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Viral hemorrhagic fever (VHF) as a disease entity was first codified in the 1930s by 
soviet scientists investigating patients suffering from hantavirus infection. The group of 
hemorrhagic fever viruses (HFVs) has since expanded to include members from at least 
four different virus families: Arenaviridae, Bunyaviridae, Filoviridae, and Flaviviridae, all 
enveloped single-stranded RNA viruses. After infection, the natural hosts of HFVs do not 
develop symptoms, whereas humans can be severely affected. This observation and 
other evidence from experimental data suggest that the human immune system plays 
a crucial role in VHF pathogenesis. For this reason mice with a human immune system, 
referred to here as humanized mice (humice), are valuable tools that provide insight into 
disease mechanisms and allow for preclinical testing of novel vaccinations approaches 
as well as antiviral agents. In this article, we review the impact of humice in VHF research.

Keywords: viral hemorrhagic fever, humanized mice, mice with a humanized immune system, virus-induced 
immunopathogenesis, viruses

inTRODUCTiOn

Emerging viral hemorrhagic fever (VHF) refers to a group of distinct but similar zoonotic dis-
eases induced by different enveloped RNA viruses. They cause increased vascular permeability 
that affects one or more organ systems and finally may result in life-threatening shock (1). 
Thrombocytopenia, another key symptom of VHF, can be due to either increased platelet destruc-
tion or decreased platelet production by megakaryocytes (2). Hemorrhagic fever viruses (HFVs) 
belong to four separate virus families: Flaviviridae, Bunyaviridae, Arenaviridae, and Filoviridae. 
Small mammals such as rodents and bats are the natural hosts, which are chronically infected 
without developing obvious symptoms. Humans are dead-end hosts that usually clear the virus 
after incidental infection but may develop acute symptoms.

Suitable animal models that reproduce key symptoms of VHF are rare (3–5). Non-human 
primates (NHPs) are the gold standard for some VHF types such as Ebola virus disease (EVD) 
but cannot be used for others such as dengue fever (DF) (6, 7). In addition, ethical and economic 
considerations clearly restrict research with NHPs. Guinea pigs or hamsters show typical symp-
toms after infection with some HFVs (8–10). However, the lack of species-specific immunological 
reagents complicates experiments. Laboratory mice often do not support replication of HFV or 
require the adaption of virus isolates to the mouse, thereby reducing their value as a model of 
human infection (11, 12).

The advent of humanized mice (humice) has opened up a new avenue for VHF research. In 
the 1980s, experiments demonstrated successful engraftment of human hematopoietic stem cells 
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(HSCs) in immunodeficient mice (13). Today humice offer the 
opportunity to gain new and exciting insights into important 
human diseases such as cancer, allergies, and infections (14–17). 
Humice are an especially valuable test bed for HFVs. Firstly, 
HFVs specifically target human myeloid cells such as dendritic 
cells (DCs) (18–24). Secondly, evidence is accumulating that an 
inadequate immune response substantially contributes to VHF 
pathogenesis (25). This aspect is difficult to study in conventional 
animal models, as their immune system differs substantially due 
to evolution driven by exposure to different groups of pathogens 
over millions of years (26–28). For instance, there are major dif-
ferences regarding the response of pattern recognition receptors 
to stimulation by invading pathogens. Although closely related 
to humans, even NHPs show interspecies immunological differ-
ences to humans (29, 30).

In this review, we summarize the novel insights gained from 
experiments with humice in VHF research.

CATeGORieS OF HUMiCe USeD  
in vHF ReSeARCH

The utility of immunodeficient mice as recipients of a human 
immune system has continuously increased. Efficient reconsti-
tution with human hematopoietic cells was first described in 
non-obese diabetic (NOD)/severe combined immunodeficiency 
(SCID) mice (31, 32). The homozygous SCID mutation impairs 
murine T and B  cell development, whereas the NOD back-
ground results in deficient natural killer (NK) cell function. The 
Sirpa gene polymorphism in the NOD background also curtails 
phagocytosis of engrafted human HSCs (33). NOD/SCID mice 
have subsequently been improved by truncation or deletion of 
the murine IL-2 receptor common gamma (IL-2Rγ) chain (34–36). 
This molecule represents an important component of the high-
affinity receptors for several inflammatory cytokines. The NOD/
SCID/IL-2Rγ−/− (NSG) mice are thus severely deficient in innate 
immunity and show augmented human HSC engraftment. The 
reconstitution with human HSCs in NSG mice is long lasting 
(37). In another approach, the IL-2Rγ−/− mutation was intro-
duced into mice with a mutated recombination activating gene 
2 (Rag2) on a BALB/c background (38). The Rag2 mutation 
in these BALB/c Rag2−/−/IL-2Rγ−/− (BRG) mice renders them 
completely free of murine T and B cell cells, whereas the SCID 
mutation is “leaky,” meaning that some functional murine T and 
B cells develop (39).

