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Identifi cation of diagnostic markers for tuberculosis by 
proteomic fi ngerprinting of serum
Dan Agranoff  , Delmiro Fernandez-Reyes, Marios C Papadopoulos, Sergio A Rojas, Mark Herbster, Alison Loosemore, Edward Tarelli, Jo Sheldon, 
Achim Schwenk, Richard Pollok, Charlotte F J Rayner, Sanjeev Krishna

Summary
Background We investigated the potential of proteomic fi ngerprinting with mass spectrometric serum profi ling, 
coupled with pattern recognition methods, to identify biomarkers that could improve diagnosis of tuberculosis.

Methods We obtained serum proteomic profi les from patients with active tuberculosis and controls by surface-enhanced 
laser desorption ionisation time of fl ight mass spectrometry. A supervised machine-learning approach based on the 
support vector machine (SVM) was used to obtain a classifi er that distinguished between the groups in two 
independent test sets. We used k-fold cross validation and random sampling of the SVM classifi er to assess the 
classifi er further. Relevant mass peaks were selected by correlational analysis and assessed with SVM. We tested the 
diagnostic potential of candidate biomarkers, identifi ed by peptide mass fi ngerprinting, by conventional immunoassays 
and SVM classifi ers trained on these data.

Findings Our SVM classifi er discriminated the proteomic profi le of patients with active tuberculosis from that of 
controls with overlapping clinical features. Diagnostic accuracy was 94% (sensitivity 93·5%, specifi city 94·9%) for 
patients with tuberculosis and was unaff ected by HIV status. A classifi er trained on the 20 most informative peaks 
achieved diagnostic accuracy of 90%. From these peaks, two peptides (serum amyloid A protein and transthyretin) 
were identifi ed and quantitated by immunoassay. Because these peptides refl ect infl ammatory states, we also 
quantitated neopterin and C reactive protein. Application of an SVM classifi er using combinations of these values 
gave diagnostic accuracies of up to 84% for tuberculosis. Validation on a second, prospectively collected testing set 
gave similar accuracies using the whole proteomic signature and the 20 selected peaks. Using combinations of the 
four biomarkers, we achieved diagnostic accuracies of up to 78%. 

Interpretation The potential biomarkers for tuberculosis that we identifi ed through proteomic fi ngerprinting and 
pattern recognition have a plausible biological connection with the disease and could be used to develop new 
diagnostic tests.

Introduction
Latent tuberculosis is present in a third of the world’s 
population, with the prevalence of active tuberculosis in 
many areas exceeding 700 cases per 100 000 of the 
population.1 This global epidemic is fuelled by synergy 
with HIV, which is found in 40–70% of African patients 
with active tuberculosis.1 Most deaths from tuberculosis 
are preventable by early diagnosis and treatment.2 In 
areas of high prevalence, sputum smear microscopy is 
often the only available and aff ordable test, but at best 
achieves a sensitivity of 50–70%. Culture of 
Mycobacterium tuberculosis, the diagnostic gold standard, 
is sensitive and specifi c in cases of smear-positive 
tuberculosis, but takes 2–6 weeks to yield a result and is 
not routinely used in countries with high prevalences of 
tuberculosis. In these areas, tuberculin skin tests are 
often insuffi  ciently accurate to aid diagnosis,3 and do not 
readily distinguish between contained infection and 
disease. Serological tests for tuberculosis have focused 
on detection of mycobacterial antigens and, like skin tests, 
can be confounded by crossreactivity with non-pathogenic 
mycobacteria or previous immunisation with BCG.4 
Recently developed tests based on DNA amplifi cation or 
interferon γ release are expensive and need particular 

expertise. 5 A cheap, accurate, and rapid diagnostic test 
for tuberculosis will have immense impact on the control 
of this disease. For example, a test yielding results within 
a few hours but with a sensitivity similar to that of 
existing tests such as sputum microscopy (which requires 
two or more clinic visits) would be a great advance 
because it would enable initiation of treatment at a single 
clinic visit.

Proteomic fi ngerprinting is a diagnostic concept based 
on the idea that disease states are sometimes associated 
with distinctive confi gurations of circulating proteins. 
Because the biological complexity of most diseases 
means that individual biomarkers have limited diagnostic 
sensitivities and specifi cities, analysis of combinations of 
several biomarkers off ers the possibility of enhanced 
diagnostic accuracy. High throughput proteomic profi ling 
of serum has been revolutionised by recent advances in 
mass spectrometry, such as surface-enhanced laser 
desorption ionisation time of fl ight (SELDI-ToF) mass 
spectrometry.6 The application of approaches based on 
machine learning to the problem of pattern recognition7 
makes it possible to identify diagnostic combinations of 
proteins (diagnostic signatures) embedded within such 
profi les.8 Analysis of serum proteomic fi ngerprints has 
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improved diagnostic accuracy for some cancers6,9,10 and 
infections such as human African trypanosomiasis.11 
This approach has also been used in the search for novel 
biomarkers for severe acute respiratory syndrome12 and 
intra-amniotic infections.13 We assessed the potential of 
proteomic fi ngerprinting as a basis for diagnosis of 
pulmonary tuberculosis.

