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Abstract

Predicting the biological function of all the genes of an organism is one of the fundamental goals of computational system
biology. In the last decade, high-throughput experimental methods for studying the functional interactions between gene
products (GPs) have been combined with computational approaches based on Bayesian networks for data integration. The
result of these computational approaches is an interaction network with weighted links representing connectivity likelihood
between two functionally related GPs. The weighted network generated by these computational approaches can be used to
predict annotations for functionally uncharacterized GPs. Here we introduce Weighted Network Predictor (WNP), a novel
algorithm for function prediction of biologically uncharacterized GPs. Tests conducted on simulated data show that WNP
outperforms other 5 state-of-the-art methods in terms of both specificity and sensitivity and that it is able to better exploit
and propagate the functional and topological information of the network. We apply our method to Saccharomyces
cerevisiae yeast and Arabidopsis thaliana networks and we predict Gene Ontology function for about 500 and 10000
uncharacterized GPs respectively.

Citation: Magi A, Tattini L, Benelli M, Giusti B, Abbate R, et al. (2012) WNP: A Novel Algorithm for Gene Products Annotation from Weighted Functional
Networks. PLoS ONE 7(6): e38767. doi:10.1371/journal.pone.0038767

Editor: Stefano Boccaletti, Technical University of Madrid, Italy

Received February 13, 2012; Accepted May 13, 2012; Published June 28, 2012

Copyright: � 2012 Magi et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was partially financed by the Italian Ministry of Health (Strategic Project: Transcriptomic and proteomic profiles for identification of novel
clinical biomarkers of cardiovascular risk in women). Partial financial support for MB was provided by Ministero dell’Istruzione, dell’Università e della Ricerca
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Introduction

Understanding how an organism functions is a task that requires

the knowledge of molecular, biochemical, cellular and phenotypic

effects of all genes. Although high throughput technologies, such as

microarray and new sequencing platforms, allow for monitoring

the molecular activity of tens of thousands genes simultaneously,

experimental evidence of gene functions have been proven for

a small fraction of all known genes. For instance, only

approximately 12 K (K=1000) of the 29 K genes in mouse have

experimental evidence supporting their functional annotation. For

Caenorhabditis elegans experimental evidences have been dem-

onstrated for about a third (,7.5 K) of its ,20 K genes and even

the well-characterized Saccharomyces cerevisiae still has ,1 K of

its genes without functional annotation (on a total of ,6000

genes). During the last decade, several experimental strategies to

study the functional interaction between gene products (GPs) have

been developed: yeast-two-hybrid (Y2H) techniques allow for the

detection of binding interactions between proteins [1,2], expres-

sion profiling enables the measurements of transcript coexpression

[3,4], synthetic lethality and synthetic rescue experiments discover

genetic interactions [5] while ChIP-Chip [6] and ChIP-seq [7]

identify protein-DNA interactions. Although these high-through-

put experimental strategies allow for the detection of thousands of

interactions simultaneously, it is very difficult to extract bi-

ologically relevant relationships from noise within a single

experiment. Moreover, no single experimental method can assess

all the interactions in the interactome of an organism. To

overcome the limits of single experiment analysis and to construct

global networks of functional relationships, computational ap-

proaches have been developed for integrating data from multiple,

often unrelated, proteomics and genomics experiments. The

integration of multiple types of genomic data has been shown to

be much more sensitive with respect to single datasets in the

detection of functional relationships between genes, leading to

‘‘high-confidence’’ networks [8]. The great majority of these

methods, introduced in the literature with the pioneering works of

Jansen et al. [9], Lee et al. [10] and Troyanskaya et al. [11] are

based on Bayesian network framework where many interaction

experiments are used as features for a classifier of interactions/

noninteractions. A probabilistic score is assigned to each possible

interaction by training the classifier on a gold-standard set of true

and false interactions. The output of these computational schemes

is an interaction network where the links are represented by a score

that measures the probability that two nodes are functionally

related. Once the high-confidence weighted network is built, it can

be used to predict annotations for uncharacterized GPs, such as

GP function or localization [12]. The prediction of unannotated

GPs is performed by means of prediction algorithms which may

fall into two different categories: direct annotation schemes exploit

neighbours’ functions for the annotation of a target GP while

module-assisted schemes first cluster the network into modules of
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related GPs and then annotate each module according to the

functions of its members. In this paper we will focus on direct

methods. The key idea of all direct methods is that GPs interacting

in a network are more likely to share the same biological function.