The different types of humice differ with regard to efficiency 
of human HSC engraftment and the resulting composition of 
human hematopoietic cells (40–42). In VHF research, mainly 
HSC-engrafted humice and bone marrow/liver/thymus (BLT)  
humice are used. In the HSC-engrafted humice, human CD34+  
HSCs from various sources (bone marrow, cord blood, peripheral 
blood or fetal liver) are inoculated into newborn immunodeficient 
mice and allowed to develop (Figure 1). A major disadvantage 
of HSC-engrafted humice is the lack of human T cell education 
due to the absence of a human thymus. This situation has been 
improved by generating transgenic NSG mice expressing human 
leukocyte antigen (HLA) molecules. Transgenic NSG mice 
expressing the HLA class I molecule HLA-A2 (hereafter referred 

to as NSG-A2 mice) facilitate the development of functional CD8 
T cells after reconstitution with HLA-A2+ human HSCs (43–45). 
The expression of HLA class II molecules allows the development 
of both antibody-producing and class-switching human B cells 
(46–48).

The BLT humice enables human T  cells to differentiate in 
an autologous human thymus (49, 50). BLT mice are gener-
ated by transplantation of human fetal liver and thymus tissue 
fragments under the kidney capsule of immunodeficient mice,  
e.g., NOD/SCID or NSG mice, followed by intravenous injec-
tion of autologous HSCs derived from fetal liver (Figure  1). 
The major advantage of BLT mice is their ability to mount a 
relatively effective human adaptive immune response due to 
the presence of a human thymic environment and the resultant 
HLA-restricted T cell repertoire. Caveats are the requirement 
of human fetal tissue and the relatively frequent development 
of graft-versus-host disease.

Elimination of human hematopoietic cells by murine phago-
cytic cells combined with defective human hematopoiesis in 
humice put a curb on human erythrocytes (51, 52), platelets (53), 
neutrophils (54–56), monocytes/macrophages (57), and NK cells 
(58, 59). An explanation for defective human hematopoiesis is the 
lack of binding of important murine growth factors and cytokines 
to receptors on human progenitor cells. An elegant solution of 
this problem is the generation of homozygous knock-in mice 
to replace murine with human cytokines (60–63). Germline-
competent ES cells from NSG mice have been established to 
facilitate their genetic modification (64). Recently, transgenic 
NSG mice have been developed that constitutively express human 
“myeloid” cytokines: human stem cell factor, human granulocyte/
macrophage colony-stimulating factor 2, and human IL-3. After 
reconstitution with human HSCs, these NSG-SGM3 mice allow 
better development of human myeloid cells, the key target cells 
of VHF viruses (65–68).

So far, four different HFVs from three virus families 
(Flaviviridae, Filoviridae, and Bunyaviridae) have been studied 
in humice.

FLAviviRUSeS

Dengue viruses (DENVs) are the cause of the most important 
arthropod-borne viral disease in terms of global distribution and 
economic impact (69). The known DENV serotypes (DENV-1 
to DENV-4) are members of the Flaviviridae family and carry a 
positive-sense single-stranded RNA genome. The Aedes aegypti 
mosquito, which is found in tropical and subtropical areas, 
functions as the main vector. Roughly 2.5 billion people, i.e., 
two fifths of mankind, live in endemic areas. An estimated 390 
million people become infected per year. The most frequent 
clinical manifestation is DF, a self-limiting febrile disease with 
spontaneous recovery (70). However, some patients develop 
major complications such as plasma leakage leading to shock, 
respiratory distress, bleeding and organ impairment.