Methods
Patients and controls
For the fi rst phase of the study, 179 serum samples were 
obtained from patients with retrospectively confi rmed 
culture-positive tuberculosis. Banked serum samples 
collected in Uganda and The Gambia were obtained from 
the WHO TB specimen bank.14 These samples had been 
taken at the time of fi rst presentation to designated 
outpatient clinics, before initiation of chemotherapy for 
tuberculosis. Other samples were obtained prospectively 
from patients presenting with tuberculosis to the 
inpatient and outpatient facilities at St George’s Hospital, 
London, UK. We restricted ourselves mainly to patients 
with tuberculosis who presented with typical 
manifestations of pulmonary disease,15 because this is 
the commonest presentation of tuberculosis in adults in 
all geographical areas.

170 serum samples from controls were collected at four 
separate sites: St George’s Hospital, UK; Angola; The 
Gambia; and Uganda. Those from The Gambia and 
Uganda were taken from the WHO specimen bank. We 
recruited controls with a range of infl ammatory conditions 
(confi rmed by standard diagnostic criteria) with clinical 
features that can overlap with those of tuberculosis. For 
example, we included patients with sarcoidosis, which is 
frequently included in the diff erential diagnosis of 
pulmonary tuberculosis, and other severe respiratory 
infections representing patients who have non-tuberculous 
destructive pulmonary pathology. To allow for systemic 
infl ammatory processes that can mimic tuberculosis, we 
recruited patients with other systemic infections, and 
patients with infl ammatory bowel and autoimmune 
diseases. 21 healthy volunteers were also included among 
the controls. The distribution of cases and controls was 
not intended to refl ect a particular population or 
epidemiological setting, but to encompass a broad range 
of symptomatically overlapping clinical presentations. 

Because this fi rst dataset relied heavily on archived 
samples, we subsequently collected a second dataset 
entirely from the UK to validate further our classifi ers. 
These samples, from patients with tuberculosis and 
controls, were obtained prospectively from consecutive 
patients with predominantly respiratory symptoms 
attending the Hammersmith Hospital and St George’s 
Hospital, London. Serum was collected within 2 days of 
fi rst presentation and before initiation of treatment for 
tuberculosis. Most patients presented through the 
accident and emergency department, as is typical for 
cases of tuberculosis in these hospitals. Controls were 

symptomatic and underwent full diagnostic assessment 
to exclude tuberculosis. 

For both datasets, fully informed consent was obtained 
from every patient, in accordance with local research 
ethics committee policy. Clinical information was 
archived in a linked, anonymised database. 

Procedures 
Serum was separated from 5 mL blood by centrifugation, 
and samples were allowed to clot for 30 min at room 
temperature in sterile glass tubes. 100-μL aliquots were 
frozen at –80oC within 1 h of collection, and underwent no 
more than two freeze-thaw cycles before mass spectrum 
analysis. 

Samples were applied to CM10 protein chip arrays 
(Ciphergen, Fremont, CA, USA) as described previously,11 
and a saturated solution of sinapinic acid in 50% 
acetonitrile, 0·5% trifl uoroacetic acid was applied twice 
to each spot on the array, with air drying between each 
application. To minimise bias, serum samples from 
patients with tuberculosis and controls were assayed on 
the same chips. 

Time-of-fl ight spectra were generated using a PBS-II 
mass spectrometer (Ciphergen, Freemont, CA, USA) at 
laser intensities of 200, 220, and 240, high mass 100 kDa, 
detector sensitivity 8, and focus mass 10 kDa. Each spot 
on the array was analysed from position 20 to 80, delta 4, 
with seven shots per position, preceded by two warming 
shots at laser intensities of 205, 225, or 245. Every protein 
chip array included a universal control sample (aliquoted 
from a single sample from one individual and stored at 
–80oC). Both groups of spectra (tuberculosis and controls) 
comprised samples run on diff erent occasions over a 
6-month period. The instrument was calibrated weekly 
using the Ciphergen all-in-one protein and peptide 
calibrants.

