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ABSTRACT Negative-sense RNA viruses (NSVs) rely on prepackaged viral RNA-de-
pendent RNA polymerases (RdRp) to replicate and transcribe their viral genomes.
Their replication machinery consists of an RdRp bound to viral RNA which is wound
around a nucleoprotein (NP) scaffold, forming a viral ribonucleoprotein complex.
NSV NP is known to regulate transcription and replication of genomic RNA; however,
its role in maintaining and protecting the viral genetic material is unknown. Here,
we exploited host microRNA expression to target NP of influenza A virus and Sendai
virus to ascertain how this would impact genomic levels and the host response to
infection. We find that in addition to inducing a drastic decrease in genome replica-
tion, the antiviral host response in the absence of NP is dramatically enhanced.
Additionally, our data show that insufficient levels of NP prevent the replication ma-
chinery of these NSVs to process full-length genomes, resulting in aberrant replica-
tion products which form pathogen-associated molecular patterns in the process.
These dynamics facilitate immune recognition by cellular pattern recognition recep-
tors leading to a strong host antiviral response. Moreover, we observe that the con-
sequences of limiting NP levels are universal among NSVs, including Ebola virus,
Lassa virus, and measles virus. Overall, these results provide new insights into viral
genome replication of negative-sense RNA viruses and highlight novel avenues for
developing effective antiviral strategies, adjuvants, and/or live-attenuated vaccines.

IMPORTANCE Negative-sense RNA viruses comprise some of the most important
known human pathogens, including influenza A virus, measles virus, and Ebola virus.
These viruses possess RNA genomes that are unreadable to the host, as they require
specific viral RNA-dependent RNA polymerases in conjunction with other viral pro-
teins, such as nucleoprotein, to be replicated and transcribed. As this process gener-
ates a significant amount of pathogen-associated molecular patterns, this phylum of
viruses can result in a robust induction of the intrinsic host cellular response. To cir-
cumvent these defenses, these viruses form tightly regulated ribonucleoprotein repli-
cation complexes in order to protect their genomes from detection and to prevent
excessive aberrant replication. Here, we demonstrate the balance that negative-sense
RNA viruses must achieve both to replicate efficiently and to avoid induction of the
host defenses.
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Negative-sense RNA viruses (NSVs) comprise some of the most pathogenic and clini-
cally significant viruses known to humankind, such as influenza A virus (IAV), mea-

sles virus (MeV), and Ebola virus (EBOV). IAV represents a major global health challenge,
causing not only seasonal epidemics but also occasional pandemics with potentially
devastating effects on health care systems and economies. NSVs can be separated into
two distinct groups: viruses with segmented RNA genomes (Multinegavirales) and non-
segmented RNA genomes (Mononegavirales). IAV is a member of the family Orthomyxoviridae
in the order Multinegavirales, characterized by their segmented single-stranded negative-
sense RNA genomes (1). Because of their negative polarity, NSVs such as IAV need to package
their own replication machinery in viral particles, enabling transcription and replication of
their viral genome. The minimal components of the NSV replication machinery consist of a vi-
ral RNA-dependent RNA polymerase (RdRp) bound to the segmented or nonsegmented viral
RNA (vRNA) which is wound around a helical multimeric nucleoprotein (NP) scaffold, forming
viral ribonucleoprotein (vRNP) complexes (2). NP has long been known to be an important
factor in regulating replication and transcription of NSVs (3, 4). For example, the RdRp of
Paramyxoviridae and Rhabdoviridae preferentially performs transcription when nucleoprotein
is scarce while favoring genome replication when nucleoprotein levels are high (5, 6). This
can be explained by the observation that in the absence of NP, the RdRp is able to initiate vi-
ral RNA synthesis but is severely inhibited in its processivity (5–7). Studies with IAV have
shown that NP is not required for transcription and replication of short vRNA templates up to
76 nucleotides in length but still supports transcription of templates of up to 125 nucleotides
at diminished levels (8). This dynamic ensures that viral protein expression is prioritized early
in infections and that genome replication initiates only upon sufficient amounts of the neces-
sary viral proteins to protect and package any newly generated material.

In addition, in the context of vRNPs, NP has also been shown to be important for
protecting the viral genomes of some NSVs. Due to differences in the structure of
vRNPs, the extent to which vRNPs shield viral RNA from host ribonucleases and host
detection differs between NSVs. For example, the vRNPs of both human parainfluenza
virus 5 (Paramyxoviridae) and Rift Valley fever virus (Bunyaviridae) have been shown to
be resistant to ribonucleases (9, 10). Similarly, vesicular stomatitis virus (VSV) vRNP
structures protect viral RNA from RNase digestion due to the RNA being sequestered
in a deep cavity of the NP protein (11, 12). However, vRNPs of rabies virus, another
member of the family Rhabdoviridae, is only partially resistant to ribonucleases, sug-
gesting that some parts of the viral genome are exposed to host nucleases while
others are shielded by NP binding (13). This is also the case for IAV, where specific parts
of the genome are shielded by NP and other parts remain NP free and form secondary
RNA structures (14–17). EBOV NP, on the other hand, appears to have a less protective
effect on the viral genome (18). Together, these observations show that while the NP
scaffold plays an important structural and protective role in vRNPs, it is not sufficient
to prevent detection and digestion of the viral genome for all NSVs.

In vertebrate cells, cellular detection of pathogen-associated molecular patterns
(PAMPs) following virus infection is mediated by pattern recognition receptors (PRRs)
(19, 20). For RNA viruses, these PAMPs can derive from both full-length genomic viral
RNA and aberrant replication products. These aberrant replication products, also
known as defective viral genomes (DVGs), are known to accumulate to high numbers
during infections as a consequence of various replication defects (21). In the case of
IAV, the most common types of DVGs are truncated viral genomes containing large in-
ternal deletions (22). These deletion DVGs have been shown to interfere with and in-
hibit IAV infection (23–25). Recently, extremely small deletion DVGs, called mini-viral
RNA (mvRNA), have been characterized and are associated with the induction of proin-
flammatory cytokines in response to highly pathogenic IAV, such as the 1918 influenza
A virus (26). These mvRNAs consist of only the extreme 59 and 39 promoter regions,
resulting in DVGs of less than 100 nucleotides in length that are recognized by retinoic
acid-inducible gene-I (RIG-I) to induce an exaggerated interferon (IFN) response (26,
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27). Other common DVGs are the so-called copy-back DVGs, where the 59 end is dupli-
cated in reverse complement, creating complementary stem-loop structures (28–31).

Different RNA viruses are recognized by different PRRs depending on cellular local-
ization and replication strategies of each virus. These PRRs include Toll-like receptors,
C-type lectin receptors, RIG-I-like receptors (RLRs), and nucleotide-binding oligomeriza-
tion domain (NOD)-like receptors (32). The RLRs RIG-I and MDA5 have been implicated
in sensing of many NSVs, as they recognize both double-strand RNA (dsRNA) and sin-
gle-strand RNA (ssRNA) as well as 59 triphosphorylated RNA ends (33). After PAMP rec-
ognition by PRRs, signaling cascades mediated by mitochondrial antiviral signaling
protein (MAVS) or stimulator of interferon genes (STING) induce the production of che-
mokines and antiviral cytokines, including type I and III interferons (IFN-I and IFN-III)
(20, 34). IFNs signal in both autocrine and paracrine manner to induce hundreds of
IFN-stimulated genes (ISGs), which collectively block many aspects of cell biology as a
means to slow virus infection and provide time for the adaptive immune response to
ultimately clear the pathogen (35). As a consequence of this, there is a constant evolu-
tionary pressure imposed on NSVs to both mask their genomes and block any resulting
IFN response.