DF has been extensively studied in humice (Table 1). After 
DENV-2 infection, NOD/SCID mice and NSG mice develop 
fever, erythema, and human thrombocytopenia compat-
ible to the human disease (71–73). The decrease in human  
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FiGURe 1 | Generation of humice in viral hemorrhagic fever research. Various immunodeficient mice can be used as a platform for generating mice with a 
human immune system. Non-obese diabetic (NOD)/severe combined immunodeficiency (SCID) mice show impaired murine T and B lymphocyte development 
due to the homozygous SCID mutation and are in addition deficient in natural killer (NK) cell function due to the NOD background. The Sirpa gene 
polymorphism in the NOD background also blunts phagocytosis of engrafted human hematopoietic stem cells (HSCs). The truncation or deletion of murine IL-2 
receptor common gamma (IL-2Rγ) in NOD/SCID/IL-2Rγ−/− (NSG) mice further increases human HSC engraftment. NSG/A2 mice express human leukocyte 
antigen A2 to facilitate the development of functional CD8 T cells. In BALB/c Rag2−/−/IL-2Rγ−/− (BRG) mice, the IL-2Rγ−/− mutation was introduced into BALB/c 
mice deficient in the recombination activating gene 2 (Rag2). Finally, NSG/SGM3 mice allow better development of human myeloid cells due to constitutive 
expression of human cytokines (stem cell factor, granulocyte/macrophage colony-stimulating factor 2, and IL-3). Left: HSC-engrafted humice. Human HSCs 
(derived from various sources such as bone marrow, cord blood, peripheral blood or fetal liver) are inoculated intrahepatically (ih) into sublethally irradiated 
newborn mice. Approximately 12–14 weeks after HSC inoculation, humice are monitored for engraftment of human HSCs by flow cytometric analysis. Right 
side: bone marrow/liver/thymus (BLT) humice. Human fetal liver and thymus are transplanted under the kidney capsule of sublethally irradiated 6- to  
8-week-old mice and subsequently inoculated iv with autologous human fetal liver HSCs. The engraftment is verified 10–12 weeks later.
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platelets is due to inhibition of human megakaryocyte develop-
ment (74). DENV-2 could be detected in several human cell 
types in the bone marrow, spleen, and blood of these mice (73). 
In accordance, human cells isolated from the bone marrow of 
NSG mice were susceptible to DENV-2 infection in vitro (43). 
This cell tropism is in agreement with studies demonstrating 
DENV-derived protein in phagocytic cells in human autopsy 
tissue such as lymph nodes and spleen (75). Intriguingly, when 
infected Aedes aegypti transmitted DENV-2 to humice during 
feeding, more sustained and severe viremia, erythema and 
thrombocytopenia occurred compared to other modes of virus 
inoculation (76). This suggests that the mosquito bite itself and 
mosquito saliva contribute to dengue pathogenesis.

The immune system plays a crucial role in dengue pathogen-
esis (25, 77). Firstly, in humans, priming of the antiviral immune 

response with one DENV serotype often causes a more severe 
disease after infection with another DENV serotype at a later 
time point. Secondly, the most severe symptoms are observed 
at the peak of the human antiviral immune response. For these 
reasons the response of human immune cells has been studied 
in humice of DENV infection. Human anti-DENV IgM anti-
bodies were detected 2 weeks after infection of BRG mice with 
DENV-2 followed by virus-reactive IgG at 6 weeks postinfection 
(78). In accordance, it was observed that NSG mice infected 
with DENV-2 through mosquito bite developed a virus-specific 
adaptive immune response (76). Moreover, human T cells from 
infected NSG-A2 mice secreted cytokines in response to known 
stimulatory HLA-A2-restricted DENV-2 peptides (43). Finally, 
NK cells are activated by contact with infected DCs before they 
control DENVs through IFN-γ secretion (79).
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TAbLe 1 | Humanized mouse models in viral hemorrhagic fever (VHF) research.