To identify peaks, spectra were normalised to the total 
ion current in the m/z range over 2000–100 000 after 
baseline subtraction. For each patient a single spectrum 
generated at a laser intensity of 200, 220, or 240 was 
selected to minimise deviation of the total ion current to 
within 2 SD from the mean of all patients, as described 
previously.11 Biomarker Wizard version 3.1 was used to 
identify corresponding peaks in each spectrum (peak 
clusters) within 0·6% of the molecular mass. 
Signal-to-noise ratio was set at 10 for the fi rst pass and 2 
for the second pass. 

To identify proteins, 20 µL serum was incubated on ice 
for 20 min with 30 µL denaturation buff er, diluted in 
50 µL binding buff er (denaturation buff er diluted 1:9 in 
50 mM Tris-HCl pH 9) followed by a further 30 min 
incubation on ice. Samples were applied to Q Ceramic 
HyperD spin columns (Ciphergen, 20 minutes), pre-
equilibrated fi rst in Tris (50 mM, pH 9), followed by 
binding buff er. The 11·5 kDa and 13·7 kDa biomarkers 
were eluted from the spin column in elution buff er 
(50 mM sodium citrate, 0·1% octyl glucopyranoside, 
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pH 3) and selective enrichment was confi rmed by 
SELDI-ToF MS. The biomarkers were resolved by 
one-dimensional SDS-PAGE (NuPAGE, 4–12% Bis-Tris, 
Invitrogen, Carlsbad, CA, USA), stained with Coomassie 
blue, and excised from the gel. Gel pieces were washed 
three times in a mixture of ammonium bicarbonate 
(50 mM) and acetonitrile (50%), dehydrated in acetonitrile 
(100%) and dried. Proteins were subjected to in-gel tryptic 
digestion (15 min, room temperature) by the addition of 
trypsin (20 ng/µL) in acetonitrile (10%) and ammonium 

bicarbonate (25 mM), followed by incubation in 
ammonium bicarbonate (25 mM) for 4 h. Peptide mass 
fi ngerprints16 of the digests were analysed by matrix-
assisted laser desorption/ionisation time-of-fl ight 
(MALDI-ToF) mass spectrometry using 20% 
α-cyano-4-hydroxy-cinnamic acid as matrix. The results of 
the in-gel tryptic digest were corroborated by tryptic 
digestion after passive elution of the protein from the gel. 
The peptide mass fi ngerprints were used to interrogate 
public databases with the MASCOT search engine.17

The four selected biomarkers were measured in a 
regional protein reference laboratory at St George’s 
Hospital with commercially available kits validated for 
clinical use. Neopterin was measured by competitive 
ELISA with a kit (ELItest Neopterin, BRAHMS 
Aktiengesellschaft, Hennigsdorf, Germany) in a Triturus 
analyser (Diagnostics Grifols SA, Barcelona, Spain). Rate 
nephelemetry was used for measurement of C-reactive 
protein, transthyretin (Beckmann Immage 800 analyser, 
Beckman Coulter, Fullerton, CA, USA) and serum 
amyloid A (N latex SAA, BN II analyser, Dade-Behring, 
Marburg, Germany). In each case, kits were used according 
to the manufacturers’ instructions. The antibody used in 
the serum amyloid A assay detects total serum amyloid A. 

In supervised machine learning, a supervised learning 
algorithm is tasked to fi nd a decision function capable of 
assigning the correct label for a set of input/output pairs 
of examples, called the training data. The ability of the 
decision function to predict correct labels for unseen 
samples (test data) is known as its generalisation. Current 
machine learning methods, such as support vector 
machines (SVM), aim to optimise this property 
(webappendix).18 The generalisation of a classifi er is 
dependent on a set of parameters (model) that must be 
chosen to optimise performance. For this purpose we 
adopted a grid search strategy in which a range of 
parameter values were used and tested using 
cross-validation.

We used two cross-validation schemes. In k-fold 
cross-validation the training set is randomly split in 
k groups of equally distributed positive and negative 
cases. A classifi er is trained on k–1 of the groups and its 
generalisation performance is validated on the 
remaining group. This process is repeated k times, each 
time holding out a diff erent validation subset and the 
average represents the overall generalisation. In the 
second scheme, k-fold cross-validation with test, the 
data are fi rst randomly split into training and testing 
sets. A k-fold cross-validation is performed on the 
training set and the generalisation is obtained on the 
unseen testing set.