Hishigaki et al. [13] introduced the first direct method for GP

function prediction based on x2 score: for each p GP they examine

the n-neighbors, assigning a score (ns{es)
2=es to each function s,

where ns is the number of GPs in the n-neighbors of p with

function s and es is the expected value of this number based on

the frequency of s among the networks GPs. Nabieva et al. [14]

introduced a flow-based approach: each annotated GP in the

network is treated as a source of ‘‘functional flow’’. First, functional

flow spreading over time is calculated, then biological functions of

uncharacterized GPs is predicted according to the flow they

receive during the simulation. Chua et al. [15] devised a prediction

algorithm that takes into account the relation between network

distance and functional similarity. They studied the 12 and 22

neighborhoods of a target GP and proposed a functional score that

weights links between GPs according to the inverse of their

distance. Vazquez et al. [16] developed an optimization scheme

assigning a function to each unannotated GP by maximizing the

number of edges that connect GPs (unannotated or previously

annotated) with the same functional category. While prediction

algorithms by Chua et al. [15] and Nabieva et al. [14] exploit

weighted links of probabilistic functional networks, the method

devised by Vasquez et al. works on binary networks: the elements

of the adjacency matrix can only take values of 0 (uncoupled

nodes) and 1 (coupled nodes). In the present work we extend the

annotation strategy proposed by Vazquez et al. [16] to exploit the

weighted links of probabilistic functional networks (PFN). A novel

algorithm, Weighted Network Predictor (WNP), for predicting the

function of biologically uncharacterized GPs is presented. Testing

WNP on simulated data we show that it outperforms other 5 state-

of-the-art methods in terms of both specificity and sensitivity as it

more efficently exploits and propagates the functional and

topological information of the network. We apply our method to

the PFNs of Saccharomyces cerevisiae and Arabidopsis thaliana

and we predict the Gene Ontology (GO) [17] function for

approximately 500 and 10000 uncharacterized GPs respectively.

Materials and Methods

Probabilstic Functional Networks
Probabilistic functional gene networks are built integrating

heterogeneous genomics data. Data integration is performed

exploiting the notion of ‘‘functional coupling’’ [10,18]. The

concept of functional coupling transcend the idea of physical

interaction due to binding. GPs involved in a certain biological

process may not show binding interactions. For instance, proteins

involved in the same biological pathway, but in different

biochemical steps, are functionally associated even in the absence

of binding interactions. This concept of functional coupling is

inclusive and allows for the integration of many different types of

data capturing diverse types of associations (e.g., binding

interactions, regulatory interactions, membership in the same

protein complex, genetic interaction etc.). Exploiting the idea of

functional coupling, Lee et al. [10], developed a Bayesian statistical

method that allows for the evaluation of functional associations

between GPs by integrating many heterogeneous functional data.

The Bayesian approach is based on a Log Likelihood Score (LLS)

that measures the likelihood of GPs pairs to be functionally

associated on the basis of experimental data. Since the scores for

each experiment are measured on a common benchmark,

experiments are comparable and scores can be added to estimate

the confidence of combined evidence. Once the scores of all the

experimental data have been integrated, the probabilistic func-

tional network – with the LLS measuring the probability of an

interaction representing a true functional linkage between two GPs

– is obtained. Scores greater than zero correspond to functional

linkages, with higher scores indicating more confident connections.

Thus, Lee and coworkers constructed PFN for organisms ranging

from unicellular yeast [10], through invertebrate model organisms

[19], to mammals [20]. In this paper we used the PFN of

Saccharomyces cerevisiae YeastNet v.2 [21] and the PFN of

Arabidopsis thaliana AraNet v.1 [22]. The YeastNet v.2 covers

102803 linkages among 5483 yeast proteins (95% of the validated

proteome), while the AraNet v.1 covers 1062222 linkages among

19647 Arabidopsis proteins (73% of the validate proteome). The

two PFNs were downloaded from http://www.yeastnet.org/.