To better understand the role of viral NP in preventing host recognition and the
induction of an antiviral response, we manipulated its expression in IAV and Sendai vi-
rus (SeV) infections by exploiting the cellular microRNA (miRNA) machinery. These
efforts found that inhibiting NP expression resulted in a significant induction of the IFN
response, despite the loss of any detectable viral replication. Here, we demonstrate
that insufficient levels of NP results in increased generation of defective viral genomes,
which in turn induce the host antiviral response in a RIG-I-dependent manner. Finally,
we show for the first time that these findings are broadly applicable to a wide range of
NSVs but not to positive-sense RNA viruses that also possess nucleoprotein structures,
such as the betacoronavirus SARS-CoV-2 (severe acute respiratory syndrome coronavi-
rus 2).

RESULTS
Limiting NP levels of IAV and SeV induces a strong IFN response. As viral NP has

been shown to play a role both in enabling viral replication and in protecting the viral
genome of NSVs, we sought to characterize the relationship of NP levels with viral rep-
lication and host recognition in IAV and SeV infections. To understand this dynamic,
we utilized previously described recombinant strains of IAV and SeV containing
miRNA-targeting sites situated in the 39 untranslated region (UTR) of their respective
nucleoprotein (NP/N) genes, leading to efficient miRNA targeting of nucleoprotein
mRNA but not genomic viral RNA (36) (Fig. 1A and B). We infected human lung epithe-
lial cells with miRNA-targeted viruses (IAV-NPT and SeV-NT) or viruses containing non-
functioning miRNA target sites (IAV-NPC and SeV-NC) and analyzed both virus and host
biology. As has been shown previously (36), targeting NP transcripts resulted in a com-
plete loss of detectable viral protein expression even very late in infections (Fig. 1C and
D). Surprisingly however, reduced viral replication corresponded to a dramatic increase
in IFIT1 expression compared to infections with the control nontargeted virus (IAV-NPC

and SeV-NC). This increase in IFIT1 expression suggests a robust IFN response despite
lower levels of viral replication. Therefore, we next evaluated the host response to
these miRNA-targeted viruses by mRNA sequencing (mRNA-seq).

Analysis of differentially expressed genes showed a robust induction of IFN-I response
upon IAV-NPT and SeV-NT infection (Fig. 1E). In particular, a significant induction of RLRs
(DDX58, IFIH1, and TLR3), antiviral transcription factors (IRF1 and IRF7), and antiviral effec-
tor proteins (BST2/tetherin, IFIT1-3, OAS1, and MX1) was observed between NP-targeting
and nontargeting viruses, relative to the amount of viral replication (Fig. 1E and F; also, see
Table S1 in the supplemental material). While the absolute induction of the IFN-I response
is equal or slightly decreased in SeV-NT- compared to SeV-NC-infected samples, it is highly
induced in relation to the ;300-fold reduction in viral transcripts present in those cells. In
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addition, while IFIT1 protein levels were approximately equal at 24 h postinfection (hpi),
which was also reflected in the relative transcript levels, IFIT1 protein levels were highly
induced at 6 and 12 hpi in SeV-NT infection compared to SeV-NC infection. Furthermore,
gene set enrichment analysis revealed the robust induction of genes associated with anti-
viral responses in IAV-NPT and SeV-NT infection (Fig. 1G). These results suggest that limiting
NP expression in IAV and SeV infections, albeit detrimental to viral replication, induces a
strong IFN response, demonstrating the importance of IAV and SeV NP for both viral repli-
cation and limiting host detection of viral RNA.

Low levels of NP result in defective viral genomes. The robust IFN response that
we observed when NP expression was interrupted suggests that a loss of sufficient lev-
els of NP either induces expression of more immunogenic PAMP or allows more effi-
cient host detection of viral RNA. This hypothesis is in line with the idea that the recog-
nition of virus infection is ultimately the product of aberrant RNAs generated during
the replication process (21). Therefore, we tried to elucidate the role of NP in defective
viral genome production in IAV and SeV infections by analyzing viral RNAs by RNA-seq.
Confirming our previous observations for IAV, we found that targeting NP transcripts
resulted in a significant reduction in viral genome coverage (Fig. 2A) as well as total rel-
ative viral RNA levels (Fig. 2B). Interestingly, we noticed that the coverage of segments
1 to 3 and segment 8 of IAV-NPT was enriched at both ends of the segments, which is
characteristic of defective interfering particles (Fig. 2A and C) (27). Therefore, in an

FIG 1 Legend (Continued)
the recombinant Sendai virus genome containing the miRNA-targeting cassette downstream of the N ORF. A GFP ORF is
also inserted between the N and P ORFs. (C) Western blot analysis for IAV NP, IFIT1, and actin of whole-cell lysates of
A549 cells infected with IAV-NPC or IAV-NPT at an MOI of 5 for 0, 6, 12, or 24 h. (D) Western blot analysis for SeV N, IFIT1,
and actin of whole-cell lysates of A549 cells infected with SeV-NC or SeV-NT at an MOI of 5 for 0, 6, 12, or 24 h. (E) Heat
map analysis of the log2(fold change) expression levels of differentially expressed genes involved in the IFN-I response
compared to mock-infected cells after bulk mRNA-seq analysis of IAV-NPC/IAV-NPT (MOI of 5; 9 hpi)- or SeV-NC/SeV-NT

(MOI of 5; 24 hpi)-infected A549 cells. (F) Mean percentage of viral reads over total mapped reads. (G) Dot plot
visualization of enriched GO terms after RNA-seq analysis. Gene set enrichment analysis (GSEA) was performed against the
GO data sets for biological processes. The color of the dots represents the false discovery rate (FDR) value for each
enriched GO term. The size of the dots represents the enrichment signal strength (as a percentage) of genes included in
the complete gene set. Light gray dots represent nonsignificant enrichments (FDR$ 0.05).
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attempt to quantify defective viral genomes, we analyzed viral reads that span nonca-
nonical junction sites in the IAV genome, (i.e., junctions that do not originate from ca-
nonical IAV splicing), and we found that the relative number of noncontiguous reads
was significantly increased in IAV-NPT compared to IAV-NPC infections (Fig. 2D). This
suggests that defective viral genomes are preferentially produced at low NP
levels.

Similarly, when SeV N expression was inhibited, SeV antigenome coverage (Fig. 2E)
and total viral RNA (Fig. 2F) were significantly decreased, together with a significant
enrichment of reads at the 39 terminus of the antigenome in SeV-NT infections, indica-
tive of copy-back defective viral genomes commonly produced by paramyxoviruses
(Fig. 2G). Overall, these findings demonstrate that viral NP is required for efficient viral
genome replication and that under conditions where NP is limited, aberrant viral RNA
products are generated.