The generalisation performance of the classifi ers was 
assessed by considering the number of correctly 
classifi ed (true positives, TP, and true negatives, TN) 
and incorrectly classifi ed (false positives, FP, and false 
negatives, FN) cases in the testing set. Sensitivity (se) 
was defi ned as the conditional probability of a true 

Train Test Total

Tuberculosis

Total number of patients 102 77 179

Symptomatic 100 (98%) 74 (96%) 174 (97%)

Persistent cough 98 (96%) 74 (96%) 171 (96%)

Haemoptysis 5 (5%) 1 (1%) 6 (3%)

Night sweats/fever 68 (67%) 53 (67%) 121 (68%)

Weight loss ≥5% 86 (84%) 60 (78%) 146 (82%)

Weight loss <5% 11 (11%) 15 (19%) 26 (15%)

Mean (range)
symptom duration before 
recruitment in days 

122·6 (13–449) 129·5 (12–754) 126 (12–754)

Smear positive 89 (87%) 66 (86%) 155 (87%)

Pulmonary disease 77 (75%) 64 (83%) 141 (79%)

Extrapulmonary disease 2 (2%) 2 (3%) 4 (2%)

Pulmonary and extrapulmonary 22 (22%) 11 (14%) 33 (18%)

Abnormal chest radiograph 95 (93%) 67 (87%) 162 (91%)

Cavitary disease 
Previous BCG vaccination*
Skin test positive†

66 (65%)
36 (35%)
56 (55%)

49 (64%)
26 (34%)
36 (47%)

115 (64%)
62 (35%)
92 (51%)

Controls‡

Total number of patients 91 79 170

Infl ammatory bowel disease 10 (11%) 6 (8%) 16 (9%)

Sarcoidosis 6 (7%) 7 (9%) 13 (8%)

Respiratory infections§ 27 (30%) 24 (30%) 51 (30%)

Other Infections

Malaria (Plasmodium falciparum) 4 (4%) 3 (4%) 7 (4%)

HAT (Trypanosoma brucei 
gambiense)¶

10 (11%) 9 (11%) 19 (11%)

Others || 1 (1%) 2 (3%) 3 (2%)

Neurological disease** 13 (14%) 13 (16%) 26 (15%)

Autoimmune disease†† 6 (7%) 3 (4%) 9 (5%)

Myeloma/monoclonal 
gammopathy 

2 (2%) 3 (4%) 5 (3%)

Healthy volunteers 12 (13%) 9 (11%) 21 (12%)

Data are number (%) unless otherwise specifi ed. HAT=human African trypanosomiasis. *Defi nite history of BCG 
vaccination, presence of scar, or both. Data missing for 38 patients. †Mantoux reaction ≥15 mm greatest diameter of 
induration or Heaf grade ≥3. Data missing for 46 patients. ‡12 controls were taking high-dose systemic steroids 
(prednisolone ≥60 mg per day or dexamethasone ≥12 mg per day). BCG history and skin-test data unavailable for most 
control patients; tuberculin skin testing was only done on small minority. §Majority pyogenic respiratory infections 
(based on presence of consolidation on CXR and prompt clinical response to antibacterial therapy. One patient with 
pulmonary infarction rather than infection is included in the test set. ¶Nine patients with HAT had advanced 
(neurological disease) based on detection of parasites and/or >5 white cells per mm³ in CSF. ||Visceral leishmaniasis (1), 
meningococcal septicaemia (1), staphylococcal cellulitis (1).**Cerebral neoplasia (12), cerebral abscess in association 
with infective endocarditis (1), myasthenia gravis (2), multiple sclerosis (5) and lumbar disc prolapse (6). 
††Rheumatoid arthritis (3) systemic lupus erythematosis (4), systemic sclerosis (1), overlap syndrome (1). 

Table 1: Characteristics of patients with tuberculosis and controls 

See Online for webappendix
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positive, se=TP/(TP+FN); specifi city (sp) as the 
conditional probability of a true negative, sp=TN/
(TN+FP); and accuracy (ac) as the proportion of correct 
classifi cations, ac=(TP+TN)/(TP+FP+TN+FN). The per-
formance (positive diagnostic likelihood ratio) of a 
classifi er expressed by its true positive rate (se) and false 
positive rate (1–sp) was plotted in a receiver operator 
curve (ROC) space.

We created independent training and testing sets, 
with similar numbers of patients with tuberculosis and 
controls and similar representation of age and sex in 
each set. Using these sets we evaluated the generalisation 
performance of several supervised machine learning 
methods, such as single layer perceptron (SLP),19 multi-
layered perceptron (MLP),20 tree classifi ers,21–23 and 
SVMs. 