Prediction Scheme
In a pioneering work, Vazquez et al. [16] proposed to assign

function si to each unannotated protein i of a Protein-Protein

Interaction (PPI) network by maximizing the number of edges that

connect proteins (unannotated or previously annotated) in the

same functional category. The problem can be formulated as

a global optimization task, where the scoring function E has to be

maximized:

E~{
X

i,j

Jijd(si,sj){
X

i

hi(si) ð1Þ

where Jij is the adjacency matrix of the interaction networks for

uncharacterized GPs (Jij is equal to 1 if GP i and j interact and are

uncharacterized, 0 otherwise), d(si,sj) is the discrete delta function
and hi is the number of characterized GPs that link to GP i with

function si. The first term of the score function represents the

contribution of interactions between unannotated GPs while the

second term refers to interactions between unannotated and

previously annotated proteins. A simulated annealing optimization

schedule was employed to maximize the total score and

consequently to assign a biological function to each previously

uncharacterized protein. Although this prediction scheme has the

great advantage of using interaction with unannotated GPs,

predicting GP function only for binary networks is a major

drawback. Thus, in order to exploit the weighted structure of the

PFNs, we extended the scoring function by Vazquez et al. [16] in

the following manner:

Ew ~{
X

i,j

Wijd(si,sj){
X

i

gi(si) ð2Þ

where Wij is the adjacency matrix of the interaction networks for

uncharacterized GPs while gi is the sum of the weights of edges

linking GP i to characterized GPs with function si. The extended
version of the scoring function introduced by Vazquez allows for

the prediction of unannotated GPs functions by maximizing the

sum of LLS of edges that connect GPs (unannotated or previously

annotated) with the same functional category. In order to

minimize the Weighted Score Ew we used a minimization strategy

based on the Generalized Simulated Annealing introduced by

Tsallis and Stariolo [23] (see Section ‘‘Generalized Simulated

Annealing’’ in Text S1).

Functional Annotation
Gene Ontology [17] is a controlled and structured vocabulary

made of a set of standard terms for the indexing and retrieving of

Gene Products Annotation from Weighted Networks
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information. The terms represent GP properties and cover three

functional domains: cellular component (the parts of a cell or its

extracellular environment), molecular function (the elemental

activities of a gene product at the molecular level) and biological

process (operations or sets of molecular events with a defined

beginning and end, pertinent to the functioning of integrated living

units: cells, tissues, organs, and organisms). Gene Ontology (GO)

can be represented as a directed graph where nodes represent

terms potentially connected by functional relationships. The graph

structure of GO resemble a hierarchy where child terms are more

specialized and parent terms are less specialized. Functional details

can be tuned by cutting the GO structure at different hierarchic

level. For the functional prediction of Saccharomyces cerevisiae

and Arabidopsis thaliana we used ‘‘GO slim’’ – a subset of the

terms in the whole GO. Go slims overview the ontology content

without the details of the specific fine grained terms. The practice

of associating the activities and localization of a gene product with

GO terms (annotation) is carried out by curators such as the

Saccharomyces Genome Database (SGD) for yeast and the

Arabidopsis Information Resource (TAIR) for Arabidopsis thali-

ana. The GO slim version for yeast (downloaded from www.

yeastgenome.org) contains 25 terms for cellular component, 25

terms for biological process and 45 terms for molecular function,

while for Arabidopsis thaliana (downloaded from http://www.

arabidopsis.org/) contains 16 terms for cellular component, 13

terms for biological process and 15 terms for molecular function.