Limiting NP but not RdRp induces aberrant replication products. Previously, it
had been reported that when an excess of RdRp is present, highly potent innate
immune agonists called mini-viral RNA (mvRNA), a type of small defective viral genome
consisting of only the terminal 59 and 39 ends, are generated during IAV infections (26).
We therefore analyzed total RNA from cells infected with either IAV-NPC or IAV-NPT by
Northern blotting probing for viral RNA containing the conserved 59 vRNA promoter,
which should be present in all viral RNA replication products (Fig. 3A). As expected, we
observed a steady accumulation of full-length vRNA over time in IAV-NPC infections,
complemented with a steady increase in small viral RNA (svRNA) which has been previ-
ously characterized (37–39). When NP expression was inhibited, no full-length vRNA
accumulation was detected, in agreement with our previous results. However, we
observed a strong accumulation of several small aberrant replication products

A

vRNA 

svRNA 

3 hpi WT RdRp

NPP
B

1a

IFN-

IAV-NPC:
IAV-NPT:

–
–

+
–

–
+

+
–

–
+

+
–

–
+

6 hpi 9 hpi

mvRNA 

3 hpi

IAV-NPC:
IAV-NPT:

–
–

+
–

–
+

+
–

–
+

+
–

–
+

6 hpi 9 hpi
B

C

vRNA

svRNA

mvRNA

D

–

WT RdRp

NPP
B

1a
–

IFN-

E

WT MAVS RIG-I MDA5
0

20

40

60

80

100

RL
U 

(fo
ld

 c
ha

ng
e 

to
 m

oc
k) IAV-NPCAVAA -NVV

IAV-NPTAVAA -NVV

**

***

ns ns

F

IFIT1

NS1

NP

Nz BXM

N
z

B
X

M

D
M

S
O

D
M

S
O

IAVMock

FIG 3 NP expression regulates the production of defective viral genomes and the induction of the antiviral host response. (A) Northern blot analysis of
RNA extracted from A549 cells infected with IAV-NPC or IAV-NPT at an MOI of 5. Radiolabeled probes against the conserved 59 vRNA promoter of IAV and
U6 snRNA (106 nucleotides [nt]) as an internal loading control were used. (B) RT-PCR analysis for the presence of IFN-b and a-tubulin mRNA from samples
used for panel A. (C) Northern blot analysis of RNA extracted from HEK-293T cells transiently expressing a truncated 200-nt-long IAV segment 6 vRNA
(containing only the 100 terminal nucleotides at the 39 and 59 vRNA ends) together with constant amounts of IAV RdRp and increasing amounts of IAV NP.
A catalytically inactive RdRp (PB1a) was used as a negative control. Radiolabeled probes against the conserved 59 vRNA promoter of IAV and U6 snRNA
(106 nt) as an internal loading control were used. (D) RT-PCR analysis for the presence of IFN-b and a-tubulin mRNA from samples used for panel C. (E)
Luciferase reporter assay for IFN expression in wild-type (WT), DMAVS, DRIG-I, or DMDA5 A549-Dual cells infected with IAV-NPC or IAV-NPT at an MOI of 5
for 12 h. The graph shows the mean fold change of relative light units (RLU) compared to mock-infected cells from three independent biological replicates,
with error bars representing the standard deviation. Statistical significance was determined by unpaired two-sample two-tailed t test. ns, not significant
(P. 0.05); **, P, 0.01; ***, P, 0.001. (F) Western blot analysis of whole-cell lysates of A549 cells infected with IAV at an MOI of 5 for 8 h in the presence of
increasing concentrations of Nz (0.1, 0.2, 0.3, and 0.4mM) or BXM (1, 10, 25, and 50mM).

Nilsson-Payant et al. Journal of Virology

May 2021 Volume 95 Issue 9 e02274-20 jvi.asm.org 6

https://jvi.asm.org


containing the 59 vRNA promoter. These replication products were larger than
svRNA (typically 18 to 26 nucleotides in length) but smaller than the U6 snRNA
loading control (106 nucleotides), fitting the previous description of mvRNA. Furthermore,
despite the lack of full-length genome replication, synthesis of mvRNA, even early in infec-
tion (3 hpi), correlated with a strong induction of IFN-b mRNA (Fig. 3B).

To exclude any differences that might be generated by the two virus strains, we
transiently expressed only the IAV replication complex consisting of RdRp, NP, and a
truncated 200-nucleotide-long segment 6 vRNA and measured viral RNA accumulation
by Northern blotting analysis (Fig. 3C). Under conditions of increasing levels of NP and
constant RdRp, we found that full-length vRNA mirrored NP amounts. At the same
time, we observed a reduction of mvRNA synthesis. Noteworthily, if a catalytically inac-
tive RdRp (PB1a) or no NP was expressed, no vRNA, mvRNA, or svRNA was detected,
consistent with previous reports that NP is required to replicate vRNA templates larger
than 76 nucleotides (8). In agreement with our findings with IAV-NPT and previous
reports showing that mvRNA is a potent inducer of the antiviral response (26), we
found a clear correlation between the presence of mvRNA and the induction of
IFN-b mRNA (Fig. 3D).

Together, our data suggest that limiting NP expression in IAV infections results in
the formation of aberrant replication products, such as mvRNA, that serve to promote
host recognition of viral PAMPs and the induction of the antiviral IFN response. Both
RIG-I and MDA5 have been reported to play a role in PAMP recognition for IAV infec-
tions (33, 40). In order to determine if limiting NP expression generates PAMPs that are
preferentially detected by either of these PRRs, we infected A549 cells that express a lu-
ciferase reporter gene under the control of IFN-stimulated response elements (ISREs)
and that are deficient in either RIG-I, MDA5, or MAVS (Fig. 3E). Consistent with our pre-
vious data, we observed a strong IFN response in wild-type cells after IAV-NPT but not
IAV-NPC infection. However, in the absence of both RIG-I and MAVS, this IFN response
was lost, suggesting that the PAMP produced under reduced NP expression levels is
detected and signaled through the RIG-I/MAVS signaling cascade.

Based on these results, we hypothesized that drugs designed to target NP, but not RdRp,
not only should efficiently inhibit IAV and negative-sense RNA virus replication but also
should provide a bystander effect by inducing the production of IFN-I/-III in infected cells
and thereby priming and protecting adjacent uninfected cells. To test this hypothesis, we
administered two different small molecular inhibitors of IAV targeting either NP (nucleozin
[Nz]) or the PA subunit of the RdRp (baloxavir marboxil [BXM]) (41, 42). Using increasing con-
centrations of Nz and BXM, we found that we could effectively block replication with both
inhibitors in a concentration-dependent manner (Fig. 3F). However, despite both inhibitors
efficiently blocking viral replication, only in the presence of Nz was a strong IFN response
additionally elicited, as shown by the induction of IFIT1.

In summary, these results indicate that while a proper balance between NP and the
RdRp is required for efficient viral genome replication, aberrant viral RNA production
and PAMP recognition are facilitated only when NP levels are insufficient. Furthermore,
our data demonstrate that the specific targeting of NP leads not only to the successful
inhibition of viral replication but also to the engagement of the cellular antiviral
defenses, thereby providing protection to bystander cells.