To provide robust estimates of the generalisation 
capability of the classifi er we did ten-fold cross-validation 
with test. First, we generated 100 80:20 train:test sets by 
random sampling without replacement in the entire 
dataset. For each 80:20 train:test set a ten-fold 
cross-validation is done on the training set and the 
parameter with the best performance is chosen. The 
SVM is retrained with the best parameter over all ten 
subsets and the fi nal performance is assessed on the 
testing set. In these experiments each ROC curve is 
smoothed, sampled, and averaged to show the mean 
curve with SD.

For further validation in the second independent 
testing set, the classifi er was refi ned by training in the 
entire fi rst dataset and then applied to the second set.

We used the Pearson correlation coeffi  cient to rank 
peaks for their discriminatory power (webappendix). It 
can be used as a test statistic to assess the signifi cance of 
a variable and it is linked to the t test. We estimated the 
Pearson correlation coeffi  cient between values of each 
mass cluster and corresponding class labels across the 
training set. We then used this estimate to rank positively 
and negatively correlated mass clusters. We selected ten 
mass clusters with the highest positive, and ten with the 
highest negative, correlation coeffi  cients. 

We used a chunking and decomposition implementation 
of the support vector machine, SVMlight.24 We used Waikato 
Environment for Knowledge Analysis25 for decision tree 
algorithms, boosting, and MLP. The experimentation 
framework was coded in Matlab and Java. A custom and 
reusable object-oriented database was created using 
ObjectDB and interfaced with the experimentation 
framework. The Matlab interface to SVMlight was obtained 
online.26 The SPIDER Matlab object-oriented machine 
learning library was obtained online27 and was modifi ed 
to use SVMlight version 6.

Role of the funding source
The sponsor of the study had no direct role in study 
design, data collection, data analysis, data interpretation, 
or writing of the report. A proportion of the serum 
samples from patients with tuberculosis were made 
available through the WHO TB databank. The 
corresponding author had full access to all the data in 
the study and had fi nal responsibility for the decision to 
submit for publication.

Tuberculosis* Controls Total

Train Test Total Train Test Total

Total number of patients 102 77 179 91 79 170 349

Mean (range) age in years 31 (16–86) 33 (19–84) 32 (16–86) 44 (16–88) 46 (14–84) 45 (16–84) 38 (14–88)

Sex (male:female) 65:37 47:30 112:67 52:39 42:37 94:76 206:143

Ethnic origin

Sub-Saharan African 81 (79%) 60 (78%) 141 (79%) 29 (32%) 29 (37%) 58 (34%) 199

African, not specifi ed 3 (3%) 1 (1%) 4 (2%) 5 (6%) 4 (5%) 9 (5%) 13

Asian 13 (13%) 9 (12%) 22 (12%) 6 (7%) 3 (4%) 9 (5%) 31

White 5 (5%) 7 (9%) 12 (7%) 49(54%) 39 (49%) 88 (51%) 100

Not recorded .. .. .. 2 (2%) 4 (5%) 6 (4%) 6

Collection site 

Sub-Saharan Africa 81 (79%) 60 (78%) 141 (79%) 21 (23%) 19 (24%) 40 (24%) 181

UK 21 (21%) 17 (22%) 38 (21%) 70 (77%) 60 (76%) 130 (76%) 168

HIV serology

HIV positive† 35 (34%) 24 (31%) 59 (33%) 2 (2%) 3 (4%) 5 (3%) 64

CD4 count ≥200x106 per mL 19 13 32 .. .. .. ..

CD4 count <200x106 per mL 15 11 26 .. .. .. ..

HIV negative 60 (59%) 45 (58%) 105 (59%) 12 (13%) 8 (10%) 20 (12%) 125

Not determined 7 (7%) 8 (10%) 15 (8%) 77 (85%) 68 (86%) 145 (85%) 160

Percentages refer to proportion of patients in the training and testing set for each demographic category. *12 patients with tuberculosis had received 1–7 days of 
chemotherapy at time of recruitment. †CD4 counts were available for HIV-seropositive patients; no value was available for six seropositive patients. 

Table 2: Participant demographics
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Results 
Details of patients and controls from the fi rst phase of 
the study are given in tables 1 and 2. Most patients had 
advanced pulmonary disease, presenting with cough, 
fever, and weight loss, and the majority had smear 
positive cavitary disease.