Performance Evaluation
The performance of function-prediction algorithms can be

evaluated by means of two different approaches: leave-one-out and

leave-a-percent-out cross-validation methods. Both are based on

the same assumption: a certain fraction of GPs with known

annotations is considered unannotated. In order to evaluate

accuracy performances, the algorithm is applied to the un-

annotated GPs and the predictions on the selected GPs are then

compared with the original annotations. The difference between

the two cross-validation procedures consists in the amount of GPs

to be cleared: with leave-one-out approaches the annotation of one

GP at the time is cleared while with leave-a-percent-out methods

the annotation of a certain percentage of GPs at the time is

cleared. Since leave-one-out approaches are well suited for small

dataset validation, we decided to evaluate the performance of

WNP and compare it with other prediction algorithms by using

a leave-a-percent-out criterion. Moreover, leave-a-percent-out

approach fits better real-world annotation problems, where a large

fraction of the genome/proteome is still unknown. Two different

statistical measures were employed to study the prediction

accuracy of WNP: the Area Under the Receiver Operating

Characteristic Curve (AUC) and the success rate vs. functional

degree curve. Receiver Operating Characteristic (ROC) curves

were generated by plotting true positive rate (TPR) against false

positive rate (FPR). TPR was calculated as the ratio between true

positive (TP) prediction and total number of GPs to be predicted,

while false positive rate (FPR) were determined as the ratio

between false positive (FP) prediction and total number of GPs to

be predicted. TP and FP are defined as the number of GPs

correctly or incorrectly predicted [14]: if an algorithm assigns

multiple predictions to an unknown GP, the latter is considered

a TP if more than a half of the predicted functions are correct,

otherwise it is marked as a FP. The couples of TPR/FPR (GPs

correctly/incorrectly predicted) for different values of the algo-

rithm thresholds allow for the construction of ROC-curves. To

summarize ROC information content we calculated the relative

AUC. In order to evaluate the performance of WNP and other

algorithms in exploiting the functional topology of the weighted

network for GP function prediction, we studied prediction success

rate (SR) as a function of the functional degree (FD). The FD of

a GP is the number of annotated GPs directly connected to the

target GP. SR is defined as the ratio between the number of

successful predictions against the total number of predictions. To

build SR vs. FD curves we ranked, for each algorithm, all the

functional predictions according to the algorithm score and we

selected all the predictions with scores larger than a threshold. The

threshold was selected for each simulation as the value that allows

at least one prediction for each GP. SR vs. FD curves permit the

estimation of the reliability of prediction algorithms as a function

of the amount of information available for each GP in the

network.

Results

Simulated Data Analysis
To evaluate the ability of WNP in assigning Gene Ontology

function to unannotated GPs we used the leave-a-percent-out

strategy on the PFNs of Saccharomices cerevisiae and Arabidopsis

thaliana and we compared the performance of our prediction

scheme with other five state-of-the-art algorithms: the Simulated

Annealing (SA) approach by Vazquez et al. [16], FunctionalFlow

(FF) by Nabieva et al. [14], ChiSquare (CHIS) by Hishigaki et al.

[13], the FS Weighted Averaging (WA) by Chua et al. [15] and the

weighted average scheme (PC), again by Chua et al. [24] (see

Section ‘‘Algorithm Comparison’’ in Text S1 for more details).

Concerning yeast Saccharomyces cerevisiae we used the PFN

YeastNet v2 inferred in Lee et al., while for the Arabidopsis

thaliana we used the PFN AraNet v1 inferred in Lee et al. (see

Materials and Methods for more details). We performed the leave-

a-percent-out validation by randomly removing the annotation of

5, 10, 15 and 20 percent of the annotated proteins for the three

functional categories of Gene Ontology classification scheme

(cellular component, biological process and molecular function).

We applied the 6 prediction algorithms to 100 validation datasets

for each ontology and the results of all these analyses are

summarized in Figure 1 and Figures S1, S2, S3 and S4 for

Saccharomyces cerevisiae and in Figure 2 and Figures S5, S6, S7

and S8 for Arabidopsis thaliana. The AUC barplots of Figures 1–2

and Figures S1, S2, S3, S4, S5, S6, S7 and S8 show that our

prediction algorithm outperforms the other five state-of-the-art

methods in terms of both sensitivity and specificity for all the three

functional categories we used. The AUC barplots also show that

the second best algorithm in terms of sensitivity/specificity tradeoff

is the SA approach [16] followed by the PC method, the WA

scheme and the FF algorithm. All these prediction methods

achieve much better performance than the ChiSquare approach.

The SR vs. FD curves (Figures 1d, 1e, 1f and 2d, 2e, 2f) show that

the WNP algorithm obtains the best results also in terms of success

rate independently by the functional information of the neighbour

of each predicted protein. This is due to the fact that WNP

algorithm is able to better exploit and propagate the functional

and topological information of the network. The results reported

in the SR vs. FD plots also show that the FF algorithm by Nebieva

et al. and the Chi-square approach produce better results than the

PC and WA algorithms of Chua et al. [15] The discrepancy

between the performance measured by AUC and SR vs. FD

analyses is mainly due to the fact that the prediction scores

produced by the FF algorithm and Chi-square method are more

informative of the score produced by the PC and WA algorithms

of Chua et al. [15]. All the leave-a-percent-out validations we

performed show that removing the annotation of 5, 10, 15 and 20

Gene Products Annotation from Weighted Networks
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percent of the annotated GPs slightly affect the performance of our