Disease virus/family Platform Key findings Reference

DF DENV-2/Flaviviridae NOD/SCID, NSG DF symptoms (fever, rash, and thrombocytopenia) (71, 72)
DF DENV-2/Flaviviridae NSG DENV-2 tropism as in human DF (43, 73)
DF DENV-2/Flaviviridae NSG Thrombocytopenia due to inhibition of megakaryocyte development (74)
DF DENV-2/Flaviviridae NOD/SCID-BLT, NSG Effective DF treatment with adenosine nucleoside inhibitor or  

therapeutic antibody
(84, 85)

DF DENV-2/Flaviviridae NSG/A2 Virus-specific HLA-A2-restricted human T cell response (43)
DF DENV-2/Flaviviridae BRG, NSG, NSG/A2 Virus-specific huIgG and huIgM response (43, 76, 78)
DF DENV-2/Flaviviridae BLT-NSG Serotype-cross-reactive huIgM antibodies with poor neutralizing activity (80, 81)
DF DENV-2/Flaviviridae NSG/SGM3-BLT Higher levels of antigen-specific huIgM and huIgG compared to BLT-NSG (82)
DF DENV-2/Flaviviridae NSG Serum metabolomics similar to human DENV infections (83)

EVD EBOV/Filoviridae NSG-A2 EVD symptoms (cell damage, liver steatosis, hemorrhage, high lethality) (96)
EVD EBOV/Filoviridae NSG-BLT Increased levels of pro-inflammatory cytokines and liver enzymes;  

histopathological findings typical for EVD
(94)

EVD EBOV/Filoviridae NSG-SGM3 Absence of characteristic EVD histopathology (95)

CCHF CCHFV/Bunyaviridae NSG-SGM3 Lethal disease with severe neuropathology (gliosis, meningitis, meningoencephalitis) (99)

HFRS HTNV/Bunyaviridae NSG, NSG-A2 Highest numbers of HTNV copies in the lung, humanized NSG-A2 mice develop  
faster and more severe symptoms such as thrombocytopenia

(112)

BLT, bone marrow/liver/thymus model; BRG, BALB/c Rag2−/− IL-2Rγ−/− mice; CCHF, Crimean–Congo hemorrhagic fever; CCHFV, Crimean-Congo hemorrhagic fever virus; DENV-2, 
dengue virus serotype 2; DF, dengue fever; EBOV, Ebola virus; EVD, Ebola virus disease; HFRS, hemorrhagic fever with renal syndrome; HTNV, hantaan virus; NOD, non-obese 
diabetic mice; NSG, NOD/SCID/IL-2Rγ−/− mice; NSG-A2, NSG mice constitutively expressing HLA-A2; NSG-SGM3, NSG mice constitutively expressing human stem cell factor, 
human granulocyte/macrophage colony-stimulating factor 2, and human IL-3; SCID, severe combined immunodeficiency mice; HLA, human leukocyte antigen.
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The virus-specific immune response has also been studied 
in DENV-2-infected NSG-BLT mice (80, 81). Human T  cells 
isolated from NSG-BLT mice during acute infection and in 
the convalescence phase secreted IFN-γ after stimulation with 
DENV-2 peptides (80). In addition, human B  cells secreted 
DENV-2-reactive IgM antibodies (80). The majority of these 
antibodies were serotype cross-reactive, recognized epitopes 
on envelope proteins and intact virions, and neutralized poorly 
(81). The antibodies generated in the convalescence phase 
showed higher avidity compared to antibodies found in acute 
infection (81). Accordingly, NSG-BLT mice in the con valescence 
phase showed decreased virus titers after being challenged 
with a clinical DENV-2 strain. Furthermore, preincubation  
of DENV-2 virions with immune sera from immune NSG-BLT 
mice reduced viral replication after inoculation into naïve mice 
(81). In DENV-2-infected BLT mice generated from NSG-
SGM3 mice, improved B  cell development and higher levels 
of antigen-specific IgM and IgG were observed compared to 
DENV-2-infected NSG-BLT mice (82). The serum metabo-
lomics of DENV-2-infected humice is similar to human DENV 
infections demonstrating the utility of humice for analyzing 
DENV-associated pathogenesis (83). In addition, a therapeutic 
antibody and an antiviral drug were successfully tested in 
DENV-2-infected humice (84, 85). These studies emphasize 
the value of humice in translational and preclinical VHF  
research.

FiLOviRUSeS

The dramatic 2014 outbreak of EVD in West Africa underlines 
the need to better understand this deadly disease (86). Ebola 
virus (EBOV) and Marburg virus, a closely related HFVs, belong 
to the Filoviridae family in the order Mononegavirales (87). 