Limiting NP expression induces a strong IFN response in NSVs. In order to inves-
tigate whether our observations extend to the entire Negarnaviricota phylum, we
infected A549 cells in the presence of nucleoprotein-targeting or nontargeting small interfer-
ing RNAs (siRNAs) with a wide range of NSVs. Here, we used IAV (Orthomyxoviridae), human
parainfluenza virus 3 (HPIV3; Paramyxoviridae), measles virus (MeV; Paramyxoviridae), human
respiratory syncytial virus (RSV; Pneumoviridae), vesicular stomatitis virus (VSV; Rhabdoviridae),
Ebola virus (EBOV; Filoviridae) and Lassa virus (LASV; Arenaviridae) to represent a majority of
NSV families with significant human pathogens. Silencing of NP expression resulted in dra-
matically reduced numbers of infected cells for all of these viruses with the exception of RSV
and LASV, as measured by flow cytometry (Fig. 4A). Furthermore, when the mean intensities
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FIG 4 Limiting NP expression induces a strong antiviral response for NSVs. (A) Flow cytometry analysis of A549
cells transfected with nontargeting or NP-targeting siRNA pools prior to infection with the indicated viruses. The
graph shows the mean percentage of fluorescent-positive cells from three independent biological replicates, with
error bars representing the standard deviation. (B) Flow cytometry analysis of A549 cells transfected with
nontargeting or NP-targeting siRNA pools prior to infection with the indicated viruses. The graph shows the
mean fluorescent intensity of each cell from three independent biological replicates, with error bars representing
the standard deviation. Significance was determined by two-sample two-tailed t tests. ns, not significant (P. 0.05);
***, P, 0.001; ****, P, 0.0001. (C to I) A549 cells were transfected with nontargeting or NP-targeting siRNA pools
prior to infection with the indicated viruses. Whole-cell lysates were analyzed by Western blotting for IFIT1, actin, and
viral protein for (C) IAV-mNeon, (D) LASV-tdTom, (E) EBOV-GFP, (F) VSV-GFP, (G) MeV-GFP, (H) HPIV3-GFP, and (I) RSV-
GFP. (J) A549ACE2 cells were transfected with nontargeting or subgenomic N-targeting siRNA prior to infection with
SARS-CoV-2. Whole-cell lysates were analyzed by Western blotting for IFIT1, actin, and SARS-CoV-2 nucleocapsid.
A549ACE2 cells transfected with 1mg poly(I·C) instead of siRNA were used as a positive control. (K) A549ACE2 cells were
transfected with nontargeting or subgenomic N-targeting siRNA prior to infection with SARS-CoV-2 at an MOI of 0.1
for 24 h. The graph shows the mean percentage of SARS-CoV-2 reads over total mapped reads from bulk mRNA-seq
from three independent biological replicates, with error bars representing the standard deviation. Significance was
determined by two-sample two-tailed t tests. ****, P, 0.0001.
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of viral protein expression were compared as a measure of viral replication, intensities were
significantly inhibited when NP was knocked down (Fig. 4B). These results confirmed that NP
is critical for viral replication for this viral phylum. To further test whether a significant IFN
response is mounted when NP expression is targeted for these viruses, we analyzed whole-
cell lysates for both viral protein expression and IFIT1 as a representative for the IFN response.
Remarkably, while viral replication was consistently lost for all of these viruses, a robust antivi-
ral host response was observed in the presence of NP-targeting siRNAs (Fig. 4C to I).

While NP proteins are a universal feature for NSVs, Nidovirales, including the
Coronaviridae family, are the only enveloped positive-sense RNA viruses that possess
this type of viral protein in their virion (43). In order to determine whether sufficient
nucleocapsid expression is also required as an immune evasion strategy for SARS-CoV-
2, the causative agent of coronavirus disease 2019 (COVID-19) and a member of the
family Coronaviridae, we used an siRNA specifically targeting subgenomic nucleocapsid
transcripts. While we observed reduced viral replication when targeting SARS-CoV-2
nucleocapsid, no induction of IFIT1 was seen, suggesting that the genome of positive-
sense RNA viruses either is noninflammatory or is a product of the fact that this viral
family sequesters replication in lipid-enclosed vesicles (Fig. 4J and K). Together, these
data highlight the importance of nucleoprotein and nucleocapsid in NSV and coronavi-
rus replication while at the same time acting as a critical factor to evade the host antivi-
ral immune response for NSVs.

DISCUSSION

In this study, we sought to investigate the role of NP in evading and inducing the
antiviral host response across the wide spectrum of NSVs. To that end, we utilized
recombinant IAV and SeV strains containing miRNA target sites in their respective NP
open reading frames (ORFs), thus ensuring that in cell lines expressing these specific
miRNAs, NP mRNA would be efficiently degraded. We found that when NP expression
was blocked, IAV and SeV replication was effectively inhibited while at the same time
the intrinsic cellular response to infection was strongly induced. We were able to dem-
onstrate that under limiting NP conditions, aberrant viral replication was significantly
more frequent, resulting in DVG production, which subsequently induces a strong IFN
response in a RIG-I-dependent manner. Finally, considering the conserved nature of
NSV RdRp and NP structure and function, we hypothesize that limiting NP expression
across a wide spectrum of NSVs would promote aberrant viral replication and induce
the antiviral host response. Our data confirm that when NP expression in IAV, LASV,
EBOV, VSV, RSV, HPIV3, and MeV infections was inhibited, viral replication was blocked
while the host IFN response was significantly induced at the same time.

Our observation that NP is required for viral replication is in line with previous find-
ings for many different NSVs, such as IAV, VSV, and MeV (5–7). However, our finding
that limiting NP availability results in a significantly enhanced innate immune response
is novel and initially appears counterintuitive due to the reduced amounts of viral RNA
present in infected cells, but this is resolved by an increase in DVG production. NP has
been shown to function as an elongation factor the IAV RdRp, thus promoting proces-
sivity of the replication machinery (8). It has previously been shown for IAV that a rela-
tive overabundance of RdRp can cause the accumulation of mvRNA (26), which sup-
ports our finding that a relative scarcity of NP causes aberrant viral replication. These
aberrant IAV replication products appear to single-handedly account for the RIG-I-de-
pendent IFN response seen in IAV infections (26, 27, 33). While it is unclear how much
of the host response is induced by mvRNA and classical longer DVGs in our experi-
ments, we noted a distinct accumulation of mvRNA using recombinant NP-targeting
IAV, which corresponds to the induction of IFN. In a previous study it was reported that
mvRNA is a more potent inducer of the IFN response than longer DVGs (26). It is also
noteworthy that mvRNAs typically are less than 100 nucleotides in length, which has
been shown to be sufficiently short to enable NP-independent replication by the IAV
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RdRp (8), allowing preferential replication and accumulation of mvRNA under limiting
NP conditions insufficient for full-length vRNA replication.

It is worth noting that our quantification of DVGs is a significant underrepresenta-
tion of the amount of total DVGs present in our samples. This is due to the fact that
our analysis is able to classify a read as originating from a DVG only if it contains a non-
canonical junction and is unable to differentiate normal from erroneous transcripts if
the read does not span a junction site. Our findings that reducing NP expression levels
induces aberrant viral replication might also explain the commonly known fact that
high-MOI infections with IAV or other NSVs result in virus stocks with large amounts of
defective interfering viral particles containing DVGs (21, 44). Late in the replication
cycle of NSVs or after high-MOI infections, the demand for NP is likely to outstrip its
availability due to host translational shutoff and rapid viral genome replication,
thereby creating conditions where aberrant viral replication is favored, leading to
increased DVG synthesis and formation of defective interfering viral particles. These dy-
namics are exemplified by the accumulation of DVGs in animal models as well as in
natural infections, further boosting the host antiviral defenses (25, 45). The IFN
response which is caused by the decrease in viral replication and increase in DVG syn-
thesis that occurs under limiting NP conditions is further exacerbated by the simulta-
neous decrease in viral IFN antagonists such as NS1 in the case of IAV. However, as we
clearly demonstrate here, the presence or absence of NS1 is not responsible for the IFN
response elicited by limited NP expression, even though its absence undoubtedly con-
tributes to and heightens the host response in the context of viral infections (Fig. 3C
and D).

