020.576622

55. Walls AC, Park Y-J, Tortorici MA, Wall A, McGuire AT, Veesler D.
Structure, Function, and Antigenicity of the SARS-CoV-2 Spike
Glycoprotein. Cell (2020) 181:281–92.e6. doi: 10.1016/j.cell.2020.02.058

56. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh C-L, Abiona O, et al.
Cryo-EM Structure of the 2019-Ncov Spike in the Prefusion Conformation.
Science (2020) 367:1260–3. doi: 10.1126/science.abb2507

57. Fantini J, Di Scala C, Chahinian H, Yahi N. Structural and Molecular
Modelling Studies Reveal a New Mechanism of Action of Chloroquine and
Hydroxychloroquine Against SARS-CoV-2 Infection. Int J Antimicrobial
Agents (2020) 55:105960. doi: 10.1016/j.ijantimicag.2020.105960

58. Bayati A, Kumar R, Francis V, McPherson PS. SARS-CoV-2 Infects Cells
After Viral Entry via Clathrin-Mediated Endocytosis. J Biol Chem (2021)
296:1–12. doi: 10.1016/j.jbc.2021.100306

59. Li X, Zhu W, Fan M, Zhang J, Peng Y, Huang F, et al. Dependence of SARS-
CoV-2 Infection on Cholesterol-Rich Lipid Raft and Endosomal
Acidification. Comput Struct Biotechnol J (2021) 19:1933–43. doi: 10.1016/
j.csbj.2021.04.001

60. Cai Y, Zhang J, Xiao T, Peng H, Sterling SM, Walsh RM, et al. Distinct
Conformational States of SARS-CoV-2 Spike Protein. Science (2020)
369:1586–92. doi: 10.1126/science.abd4251

61. Lu M, Uchil PD, Li W, Zheng D, Terry DS, Gorman J, et al. Real-Time
Conformational Dynamics of SARS-CoV-2 Spikes on Virus Particles. Cell
Host Microbe (2020) 28:880–91.e8. doi: 10.1016/j.chom.2020.11.001

62. Ferreira APA, Boucrot E. Mechanisms of Carrier Formation During
Clathrin-Independent Endocytosis. Trends Cell Biol (2018) 28:188–200.
doi: 10.1016/j.tcb.2017.11.004

63. Renard H-F, Boucrot E. Unconventional Endocytic Mechanisms. Curr Opin
Cell Biol (2021) 71:120–9. doi: 10.1016/j.ceb.2021.03.001

64. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen
S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is
Blocked by a Clinically Proven Protease Inhibitor. Cell (2020) 181:271–80.e8.
doi: 10.1016/j.cell.2020.02.052

65. Zhu Y, Feng F, Hu G, Wang Y, Yu Y, Zhu Y, et al. A Genome-Wide CRISPR
Screen Identifies Host Factors That Regulate SARS-CoV-2 Entry. Nat
Commun (2021) 12:961. doi: 10.1038/s41467-021-21213-4

66. Ou T, Mou H, Zhang L, Ojha A, Choe H, Farzan M. Hydroxychloroquine-
Mediated Inhibition of SARS-CoV-2 Entry Is Attenuated by TMPRSS2. PloS
Pathog (2021) 17:e1009212. doi: 10.1371/journal.ppat.1009212

67. Ballout RA, Sviridov D, Bukrinsky MI, Remaley AT. The Lysosome: A
Potential Juncture Between SARS-CoV-2 Infectivity and Niemann-Pick
Disease Type C, With Therapeutic Implications. FASEB J (2020) 34:7253–
64. doi: 10.1096/fj.202000654R
Frontiers in Immunology | www.frontiersin.org 13
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