These large enveloped filamentous viruses are equipped with 
a negative-sense single-stranded RNA genome. Bats represent 
potential reservoirs for Marburg virus (88) and, more specula-
tively, perhaps also EBOV. They are persistently infected without 
showing symptoms and can spread the viruses to humans and 
NHPs. EVD has a high case fatality rate and affects many organs 
resulting in a variety of symptoms including gastrointestinal, 
respiratory, neurological, and vascular (89). Most impressive are 
the hemorrhagic manifestations such as petechiae, ecchymoses, 
and mucosal hemorrhages. The final and most severe stage of 
EBOV disease is characterized by shock, systemic impairment of 
coagulation and convulsions. The fatal outcome is most likely a 
consequence of both the direct effects of lytic EBOV replication 
and an inadequate immune response (90, 91). In EVD survivors, 
long-lasting activated CD8 T cells have been detected, suggest-
ing that EBOV-derived stimulatory antigen persists at low levels 
within the organism (92).

Small animal models for analyzing filovirus pathogenesis 
have been generated using laboratory mice, guinea pigs, and 
the Syrian hamster (93). Recently, the potential of humice for 
modeling EBOV disease was explored in three different types of 
humice (Table 1) (6, 94–96). To this end, NSG-A2, NSG-SGM3, 
and NSG-BLT mice were infected with low-passage wild-type 
EBOV isolates. EBOV-infected NSG-A2 mice started to lose 
weight around day 7 postinfection and some hallmarks of human 
EBOV disease were observed including cell damage, liver stea-
tosis, signs of hemorrhage, and high lethality (96). Intriguingly, 
there was a direct correlation between EBOV disease severity 
and the level of HSC engraftment. In contrast, unreconstituted 
NSG-A2 mice showed only mild symptoms with weight loss 
starting later in the third week postinfection and gradually 
continuing until the time of death around day 30 postinfection. 
NSG-A2 mice reconstituted with normal murine HSCs, another 
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important control, survived EBOV infection. These results 
emphasize the importance of human hematopoietic cells for EVD  
pathogenesis.

In EBOV-infected NSG-BLT mice, clinical illness depended 
on viral dose inoculated and donor tissue used for reconstitu-
tion (94). Moderate leukopenia and thrombocytopenia and 
histopathological alterations similar to those found in human 
victims were observed. Liver enzymes and key pro-inflammatory 
human cytokines associated with fatal EVD (e.g., TNF-α, IL-1, 
IL-6, and IL-10) were increased. In contrast, unreconstituted 
NSG control mice survived EBOV, underlining the role of human 
hematopoietic cells in EVD pathogenesis.

After EBOV infection of NSG-SGM3 mice, high virus titers 
were found in blood, liver, and spleen (95). Most of the mice  
died within 2 weeks of infection. In accordance with the con-
cept that human myeloid cells spread VHF viruses within the 
organism, viral antigen was found in tissue-residing human 
macrophages and DCs and later in the course of infection also 
in murine parenchymal cells. In contrast to EBOV-infected 
NSG-A2 and NSG-BLT mice, the characteristic histopathol-
ogy of severe human EBOV disease was not observed. This 
difference could be explained at least in part by the lack of 
HLA class I-restricted functional T cells in NSG-SGM3 mice. 
Thus, the lethal disease observed in these mice may be due to 
pathology directly induced by EBOV or due to innate immune  
responses.

bUnYAviRUSeS

A number of HFVs belong to the family Bunyaviridae. These 
are enveloped viruses that carry a genome consisting of three 
negative-sense single-stranded RNA segments (97). Recently, 
Crimean-Congo hemorrhagic fever virus (CCHFV) belong-
ing to the genus Nairovirus and Hantaan virus (HTNV), the 
prototype member of the genus Hantavirus, have been analyzed  
in humice.