NP of NSVs is under significant structural and functional constraints, as it needs to
be able to bind viral RNA and RdRp to support replication and transcription of the viral
genome while at the same time having to form multimeric helical scaffolds to shield
the viral genome (46, 47). The critical and highly regulated function of NP in viral ge-
nome replication, together with its role in inducing the IFN response and shielding the
viral genome for host detection, makes it an ideal drug target. Targeting NP not only
directly inhibits viral replication but also induces IFN signaling and therefore provides
bystander priming or protection to uninfected neighboring cells. We demonstrate this
concept using nucleozin, a small-molecular inhibitor of NP which causes the aggrega-
tion of NP during infection, thus preventing nuclear accumulation and normal function
of NP (42, 48, 49). Crucially, while other inhibitors of IAV, such as BXM, are also able to
effectively block viral replication, nucleozin has the added benefit of reducing the rela-
tive amounts of newly synthesized functional NP compared to RdRp, thus inducing the
formation of potent immunogenic viral RNA products. With most efforts concentrating
on the RdRp and surface glycoproteins, some potential small-molecule inhibitors of
other NSVs, such as EBOV and RSV, have been predicted or identified, but a concerted
effort to target NP for clinically relevant NSVs has not been undertaken yet (50, 51).

Interestingly, nucleoproteins are also present in members of the Nidovirales order
of positive-sense RNA viruses, including the Coronaviridae, and are known as nucleo-
capsids. These viruses contain the largest known viral RNA genomes and include im-
portant pathogens of humans and livestock, such as SARS-CoV-2, the causative agent
of the COVID-19 pandemic (43, 52, 53). While this group of viruses typically does not
form vRNPs, their large genomes of 20 to 30 kb require nucleocapsid to sustain RdRp
processivity and proofreading capacity (54, 55). However, while their RNA genomes are
bound to a helical nucleocapsid scaffold inside viral particles, these interactions disso-
ciate after cell entry to enable viral transcription and assembly of the viral replication/
transcription complex (RTC). As nucleocapsid accumulates, it promotes replication in a
manner reminiscent of NSVs (56–59). Although nucleoprotein/nucleocapsid might be
involved in masking genome detection as well as genome replication for both NSVs
and coronaviruses, there are distinct differences. The continuous association with nu-
cleoprotein even during viral replication limits homologous recombination of NSVs,
while the nucleocapsid-free genomic RNA of the Coronaviridae still enables this
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activity, allowing the emergence of novel pathogenic coronaviruses such as SARS-CoV-
2 (36, 60–62). In addition, as the genome of coronaviruses are capped and polyadeny-
lated, they lack the inflammatory potential of naked NSV replication products which of-
ten contain both 59 triphosphate ends and regions of dsRNA (63). These fundamental
differences in the role of nucleoprotein/nucleocapsid in the life cycle of NSVs and
Coronaviridae are highlighted by our opposite findings with regard to the induction of
the IFN response after silencing of nucleoprotein/nucleocapsid expression when com-
paring SARS-CoV-2 to NSVs.

Given our data, the emergence of NSVs seems counterintuitive. Based on recent ev-
olutionary predictions, the origins of the phylum Negarnaviricota are derived from the
rapid expansion of positive-sense RNA viruses branching off into double-stranded RNA
viruses, thereby providing an opportunity to utilize the negative-sense RNA strand in
isolation (64). However, utilizing a negative-sense RNA genome poses a number of in-
herent constraints on a virus. The most prominent of these is the inherent immunoge-
nicity of the viral uncapped RNA genome, which is why it is reliant on the interaction
with the RdRp or extensive secondary structure to protect its 59 termini as well as a
protective nucleoprotein scaffold to shield it from host nucleases and sensing (65). As
shown herein, small perturbations to the balance of NP availability showcase the fragil-
ity of this system and its general lack of robustness. Perhaps it is for this reason that
NSVs are less diverse than positive-sense RNA viruses (64, 66).

In summary, we demonstrate that NP of NSVs such as IAV are critically required to
enable accurate viral genome replication. Consequently, under conditions where NP
becomes a limiting factor, the error-prone viral RdRp produces increasing amounts of
DVGs, which are then preferentially amplified due to less stringent requirements of NP.
DVGs subsequently induce a strong IFN response, even if full-length genome replica-
tion is prevented, making NP an attractive drug target for NSVs. These findings further
our understanding of viral genome replication of NSVs and how the antiviral host
response is induced, and they provide a new rational for developing NP-targeting anti-
viral strategies.

MATERIALS ANDMETHODS
Cell culture. A549 cells (ATCC; CCL-185), A549ACE2 cells (67), HEK-293T cells (ATCC; CRL-3216), HEK-

293T-NoDice cells (68), HeLa cells (ATCC; CCL-2), Vero E6 cells (ATCC; CRL-1586), BHK-21 cells (ATCC;
CCL-10), and MDCK cells (ATCC; CCL-34) were all maintained in Dulbecco’s modified Eagle medium
(DMEM) supplemented with 10% fetal bovine serum (FBS). A549-Dual, A549-Dual-KO-MAVS, A549-Dual-
KO-MDA5, and A549-Dual-KO-RIG-I cells were acquired from InvivoGen and maintained in DMEM sup-
plemented with 10% FBS, 100mg/ml Normocin, 10mg/ml blasticidin, and 100mg/ml zeocin. All cells
were cultured at 37°C and 5% CO2.

Viruses. Influenza A/Puerto Rico/8/34 (H1N1) virus (NCBI:txid183764) was grown in MDCK cells in
DMEM supplemented with 0.3% bovine serum albumin (BSA) and 1mg/ml tosylsulfonyl phenylalanyl
chloromethyl ketone (TPCK)-trypsin. mNeon-expressing influenza A/Puerto Rico/8/34 (H1N1) virus (IAV-
mNeon) was a kind gift from Peter Palese. Infectious titers of influenza A viruses were determined by pla-
que assays in MDCK cells. Influenza A/Puerto Rico/8/34 (H1N1) virus and Sendai virus strain Fushimi
(GenBank no. KY295909.1) containing an miRNA-silencing cassette targeting the viral nucleoprotein
transcripts (IAV-NPT and SeV-NT, respectively) as well as their respective control viruses (IAV-NPC and
SeV-NC) were rescued as previously described (36). IAV-NPT, IAV-NPC, and SeV-NC were grown in 10-day-
old specific-pathogen-free (SPF) chicken eggs (Charles River Laboratories). SeV-NT virus was grown on
HEK-293T cells lacking hDicer functionality (HEK293T-NoDice) for 3 to 5 days. Viral titers of IAV-NPT were
determined by egg infectious dose (36). SeV-NT virus was titrated on HEK-293T-NoDice cells by a 50% tis-
sue culture infective dose (TCID50) assay. Infections with wild-type or recombinant IAV were performed
at the multiplicity of infection (MOI) indicated in the figure legends for 1 h at room temperature in
DMEM supplemented with 0.3% BSA and 1mg/ml TPCK-trypsin before incubation at 37°C. Infections
with SeV-NT/NC were performed at the MOIs indicated in the figure legends in DMEM supplemented
with 10% FBS and incubated for the indicated amount of time at 37°C.