algorithm. For this reason, in order to study the prediction

accuracy of our algorithm as a a function of the increasing number

of cleared GPs, we extended the leave-a-percent-out cross

validation up to removing the 90% of the annotated GPs. The

results of these analyses are reported in Figure S9. Each plot of

Figure S9 reports the global prediction SR as a function of the

percentage of cleared annotated GPs. These results show that

removing more than 50% of the annotated GPs drastically affects

the performance of WPN algorithm, with the exception of the BP

predictions made for the Arabidopsis thaliana. The weak de-

pendence between WPN prediction accuracy and the percentage

of cleared GPs for Arabidopsis thaliana BP ontology is due to the

fact that a large proportion of the Arabidopsis thaliana GPs are

annotated with the BP terms ‘other cellular processes’ and ‘other

metabolic processes’: even when a large number of annotated GPs

are removed, the WPN algorithm propagates these two terms in

the network resulting in a large prediction accuracy as demon-

strated in the plot of Figure S9.

Functional Prediction of Uncharacterized Proteins
To test the real performance of the WNP algorithm in

predicting the function of functionally uncharacterized proteins,

we applied our global method to probabilistic functional networks

of Saccharomyces cerevisiae and Arabidopsis thaliana. In order to

asses the plausibility of our predictions we used the GO slim

annotations made until january 2010 for yeast and GO slim

annotations made until January 2011 for Arabidopsis, and we

studied the overlap between our predictions and the annotations

added to the GO database in the last months. A summary of the

results of all the predictions is reported in Table 1. Moreover, we

also looked for the informations related to predicted proteins in

pubmed search. A list of all putative functional predictions made

by WNP for Saccharomyces cerevisiae and Arabidopsis thaliana

are provided in Tables S1 and S2 respectively.

Saccharomyces Cerevisiae
The analyses performed by means of WNP on the yeast network

allow us to annotate the Cellular Component (CC) of 680

previously uncharacterized proteins. Amongst all these prediction

(see Figure 3), 34% of them fall under the cytoplasm category,

12% are part of the nucleus category and 4% are in membrane

and mithocondrion categories. Considering Biological Process (BP)

ontology, WNP predicted the annotation of 1140 proteins: about

12% of them fall into transport category, 10% belongs RNA

metabolic process while 8% to stress category. Finally, for

Molecular Function (MF) analysis our algorithm annotated 1840

functionally uncharacterized proteins: almost 30% of the predic-

tions fall under the hydrolase activity, 13% are in transferase

activity, 12% in protein binding category. To perform all these

analyses we used the GO annotation made until January 2010.

During 2009–2011, the Saccharomyces Genome Database asso-

Figure 1. Comparison between function prediction algorithms for Saccharomyces cereviasiae. Six algorithms (WPN, SA, FF, WA, PC and
CHI-Square) are compared with leave-a-percent-out criterion (see Section ‘‘Algorithm Comparison’’ in Text S1 for more details). For each algorithm
the area under the ROC curve (AUC) and the SR vs. FD curves are averaged across all the leave-a-percent-out simulations we performed (5%, 10%,
15% and 20% of the annotated proteins cleared). The results are reported for the three categories of the GO database: cellular component (a, d),
biological process (b, e) and molecular function (c, f).
doi:10.1371/journal.pone.0038767.g001
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ciated slim terms to about 100 proteins in the YeastNet v2 network

that were previously uncharacterized. Considering this set of novel

annotations, our algorithm was able to correctly predict the MF

category of 45 proteins, the BP of 35 proteins and the CC category

of 29 proteins. Some examples of the capability of WNP in

annotating Gene Ontology terms to uncharacterized proteins are

reported in the following. WNP allowed for the prediction of the

‘nucleus’ localization of F-box protein DIA2/YOR080W and

WSS1/YHR134W gene that were made by SGD curators

according to Kile and Koepp [25] and van Heusden and

Steensma [26] respectively. We were able to predict the

annotation to ‘nucleolus’ term of the essential genes RRP36/

YOR287C and GRC3/YLL035W that had been demonstrated to

be nucleolar by Gérus et al. [27] and Braglia et al. [28] respectively.

Concerning BP ontology, WNP predicted ‘ribosome biogenesis’

terms for UTP25/YIL091C and TSR4/YOL022C genes which

are involved in ribosomal subunit maturation, ribosomal particle

association, and ribosomal subunit nuclear export as reported by

Li et al. [29]. Moreover, we associated the FDC1/YDR539W gene

to the BP term ‘cellular aromatic compound metabolic process’.