To generate diagnostic classifi ers for tuberculosis, we 
fi rst profi led 349 serum samples on weak cation exchange 
(CM10) protein chip arrays by SELDI-ToF MS,6,28 and 
identifi ed 219 peak clusters from m/z spectra in the range 
2000–100 000. The choice of chip surface was based on 
our previous observation that the CM10 surface-chemistry 
yields particularly rich spectra from serum.11 Spectra were 
assigned randomly to a training and testing set and we 
then used supervised machine learning classifi cation 
methods (table 3, webappendix) to discriminate the 
proteomic spectra of patients with tuberculosis from the 
controls using the training and testing set approach 
(table 2). The ability of a classifi er to discriminate data 

correctly in the testing set is known as its generalisation 
performance.18,29 We compared the generalisation 
performance of a range of classifi ers by plotting their 
performance on the testing set in ROC space (fi gure 1A). 
A Gaussian kernel SVM16,29,30 (table 3 and fi gure 1A, red 
square) was the best discriminator between tuberculosis 
and control groups, with a sensitivity of 93·5% and 
specifi city of 94·9% (overall accuracy 94·2%). This SVM 
classifi er defi nes the convex hull of the ROC space 
(fi gure 1A, red line), achieving the best accuracy. Samples 
from fi ve patients with tuberculosis and four controls in 
the testing set were misclassifi ed (webtable 1). Notably, 21 
of the 24 control patients with respiratory infection in the 
test set were correctly classifi ed by the SVM, as were all 
seven patients with sarcoidosis. None of the African 
control patients with sleeping sickness or malaria were 
misclassifi ed. Only one of the 11 smear-negative cases of 
tuberculosis was missed. 

We applied a further test of generalisation performance 
of the SVM by ten-fold crossvalidation on the entire set of 
spectra (both training and testing), obtaining accuracy of 
93·1% (SD 3·8), sensitivity of 94·4% (4·5), and specifi city 
of 91·8% (8·8) when optimised for accuracy (fi gure 1B). 
We also evaluated the generalisation performance of the 
SVM by re-randomising the allocation of spectra to new 
training and testing sets, and varying the proportions of 
training to testing cases from 90:10 to 50:50. For 80:20 sets, 
we obtained values for accuracy, sensitivity, and specifi city 
exceeding 90% (data not shown). The robustness of the 
SVM was further confi rmed by its mean performance on 
100 randomly generated 80:20 sets as shown in the ROC 
curve (fi gure 1C, webfi gure 1), with an area under the 
curve of 0·96.

Coeffi  cients of variation for peak intensity for spectra, 
derived from a single sample, run 25 times (six assays), 
were 15·6% (intra-assay) and 24·4% (interassay). These 
data were obtained by averaging values for nine of the 
highest amplitude peaks at the following m/z values: 
5648, 6203, 6449, 6647, 8907, 9213, 9310, 9370, and 9419. 
As a further measure of reproducibility, 28 universal 
control spectra run at diff erent times over a 6-month 
period were correctly classifi ed as controls by the SVM 
classifi er obtained in the ten-fold cross-validation. 

We selected a subset of informative peak clusters for 
further evaluation by applying a correlation fi lter method 
to detect independently informative peaks.31 We ranked 
ten mass clusters with the highest positive, and ten with 
the highest negative, Pearson correlation coeffi  cients. To 
study the discriminatory power of the selected 20 mass 
clusters we fi rst paired each mass with every other 
(400 pairs) and trained SVM classifi ers to diagnose 
tuberculosis cases. We ranked generalisation performance 
by accuracy and showed that 20 pairs (5%) of selected 
mass clusters gave accuracies greater than 80% and 17 of 
these combined negatively and positively correlated mass 
clusters (webfi gure 2). No mass cluster pair achieved 
sensitivity of greater than 95% and specifi city of greater 

Output Actual Accuracy Sensitivity Specifi city

TB C

Support vector machine (SVM_1)

Kernel: Gaussian TB 72 4 94·23% 93·50% 94·93%

Soft margin=10 C 5 75

ADTree+AdaBoost (ADT_2)

100 iterations TB 72 7 92·30% 93·50% 91·13%

Weight threshold=100 C 5 72

C4.5 Tree+AdaBoost (C4·5_2)

100 iterations TB 71 8 91·02% 92·20% 89·87%

Weight threshold=100 C 6 71

Tree classifi er C5·0 (C5·0_1)

Boost=10 TB 72 10 90·38% 93·51% 87·34%

Global pruning 25% C 5 69

Support vector machine (SVM_4)

Kernel=polynomial TB 71 9 88·46% 92·20% 84·81%

Soft margin=1 C 6 70

SLP (SLP_3)

Normalised TB 68 12 86·54% 88·31% 84·81%

Shuffl  ed presentation C 9 67

MLP: 1 HL, 111 N (MLP)

Learning rate=0·3 TB 65 9 86·53% 84·41% 88·60%

Momentum=0·2 C 12 70

Normalised 500 epochs

Contingency table showing number of cases classifi ed for each of the diagnostic classes. Codes in parentheses after 
classifi er names refer to key of fi gure 1A. TB=tuberculosis; C=controls. ADTree=adaptive decision tree.22 C4·5 Tree.21 
AdaBoost=adaptive boosting.23 SLP=single layer perceptron.19 MLP=multi layered perceptron.20 HL=hidden layers. 
N=neurons. 