Recombinant trisegmented Lassa virus expressing tdTomato and Renilla luciferase (rLASV-tdTom)
was generated using a previously successful strategy to create a trisegmented recombinant lymphocytic
choriomeningitis virus expressing two additional genes of interest (69) and was based on LASV strain
Bantou 366 (Ba366), which was obtained from the Institute of Virology at the University of Marburg (70).
The coding capacity of this recombinant virus was extended by incorporation of two S segments instead
of one, one of these carrying the NP and Renilla luciferase genes and the other carrying the glycoprotein
complex (GPC) and tdTomato genes. The plasmid pHH21-LASV-Sag (GenBank no. GU830839.1) was used
to generate the pHH21-LASV-Sag-GPC/tdTomato and pHH21-LASV-Sag-Renilla/NP constructs. For
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confirmatory purposes of generated viruses later on, silent mutational markers were introduced into the
NP (T1250C) and L (A78T) genes at the nucleotide level. The tdTomato gene (EU855182.1) carries the
marker mutation A1244G and was cloned from the tdTomato-pBAD plasmid (a kind gift from M.
Davidson, N. Shaner, and R. Tsien; Addgene plasmid no. 54856). The humanized reporter gene for Renilla
luciferase (GenBank no. AF362549) was cloned from the previously described LASV Ba366 minigenome
reporter plasmid (71). Approximately 4� 105 BHK-21 cells were cotransfected with 0.75mg of pCAGGS-
LASV-NP (GenBank no. GU830839.1; ADI39452.1), 1.5mg of pCAGGS-LASV-L (GenBank no. GU979513.1;
ADU56645.1), 1.5mg of pHH21-LASV-Lag (GenBank no. GU979513.1), 0.75mg of pHH21-LASV-Sag-GPC/
tdTomato and 0.75mg of pHH21-LASV-Sag-Renilla/NP using Lipofectamine 2000 according to the manu-
facturer’s instructions. At 4 h posttransfection, medium was replaced with DMEM supplemented with
5% FBS. One day posttransfection, cells and supernatants were transferred to a T75 flask. At 5 days post-
transfection, cells and supernatants were transferred to a T175 flask. Every 3 to 4 days, supernatants
were harvested, infected cells were passaged, and 8ml of supernatant with 15ml fresh medium was
added to the cells. Cells were tested for viral infection at each passage by immunofluorescence staining
and viral titers in supernatants were determined by immunofocus assays as described elsewhere (72).
The correct sequence of the recombinant virus was confirmed by sequencing.

Recombinant green fluorescent protein (GFP)-expressing Ebola virus/H.sapiens-tc/COD/1976/
Yambuku-Mayinga (rgEBOV-GFP; GenBank no. KF990213.1; referred to here as EBOV-GFP) was previously
described (73). EBOV expressing enhanced GFP (EBOV-eGFP) was grown in Vero E6 cells, and viral titers
were determined by immunofocus assays as described previously (74).

Rescue of eGFP- and Gaussia luciferase (GLuc)-expressing human parainfluenza virus 3, strain JS
(rHPIV3JS-GlucP2AeGFP; referred to here as HPIV3-GFP), was carried out at 32°C as previously described
(75). For virus amplification, rescue supernatant was transferred to HeLa cells at 32°C in DMEM supple-
mented with 10% FBS. Once .90% of cells were eGFP positive, culture medium was replaced with
DMEM supplemented with 1mg/ml TPCK-trypsin for 24 h at 32°C. Then, supernatant was collected and
clarified of cell debris by centrifugation. HPIV3-eGFP was titrated on Vero E6 cells by serial dilution, and
infectious units were defined by GFP-positive events at 24 h postinoculation, reported as infectious units
per milliliter.

Rescue of recombinant eGFP-expressing measles virus, strain Edmonston B (rMeVEdmonstonB-eGFP;
referred to here as MeV-GFP), was carried out as described previously (75). MeV-eGFP was amplified in
Vero E6 cells from an MOI of 0.01. Twelve hours after cells were 100% infected (as defined by visual
determination of GFP-positive cells), cells were collected into the supernatant and pipetted vigorously
to liberate cell-associated virus. Cellular debris was then cleared by centrifugation, and virus stocks were
titrated as described above for HPIV3-GFP.

Recombinant GFP-expressing human respiratory syncytial virus, strain A2 (rgRSV[224], referred to
here as RSV-GFP), was generously provided by M. Peeples (Ohio State University) and was described pre-
viously (76).

Recombinant Indiana vesicular stomatitis virus expressing eGFP (VSV-GFP) was generated by insert-
ing an eGFP open reading frame in the intergenic region between the M and G open reading frames
using the reverse genetics system provided by G. Wertz (University of Virginia) and described elsewhere
(77).

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), isolate USA-WA1/2020 (NR-52281),
was deposited by the Centers for Disease Control and Prevention and obtained through BEI Resources,
NIAID, NIH. SARS-CoV-2 was grown and titrated on Vero E6 cells as described previously (78, 79).

RNA interference-mediated silencing of viral nucleoprotein expression. Custom siRNA pools
(custom siGENOME SMARTpool; Dharmacon) were designed against the nucleoprotein of influenza
A/Puerto Rico/8/34 (PR8) virus (GenBank no. AF389119.1) (IAV-NP-1, 59-CCAAACGGTCTTACGAACA-
39; IAV-NP-2, 59-GGGTGAGAATGGACGAAAA-39; IAV-NP-3, 59-ATGCAGAGGAGTACGACAA-39; IAV-NP-
4, 59-GATCTTATTTCTTCGGAGA-39), human respiratory syncytial virus strain A2 (GenBank no. KT992094.1)
(RSV-NP-1, 59-TACTCAGAGATGCGGGATA-39; RSV-NP-2, 59-CTAATTATGATGTGCAGAA-39; RSV-NP-3, 59-
CCTGATTGTGGGATGATAA-39; RSV-NP-4, 59-CCAACGGAGCACAGGAGAT-39), human parainfluenza vi-
rus 3 strain JS (GenBank no. Z11575.1) (HPIV3-NP-1, 59-CAACAGTATGTGACGGGAA-39; HPIV3-NP-2,
59-CTGACAATATCAAGACCGA-39; HPIV3-NP-3, 59-ACAAGAGACTCAACGACAA-39; HPIV3-NP-4, 59-
AGAAGGAAATAGAAGCGAT-39), measles virus strain Edmonston (GenBank no. DQ839356.1) (MeV-
NP-1, 59-AGAATGAGCTACCGAGATT-39; MeV-NP-2, 59-CAAGATCAGTAGAGCGGTT-39; MeV-NP-3,
59-GGTCAAACAGAGTCGAGGA-39; MeV-NP-4, 59-TATCATTTCTACACGGTGA-39), Indiana vesicular
stomatitis virus (NCBI reference sequence NC_001560.1) (VSV-NP-1, 59-CGGAATAAACATCGGGAAA-
39; VSV-NP-2, 59-GAGCAAGGAATGCCCGACA-39; VSV-NP-3, 59-AGATGATAGTACCGGAGGA-39; VSV-
NP-4, 59-TATGATGCAGTATGCGAAA-39), Ebola virus/H.sapiens-tc/COD/1976/Yambuku-Mayinga (NCBI
reference sequence NC_002549.1) (EBOV-NP-1, 59-AGAAAGAACTCCCGCAAGA-39; EBOV-NP-2, 59-
GGATGATTCAACCGACAAA-39; EBOV-NP-3, 59-AAGTAGTCAAGGAACGAAA-39; EBOV-NP-4, 59-
GATGGAAGCTACGGCGAAT-39), and Lassa mammarenavirus strain BA366 (GenBank no. GU830839
.1) (LASV-NP-1, 59-CATTGAACATCTCGGGTTA-39; LASV-NP-2, 59-ATTTAGAATCAGACGGGAA-39; LASV-
NP-3, 59-GACCCTAACTTCAGACGAT-39; LASV-NP-4, 59-TAGAAGCACTCCCTCGAAA-39). An siRNA spe-
cifically targeting the subgenomic nucleocapsid transcript of SARS-CoV-2 isolate USA-WA1/2020
(GenBank no. MN985325.1) (SARS-CoV-2-sgN, 59-CUCUAAACGAACAAACUAAUU-39) was ordered
from Dharmacon.