Crimean–Congo hemorrhagic fever (CCHF) represents the 
most relevant tick-borne viral disease in humans due to its 
wide distribution. Sporadic cases or outbreaks of CCHF are 
observed in a vast geographic area including western China, 
the Middle East, southern Europe, and most parts of Africa 
(98). CCHFV circulates in wild and domestic vertebrates that 
are transiently infected without showing symptoms. Humans 
become infected through tick bite or contact with body fluids 
from infected patients or animals. As with other VHFs, the 
spectrum of symptoms of Crimean-Congo hemorrhagic fever 
includes mild fever, vascular leakage resulting in multiorgan 
failure, and finally shock with coagulation defects. Case fatality 
rates of up to 30% have been reported. A recent study analyzed 
CCHFV-infected NSG-SGM3 mice (Table 1) (99). They showed 
lethal disease resembling CCHF in some respects. CCHFV 
was detected in many organs including liver, spleen, and 
brain, similar to CCHFV-infected mice deficient in type I IFN 
responses. Histopathological analysis revealed several features 
typically found in CCHF such as the presence of viral antigen 
within Kupffer cells, endothelial cells, and hepatocytes. Similar 
to human CCHF cases, vacuolar degeneration/steatosis and 

increased single cell necrosis were observed. CCHV-infected 
humice also developed CNS symptoms such as meningitis and 
meningoencephalitis. Intriguingly, a population of activated 
human CD8 T  cells was identified that could contribute to 
immunopathology or virus elimination in a non-specific (HLA 
class I-independent) way (99).

Hantaviruses are globally emerging pathogens responsible 
for VHF in Africa, America, Asia, and Europe (100). Rodents, 
shrews, moles, and bats serve as natural hosts for hantaviruses. 
In contrast to all other pathogenic members of the family 
Bunyaviridae, hantaviruses are transmitted to humans via aero-
sols derived from rodent excreta. Depending on the geographic 
region, hemorrhagic fever with renal syndrome (HFRS) or 
han tavirus cardiopulmonary syndrome (HCPS) may develop 
(101). Both types of disease bear pathogenic similarities with 
increased vascular permeability and loss of platelets as leading 
symptoms (102). Hantavirus replicate in cell culture without 
causing obvious cytopathic phenomena, suggesting that immune 
mechanisms play a role in HFRS/HCPS (103, 104). In line with 
this view, the susceptibility to hantavirus infection and the clini-
cal course of hantavirus-induced disease in humans are linked 
to polymorphisms of immune-related genes (105). Moreover, 
pathogenic hantaviruses infect human myeloid cells such as 
DCs and monocytes and interact with neutrophils, the most 
abundant immune cells (21, 23, 106–109). This tropism may help 
the pathogens to spread within the organism. In addition, this 
may also result in an inadequate immune response such as the 
excessive release of neutrophil extracellular traps that damages 
the endothelial barrier (110, 111).

Recently, hantaviral pathology was analyzed in HTNV-
infected NSG mice and NSG-A2 (Table  1) (112). In both 
types of humice, hantaviral genomic RNA was detected in the 
kidney, liver, and spleen, but the highest viral copy numbers 
were found in the lung. Significant weight loss occurred 
earlier in NSG-A2 mice (day 10) than in NSG mice (day 15). 
HTNV-infected unreconstituted NSG mice that served as a 
control showed only a slight but not significant weight loss 
within the observation period. Inflammatory infiltrates in the 
lung of HTNV-infected NSG-A2 mice were stronger than in 
NSG mice. Similarly, the number of human platelets dropped 
significantly in NSG-A2 mice, whereas the observed reduction 
in NSG mice was not significant. Although hantaviruses infect 
human megakaryocytic cells, they do not cause alterations in 
cell survival or differentiation (113). Thus, it is likely that 
hantavirus-induced thrombocytopenia is due to increased 
platelet destruction (114). Taken together, these findings 
indicate that human hematopoietic cells including HLA-A2 
restricted human T  cells play a pivotal role in hantaviral 
pathogenesis.

COnCLUSiOn AnD FUTURe DiReCTiOnS

Humice are an extremely useful but still not optimal tool for 
elucidating the mechanisms of VHF immunopathogenesis, 
in particular, because of the very limited range of alternative 
research models. In addition, humice facilitate testing of vac-
cines and novel antiviral agents (115). Development of these 
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therapeutic agents is urgently needed for treatment and preven-
tion of highly lethal VHFs. For example, humice can be used 
to generate human monoclonal antibodies for VHF prophylaxis 
(116). Finally, standardized humice allow the prospective testing 
of newly discovered HFVs or viruses suspected to be potentially 
HFVs and could form part of a zoonosis threat detection 
network. Future attempts have to improve the utility of humice 
as VHF models by further allowing better engraftment and 
differentiation of HSCs as well as the development of a fully 
functional lymphoid tissue architecture that efficiently supports 
human immune reactions.
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