Table 3: Diagnostic performance of classifi ers

See Online for webtable 1, and 
webfi gures 1 and 2
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than 85%, confi rming that better generalisation relies on 
combinations of more than two mass peaks. Second, an 
SVM trained with just the 20 correlation-selected mass 
clusters achieved an accuracy of 89·7% on the 
independent test set, indicating that these clusters 
contain most relevant discriminatory information. 
Information in remaining peak clusters (n=199) retained 
an inferior, though acceptable, diagnostic accuracy 
(85·9%, fi gure 2A), indicating that there was substantial 
residual diagnostic information in the remaining peak 
clusters. We summarised the generalisation performance 
of the SVMs in ROC space with diff erent sets of mass 
clusters (fi gure 2A, webtable 1). The ROC convex hull 
(fi gure 2A, red line) is defi ned by two classifi ers 
(fi gure 2A, red square and green square). The highest 
specifi city (red square) was obtained with all peaks 
minus the ten that were positively correlated (209 in 
total), confi rming information value in negatively 
correlated peaks. The other optimal classifi er (fi gure 2A, 
green square) was obtained after using only ten positively 
and ten negatively correlated subsets of mass clusters.

Using high-resolution mass-spectrometry after tryptic 
digestion, we identifi ed an 11·5 kDa positive protein 
marker derived from serum amyloid A1 and a 13·7 kDa 
negative protein marker derived from transthyretin 
(webfi gure 3). The molecular weight observed in the 
mass spectrum (13·7 kDa) for the protein identifi ed as 
transthyretin corresponded closely to the theoretical 
value (13·76 kDa) for this protein. However, that observed 
for serum amyloid A1 (11·52 kDa) was 156 Da lower than 
its theoretical value (11·68 kDa) suggesting that the 
protein was a variant of serum amyloid A1. To investigate 
the nature of this variant, the tryptic digest was analysed 

in more detail and was found to include a peptide at 
m/z 1551 that did not correspond to a tryptic peptide 
predicted from the full amino acid sequence of serum 
amyloid A1. It did, however, correspond to the 
2–15 peptide (SFFSFLGEAFDGAR) that would have 
resulted from loss of the N-terminal arginine.

To translate from proteomic signatures to conventional 
test formats, we measured serum amyloid A and 
transthyretin by immunoassay for all patients’ serum. 
We also measured C-reactive protein and neopterin, 
which have previously been used to monitor disease 
activity in tuberculosis.32 We then selected the best 
polynomial and Gaussian kernel SVM parameters for 
these four markers. The best classifi ers were obtained 
with Gaussian SVMs (fi gure 2B). The SVM classifi er 
trained with transthyretin, C-reactive protein, and 
neopterin values discriminated patients with tuberculosis 
from controls with an accuracy of 84% (82% sensitivity, 
86% specifi city; fi gure 2B, black triangle). Other 
optimised classifi ers were with serum amyloid A, 
C-reactive protein, and transthyretin (fi gure 2B, purple 
triangle; webtable 1) and C-reactive protein, neopterin, 
and serum amyloid A (fi gure 2B, green triangle; 
webtable 2).

To confi rm our fi ndings, we subsequently applied our 
classifi ers to a second, independent test set, which was 
obtained by prospective collection of serum samples 
from patients attending two UK hospitals. Cases and 
controls were carefully matched for ethnic origin and a 
rigorous standardised protocol was followed for sample 
collection and processing. Most patients with tuberculosis 
had pulmonary disease, and the majority of controls had 
respiratory illnesses. Table 4 summarises the clinical 

Accuracy

70

0

75

80

85

90

95

100

Model selection criteria

%

0 0·1 0·2 0·3 0·4 0·5 0·6 0·7 0·8 0·9 1·0
0

0·1

0·2

0·3

0·4

0·5

0·6

0·7

0·8

0·9

1·0 SVM_1
ADT_2
C4·5_2
C5·0_1
SVM_4
SLP_3
MLP
ADT_1
NCP_3
C5·0_2
C4·5_1
CP_2
NCP_2

0 0·1 0·2 0·3 0·4 0·5 0·6 0·7 0·8 0·9 1·0
0

0·1

0·2

0·3

0·4

0·5

0·6

0·7

0·8

0·9

1·0

False-positive rate (1–specificity)False-positive rate (1–specificity)