Approximately 5� 105 A549 or A549ACE2 cells were transfected with 20 nM nontargeting control
siRNA (Dharmacon; On-TargetPlus nontargeting control pool) or nucleoprotein/nucleocapsid-specific
siRNA using Lipofectamine RNAiMax and Opti-MEM according to the manufacturer’s instructions and
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incubated in DMEM supplemented with 10% FBS for 24 h at 37°C. Prior to infection, cell monolayers
were washed once with phosphate-buffered saline (PBS).

Infections with IAV-mNeon were performed at an MOI of 1.5 for 1 h at room temperature in DMEM
supplemented with 0.3% BSA and 1mg/ml TPCK-trypsin prior to incubation for 12 h at 37°C. Infections
with RSV-GFP were performed at an MOI of 5 for 1 h at room temperature in DMEM supplemented with
0.3% BSA prior to incubation for 12 h at 37°C. Infections with HPIV3-GFP were performed at an MOI of 5
for 1 h at room temperature in DMEM supplemented with 0.3% BSA prior to incubation for 12 h at 37°C.
Infections with VSV-GFP were performed at an MOI of 5 for 6 h at 37°C in DMEM supplemented with
10% FBS. Infections with MeV-GFP were performed at an MOI of 0.1 for 48 h at 37°C in DMEM supple-
mented with 10% FBS. Infections with EBOV-GFP were performed at an MOI of 1 in DMEM for 1 h at 37°
C, before removal of the viral inoculum and incubation of infected cells in DMEM supplemented with
3% FBS for 16 h at 37°C. Infections with rLASV-tdTom were performed at an MOI of 1 in DMEM for 4 h at
37°C, before removal of the viral inoculum and incubation of infected cells in DMEM supplemented with
10% FBS for 20 h at 37°C. Infections with SARS-CoV-2 were performed at an MOI of 0.1 for 24 h at 37°C
in DMEM supplemented with 2% FBS as described previously (80, 81). As a control for SARS-CoV-2,
A549ACE2 cells were transfected with 1mg of poly(I·C) using Lipofectamine RNAiMax and Opti-MEM
according to the manufacturer’s instructions and incubated for 24 h at 37°C prior to Western blot
analysis.

At the indicated time points, cell monolayers were dissociated using trypsin-EDTA solution and ana-
lyzed by flow cytometry and Western blotting.

Western blotting. Cells were lysed in NP-40 lysis buffer containing 1� cOmplete protease inhibitor
cocktail (Roche) and 1� phenylmethylsulfonyl fluoride (Sigma-Aldrich) and cleared from the insoluble
fraction by centrifugation at 17,000� g for 5min at 4°C. For cells infected with EBOV-GFP and LASV-
tdTom, cells were lysed in SDS sample buffer and samples were inactivated for 10min at 95°C prior to
transfer of samples out of the biosafety level 4 (BSL-4) laboratory. For cells infected with SARS-CoV-2,
cells were lysed in radioimmunoprecipitation assay (RIPA) buffer containing 1% SDS prior to transfer out
of the BSL-3 facility.

Samples were analyzed by SDS-PAGE and transferred onto nitrocellulose membranes. Proteins
were detected using mouse monoclonal anti-actin (Thermo Scientific; MS-1295), rabbit monoclonal
anti-IFIT1 (Cell Signaling; D2X9Z), rabbit polyclonal anti-GFP (Abcam; ab290), mouse monoclonal
anti-IAV NP antibody (Center for Therapeutic Antibody Discovery at the Icahn School of Medicine at
Mount Sinai; clone HT103), mouse monoclonal anti-IAV NS1 (Center for Therapeutic Antibody
Discovery at the Icahn School of Medicine at Mount Sinai; clone 1A7), mouse monoclonal anti-SeV N
(Center for Therapeutic Antibody Discovery at the Icahn School of Medicine at Mount Sinai; clone
6H4), mouse monoclonal anti-SARS N (Center for Therapeutic Antibody Discovery at the Icahn
School of Medicine at Mount Sinai; clone 1C7), rabbit polyclonal anti-HPIV3 N (GenScript; custom
made against the peptide CNINSSETSFHKPTG), mouse monoclonal anti-EBOV NP (Invitrogen; MA5-
29991), and previously described mouse monoclonal anti-LASV GP (82) (generously provided by F.
Krammer; KL-AV-1B3) primary antibodies. Primary antibodies were detected using horseradish per-
oxidase (HRP)-conjugated secondary anti-mouse (GE Healthcare, NA931V) and anti-rabbit (GE
Healthcare, NA934V) antibodies and visualized using a Immobilon Western chemiluminescent HRP
substrate kit (Millipore) according to the manufacturer’s instructions.

Flow cytometry. Cells infected with IAV-mNeon, RSV-GFP, HPIV3-GFP, and VSV-GFP were fixed and
inactivated in 4% formaldehyde for 30min at room temperature. Fixed cells were diluted in PBS to 500
to 1,000 cells/ml followed by analysis by fluorescence-activated cell sorting (FACS) on a Guava EasyCyte
flow cytometer (Millipore). EBOV-GFP-infected cells were fixed and inactivated in 4% formaldehyde for
30min at room temperature prior to four washes in PBS. FACS data were acquired on a LSRFortessa
instrument (BD Biosciences). rLASV-tdTom-infected cells were inactivated and fixed in 4% formaldehyde
for 30min at room temperature prior to four washes in PBS. Fixed cells were resuspended in PBS supple-
mented with 1% FBS and 1mM EDTA and filtered through a cell strainer. Ten thousand cells per sample
were analyzed by FACS on a FACSAria III cell sorter (531-nm laser; BD Biosciences; BP 585/15). Acquired
FACS data were analyzed using FlowJo to quantify fluorescent reporter gene expressing cells in each
sample set.