FDC1/YDR539W gene is essential for the decarboxylation of

phenylacrylic acids in S. cerevisiae according to Mukai et al. [30].

Referring to MF categories we predicted the ‘protein binding’

term for the USA1/YML029W gene that functions as a major

scaffold protein of the HRD-ligase [31]. Furthermore, WNP

predicted the term ‘hydrolase activity’ for IMA2/YOL157C and

PHM8/YER037W gene. IMA2 has been recently shown to

encode a protein with alpha-glucosidase activity on isomaltose by

Teste et al. [32] while overexpression of PHM8 in yeast resulted in

an increase in the LPA phosphatase activity [33]. Finally the

TRS120/YDR407C gene was predicted at ‘enzyme regulator

Figure 2. Comparison between function prediction algorithms for Arabidopsis thaliana. Six algorithms (WPN, SA, FF, WA, PC and CHI-
Square) are compared with leave-a-percent-out criterion (see Section ‘‘Algorithm Comparison’’ in Text S1 for more details). For each algorithm the
area under the ROC curve (AUC) and the SR vs. FD curves are averaged across all the leave-a-percent-out simulations we performed (5%, 10%, 15%
and 20% of the annotated proteins cleared). The results are reported for the three categories of the GO database: cellular component (a, d), biological
process (b, e) and molecular function (c, f).
doi:10.1371/journal.pone.0038767.g002

Table 1. Summary of the prediction results obtained by WNP
on the PFNs of Saccharomyces cerevisiae and Arabidopsis
thaliana.

Organism Ontology Predicted Annotated Matched

CC 680 94 29

SC BP 1140 104 35

MF 1840 99 45

CC 10708 686 174

AT BP 9996 2151 1492

MF 8196 420 134

Predicted indicates the total number of GPs predicted by WPN. Annotated
indicates the total number of GPs annotated by YGD and TAIR in the last N
months for Saccharomyces cerevisiae (SC) and Arabidopsis thaliana (AT)
respectively (N = 18 for Saccharomyces and N=8 for Arabidopsis). Matched is
the number of GPs annotated in the last N months that WNP correctly predicts.
doi:10.1371/journal.pone.0038767.t001
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activity’ and was manually annotated by the SGD at the ‘Rab

guanyl-nucleotide exchange factor activity’ term by using the

results obtained by Morozova et al. [34].

Arabidopsis Thaliana
The WNP algorithm was able to predict the gene ontology

annotation for about 10000 previously uncharacterized proteins

(10708 proteins for CC, 9996 for BP and 8196 for MF). For CC

ontology the 44% of the predictions fall under the ‘intacellular

components category’, 6% under the ‘nucleus’ and ‘plasma

membrane’ categories and 5% under ‘chloroplast’ category. Of

all the 9996 biological process annotation made by our

algorithm, around 50% belong to the other ‘cellular process’

category, 6% to ‘protein metabolism’ and 5% fall in the

‘response to stress’ and ‘developmental process’ categories. For

molecular function ontology the 21% of all the annotations fall in

the ‘other enzyme activity’, the 10% in ‘nucleotide binding’ and

‘other binding’ categories and the 8% in ‘hydrolase activity’

category. All the annotation made by WNP was performed by

using go annotation made by the TAIR until january 2011.

Since January 2011 the Arabidopsis Information Resource

(TAIR) added the annotations of more than 2000, previously

uncharacterized proteins for BP ontology, about 700 for CC

ontology and about 400 for MF. By means of WNP algorithm

we correctly predicted the CC term of 174 proteins, the MF of

134 proteins and the BP of about 1500 proteins which were

functionally characterized in the last 8 months. In the following

we report some of the results obtained with WNP. The ‘plasma

membrane’ localization of the receptor kinase family gene

CORYNE (CRN) was predicted in accordance with the work

of Zhu et al. [35]. The authors showed that CRN was localized

to the plasma membrane by means of fluorescence targeting.

‘Plasma membrane localization’ was predicted also for the

receptor-like cytoplasmic kinase CAST AWAY which indeed

interacts with HAE and EVR at the plasma membrane of

Arabidopsis, as reported by Burr et al. [36]. WNP predicted the

‘nuclear localization’ for the PRP3 and ING2 proteins. Fujiwara

et al. [37] and Lee et al. [38] confirmed respectively these results.