IAV RNP reconstitutions. Viral RNP reconstitutions were performed as previously described (83).
In short, approximately 1� 106 HEK-293T cells were transiently transfected with 1mg each of
pcDNA-PB2 (84), pcDNA-PB1 (84) or pcDNA-PB1a (85), and pcDNA-PA (84), 4mg of pPOLI-vNA200,
and the indicated amounts of pcDNA-NP (84) using Lipofectamine 2000 and Opti-MEM according to
the manufacturer’s instructions. An empty pcDNA-3a vector was used to balance total amounts of
transfected DNA. The plasmid pPOLI-vNA200 was derived from the previously described plasmid
pPOLI-NA (86) and constructed using PCR-mediated deletion mutagenesis. Cells were harvested 48
h posttransfection, and total RNA was extracted using TRIzol (Invitrogen) according to the manufac-
turer’s instructions.

Northern blotting. Detection of viral RNA by Northern blotting was performed in a manner similar
to that previously described, with the following modifications (37). Briefly, 30mg of total RNA was
resolved by 12% polyacrylamide–7 M urea PAGE in Tris-borate-EDTA (TBE) buffer and transferred onto
Hybond NX membranes (Amersham) using an Owl HEP-1 semidry electroblotting system (Thermo
Scientific). RNA was chemically cross-linked with EDC cross-linking solution [0.16 M 1-ethyl-3-(3-dimethy-
laminopropyl) carbodiimide, 0.13 M 1-methylimidazole; pH 8.0] for 1 h at 65°C, prior to blocking in 6�
SSC (1� SSC is 0.15 M NaCl plus 0.015 M sodium citrate) and 7% SDS for 1 h at 65°C. Membranes were hybri-
dized with radiolabeled probes against the conserved IAV 59 vRNA termini (59-AAAAANNNCCTTGTTTCTACT-39)
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and, as a loading control, U6 snRNA (59-GCCATGCTAATCTTCTCTGTATC-39) at 30°C for 12 h. Membranes were
washed three times with 3� SSC and 0.1% SDS at 30°C for 15min. Radiolabeled probes were detected by auto-
radiography using a Typhoon Trio variable-mode imager (GE Healthcare).

RT-PCR analysis. For qualitative analysis of cellular RNA, total RNA was extracted using TRIzol
(Invitrogen) or the RNeasy minikit (Qiagen) and treated with DNase I according to the manufacturer’s
instructions. Extracted RNA was reverse transcribed using SuperScript II and oligo(dT) primers. cDNA was
amplified using GoTaq Green MasterMix (Promega) and a-tubulin forward (59-GCCTGGACCACAAGTTT
GAC-39) and reverse (59-TGAAATTCTGGGAGCATGAC-39) and IFN-b forward (59-GTCAGAGTGGAAATCCT
AAG-39) and reverse (59-ACAGCATCTGCTGGTTGAAG-39) primers. PCR products were analyzed by 1.5%
agarose gel electrophoresis in Tris-acetate-EDTA (TAE) buffer.

Chemical inhibition of IAV. To determine the inhibitory roles of different compounds in viral repli-
cation, A549 cells were infected for 1 h at room temperature with influenza A/Puerto Rico/8/34 (H1N1)
virus at an MOI of 5 in DMEM supplemented with 0.3% BSA. One hour postinfection, the indicated
amounts of nucleozin (Calbiochem; 492905), baloxavir marboxil (eNovation Chemicals; D621084), or di-
methyl sulfoxide (DMSO) were added. Infected cells were subsequently incubated for 8 h at 37°C before
lysis and analysis by Western blotting as described above.

IFN reporter assay. Approximately 5� 105 A549-Dual, A549-Dual-KO-MAVS, A549-Dual-KO-MDA5,
or A549-Dual-KO-RIG-I cells were infected with IAV-NPC or IAV-NPT for 1 h at room temperature in DMEM
(0.3% BSA) at an MOI of 5. After 12 h of incubation at 37°C, cell culture supernatant was harvested, and
luciferase activity of secreted Lucia luciferase was measured using a Quanti-Luc (InvivoGen) assay.

RNA sequencing. Total RNA from infected and mock-treated cells was extracted using TRIzol
(Invitrogen) or the RNeasy minikit (Qiagen) according to the manufacturer’s instructions and treated
with DNase I. RNA-seq libraries were prepared using the TruSeq RNA library prep kit v2 (Illumina) for
mRNA and TruSeq Stranded total RNA library prep Gold (Illumina) for total RNA following the manufac-
turer’s instructions. All sequencing runs were performed using an Illumina NextSeq 500 platform.

Analysis of sequencing data. Sequencing reads were aligned to the human reference genes (hg19)
using salmon (87), implemented through the RNA-seq alignment on BaseSpace (Illumina Inc., CA), fol-
lowed by differential gene expression analysis by DESeq2 (88). Heat maps of gene expression levels
were constructed using heatmap.2 from the gplot package in R (https://cran.r-project.org/web/
packages/gplots/index.html), based on differentially expressed genes [log2(fold change). 2 and
Padj, 0.05] belonging to the GO annotations GO:0035457, GO:0035458, GO:0035455, GO:0035456, and
GO:0034340. Gene set enrichment analysis (89) was performed using transcript per million counts for
each human gene. Enrichment matrix of representative GO annotations were visualized using ggplot2
(https://ggplot2.tidyverse.org) and custom scripts in R (http://www.R-project.org/). Sequencing reads
were also aligned to respective viral genomes using Bowtie2 (90) and visualized using IGV software (91).
The viral genome references used were as follows: SeV, KY295909.1; SARS-CoV-2, MN985325.1; and IAV (A/
Puerto Rico/8/34/Mount Sinai), AF389122.1, AF389121.1, AF389120.1, AF389119.1, AF389118.1, AF389117.1,
AF389116.1, AF389115.1, and KF609511.1. Aberrant RNA production was quantified by identifying nonca-
nonical junctions (excluding junctions corresponding to splicing products) using ViReMa (92) following a previ-
ously described pipeline (93). Only strand congruent junctions were quantified for IAV (to account for deletion
events). For enrichment analysis of the viral termini, viral reads covering the 59- and 39-terminal 15% of each
IAV vRNA segment or the 39-terminal 15% of the SeV antigenome were measured relative to all viral reads.
Except for differential gene expression, all other statistical analyses were performed as indicted in figure
legends using Prism 8 (GraphPad Software, San Diego, CA, USA; https://www.graphpad.com/).

Biosafety. All viral experiments were performed under appropriate biocontainment conditions. IAV,
MeV, SeV, HPIV3, VSV, and RSV experiments were performed under BSL-21 conditions at the Icahn School
of Medicine at Mount Sinai. SARS-CoV-2 experiments were performed in the CDC/USDA-approved BSL-3
facility of the Icahn School of Medicine at Mount Sinai in accordance with institutional biosafety require-
ments. Rescue and evaluation of recombinant EBOV or LASV were performed under BSL-4 conditions in
the BSL-4 laboratory at the Bernhard Nocht Institute for Tropical Medicine (Hamburg, Germany).

Data availability. The raw sequencing data sets generated during this study are available on the
NCBI Gene Expression Omnibus (GEO) server under the accession number GSE165340.
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