Genes At3g03670 (putative peroxidase), At1g14540 (putative

anionic peroxidase), and At1g14550 (putative anionic peroxidase)

were annotated to the biological process term ‘response to stress’.

All of them were demonstrated to be modulated by the

transcription factor AtERF73/HRE1 during response to hypoxia

in the work of Yang et al. [39]. TCP3, TCP10 and TCP24 genes

- that were found implicated in leaf development by Efroni et al.

[40] - were annotated to the ‘developmental processes’ term.

Concerning MF annotation we were able to annotate the

pPLAIIIb protein to the ontology term hydrolase activity

according to the results of Li et al. [41]. The authors showed

that pPLAIIIb is responsible for phospholipids and galactolipids

hydrolyses and additionally shows acyl-CoA thioesterase activity.

Protein NRT1.9 was annotated to the ‘transporter activity’ term.

Recently Wang et al. [42] have shown that NRT1.9 has a major

role in phloem nitrate transport. Furthermore, WNP allowed to

annotate the term ‘transporter activity’ to the AtAMT1;4 protein

that was proven to be involved in transporting ammonium into

pollen by Yuan et al. [43]. Finally, we were able to predict the

‘protein binding’ term for the PPI1 protein. Morandini et al. [44]

demonstrated that PPI1 N-terminus is involved in the modula-

tion of the PM H+-ATPase activity by binding to a site different

from the 14-3-3 binding site and is located upstream of the

trypsin cleavage site.

Discussion

The development of computational methods for GPs function

annotation based on interaction data is a challenging problem in

bioinformatics. The combination of several sources of binary gene

relationship data into a PFN is at present the best way to

understand the complex structure of functional associations

between elements of a cell. In this work, we extended the

prediction approach proposed by Vazquez et al. [16] and we

developed a novel algorithm (WNP) that is able to exploit the

weighted nature of PFN for the global prediction of biological

Figure 3. Prediction results for Saccharomyces cerevisiae and Arabidopsis thaliana. Pie charts report the distributions of the cellular
component (a, d), biological process (b, e) and molecular function (c, f) terms predicted by the WNP algorithm. The results for Saccharomyces
cerevisiae are shown in panels a, b and c. The results for Arabidopsis thaliana are reported in panels d, e and f.
doi:10.1371/journal.pone.0038767.g003
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function of uncharacterized GPs. We have demonstrated the

capability of WNP both in a cross validation setting and by closely

examining its predictions over the complex PFNs of Sacchar-

omices cerevisiae and Arabidopsis thaliana. By means of a leave-a-

percent-out validation strategy we tested the prediction accuracy

of our algorithm and we compared its performance with other 5

state-of-the-art prediction methods. The results of all these

analyses clearly show that our method outperforms the others

mentioned here in terms of both sensitivity and specificity. For

yeast, the cellular localization of a GP was correctly predicted in

about eight out of ten annotations, while for Arabidopsis thaliana

the biological process in which the GP is involved in was correctly

picked out in nine out of ten annotations. The validation analyses

also show that our method performs better than the other methods

in exploiting and propagating the functional and topological

information of weighted protein interaction networks. As a further

test, we studied the prediction capability of our algorithm in

predicting the biological function of GPs that have been annotated

in the last two years for both Saccharomices cerevisiae and

Arabidopsis thaliana. Among ,100 GPs annotated in 18 months

for yeast, the WNP was able to correctly predict the MF category

of 45 GPs, the BP of 35 GPs and the CC category of 29 proteins.

For Arabidopsis thaliana the WNP correctly predicted the cellular

component term of 174 proteins, the molecular function of 134

proteins and the biological process of about 1500 proteins that

were functionally characterized in the last 8 months (2000 for BP,

700 for CC and 400 for MF). The current implementation of

WPN takes into account only direct neighbours of uncharacterized

GPs. At present we are extending the WPN to take into account

level-2 and level-3 neighbours to improve its prediction capability.

Supporting Information

Figure S1 Comparison between Function prediction
algorithms for Saccharomyces Cereviasiae. Six algorithms

(WPN, SA, FF, WA, PC and CHI-Square) are compared with

leave-a-percent-out criterion for 5% of annotated GPs cleared. For

each algorithm the area under the ROC curve (AUC) and the FD

vs. SR curves are averaged across 100 simulations. The results are

reported for the three categories of the GO database: cellular

component (a, d), biological process (b, e) and molecular function

(c, f).

(TIFF)

Figure S2 Comparison between Function prediction
algorithms for Saccharomyces Cereviasiae. Six algorithms

(WPN, SA, FF, WA, PC and CHI-Square) are compared with

leave-a-percent-out criterion for 10% of annotated GPs cleared.

For each algorithm the area under the ROC curve (AUC) and the

FD vs. SR curves are averaged across 100 simulations. The results

are reported for the three categories of the GO database: cellular

component (a, d), biological process (b, e) and molecular function

(c, f).

(TIFF)

Figure S3 Comparison between Function prediction
algorithms for Saccharomyces Cereviasiae. Six algorithms

(WPN, SA, FF, WA, PC and CHI-Square) are compared with

leave-a-percent-out criterion for 15% of annotated GPs cleared.

For each algorithm the area under the ROC curve (AUC) and the

FD vs. SR curves are averaged across 100 simulations. The results

are reported for the three categories of the GO database: cellular

component (a, d), biological process (b, e) and molecular function

(c, f).

(TIFF)

Figure S4 Comparison between Function prediction
algorithms for Saccharomyces Cereviasiae. Six algorithms

(WPN, SA, FF, WA, PC and CHI-Square) are compared with

leave-a-percent-out criterion for 20% of annotated GPs cleared.

For each algorithm the area under the ROC curve (AUC) and the

FD vs. SR curves are averaged across 100 simulations. The results

are reported for the three categories of the GO database: cellular

component (a, d), biological process (b, e) and molecular function

(c, f).

(TIFF)

Figure S5 Comparison between Function prediction
algorithms for Arabidopsis Thaliana. Six algorithms

(WPN, SA, FF, WA, PC and CHI-Square) are compared with

leave-a-percent-out criterion for 5% of annotated GPs cleared. For

each algorithm the area under the ROC curve (AUC) and the FD

vs. SR curves are averaged across 100 simulations. The results are

reported for the three categories of the GO database: cellular

component (a, d), biological process (b, e) and molecular function

(c, f).

(TIFF)

Figure S6 Comparison between Function prediction
algorithms for Arabidopsis Thaliana. Six algorithms

(WPN, SA, FF, WA, PC and CHI-Square) are compared with

leave-a-percent-out criterion for 10% of annotated GPs cleared.

For each algorithm the area under the ROC curve (AUC) and the

FD vs. SR curves are averaged across 100 simulations. The results

are reported for the three categories of the GO database: cellular

component (a, d), biological process (b, e) and molecular function

(c, f).

(TIFF)

Figure S7 Comparison between Function prediction
algorithms for Arabidopsis Thaliana. Six algorithms

(WPN, SA, FF, WA, PC and CHI-Square) are compared with

leave-a-percent-out criterion for 15% of annotated GPs cleared.

For each algorithm the area under the ROC curve (AUC) and the

FD vs. SR curves are averaged across 100 simulations. The results

are reported for the three categories of the GO database: cellular

component (a, d), biological process (b, e) and molecular function

(c, f).

(TIFF)

Figure S8 Comparison between Function prediction
algorithms for Arabidopsis Thaliana. Six algorithms

(WPN, SA, FF, WA, PC and CHI-Square) are compared with

leave-a-percent-out criterion for 20% of annotated GPs cleared.

For each algorithm the area under the ROC curve (AUC) and the

FD vs. SR curves are averaged across 100 simulations. The results

are reported for the three categories of the GO database: cellular

component (a, d), biological process (b, e) and molecular function

(c, f).

(TIFF)

Figure S9 Prediction Success rate as a function of
cleared GPs percentage. The prediction accuracy of WPN

algorithm is tested on leave-a-percent-out datasets with cleared

annotated GPs that ranges between 10% and 90%. Each point

represent the mean value of success rate across 100 simulations,

while error bars are the standard deviation. The leave-a-percent-

out validations were performed for Saccharomyces Cereviasiae (a,

b, c) and Arabidopsis Thaliana (d, e, f). The results are reported for

the three categories of the GO database: cellular component (a, d),

biological process (b, e) and molecular function (c, f).

(TIFF)
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Table S1 A list of all putative functional predictions
made by WNP for Saccharomyces cerevisiae.

(XLS)

Table S2 A list of all putative functional predictions
made by WNP for Arabidopsis thaliana.

(XLS)

Text S1 Details concerning methods discussed in this
work.

(PDF)
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