Tr
ue

-p
os

iti
ve

 ra
te

 (s
en

sit
iv

ity
)

Tr
ue

-p
os

iti
ve

 ra
te

 (s
en

sit
iv

ity
)

A B C

SpecificitySensitivity

Figure 1: Performance and validation of classifi ers
(A) Classifi er performance in ROC space. SVM_1, ADT_2, C4·5_2, C5·0_1, SVM_4, SLP_3, MLP: for names and parameters see table 3. ADT_1=Adaptive decision tree without AdaBoost. 
NCP_3=Non-conservative projection (normalised, random presentation). C5·0_2=C5·0 tree with winnowing. C4·5_1=C4·5 tree without AdaBoost. CP_2=conservative projection (normalised). 
NCP_2=non-conservative projection (normalised). Red line indicates convex hull. (B) Gaussian kernel Support Vector Machine performance (ten-fold crossvalidation). Each block of three bars shows 
the values for accuracy (red), sensitivity (green) and specifi city (blue) obtained when the sigma Gaussian-kernel was optimised for each of these criteria. (C) Averaged ROC using ten-fold train 
crossvalidation with test. 100 randomly selected train and test sets with a train:test ratio [80:20]. Parameters were selected with a ten-fold crossvalidation on the train set and performance obtained 
in the test. Red line shows averaged ROC curve of classifi ers obtained when kernel parameter is selected on accuracy criteria. Similar ROC curves were obtained when selecting on sensitivity and 
specifi city (webfi gure 1). 

See Online for webfi gure 3 
and webtable 2
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data. A classifi er trained on the spectra obtained in the 
fi rst phase of the study discriminated cases of 
tuberculosis from controls in this completely new 
dataset, with a sensitivity of 88·9% and specifi city of 
77·2% (webtable 3). Moreover, the classifi er trained on 
the 20 mass clusters highlighted in the correlation 
analysis achieved a sensitivity of 78% and specifi city of 

77%. A combination of the four immunoquantitated 
biomarkers achieved an accuracy of 81% (sensitivity 
88%, specifi city 74%; web table 2). 

Discussion
We investigated new approaches for diagnosing 
tuberculosis using serum from patients with the disease 
and controls from several countries, representing at 
least four diff erent ethnic backgrounds. Despite the 
heterogeneity of the control group, our SVM diagnostic 
classifi er discriminated accurately between patients 
with tuberculosis (both smear-negative and 
smear-positive) and those with other infective and 
non-infective infl ammatory conditions. These results 
provide proof-of-principle that a diagnostic approach 
based on a proteomic signature can be applied to 
tuberculosis. If our classifi er retained a similar 
diagnostic performance after validation in a population 
in an African tuberculosis clinic, where the prevalence 
of tuberculosis in patients presenting with respiratory 
symptoms might be around 10%, the positive and 
negative predictive values for our best classifi er would 
be 67% and 99%, respectively. This diagnostic accuracy 
would surpass that of other available immediate 
diagnostic options, and could yield a result much more 
rapidly than culture. 

However, although SELDI technology can provide a 
diagnostic test for tuberculosis that makes no previous 
assumptions about the identities of proteins constituting 
an informative signature, cost and complexity preclude its 
general use. We therefore identifi ed two of the 20 most 
discriminatory proteins to demonstrate the possibility of 
implementing more conventional diagnostic assays that 
are adaptable for fi eld use. These proteins (serum 
amyloid A and transthyretin), selected by Pearson 
correlation analysis and confi rmed by SVM classifi cation 
of proteomic signatures, have already been independently 
associated with pathophysiological processes in 
tuberculosis. Serum amyloid A is an acute phase protein 
that is associated with circulating high-density lipoprotein33 
and modulates lipid traffi  cking and immune responses. It 
is the precursor protein in reactive amyloidosis, which 
complicates chronic tuberculosis in some individuals, 
and is a marker of disease activity in several infl ammatory 
states, including tuberculosis.34 The ELISA assay used a 
commercially available antibody that recognises total 
serum amyloid A rather than the des-arginine subtype 
identifi ed in the signature. Specifi c detection of this 
variant might further enhance diagnostic discrimination. 
Transthyretin is a 55 kDa homotetramer in serum and a 
major transporter of thyroxine and tri-iodothyronine, as 
well as vitamin A (retinol or trans-retinoic acid) through 
association with retinol-binding protein.35 Retinoic acid 
stimulates monocyte diff erentiation and inhibits 
multiplication of M tuberculosis in human macrophages.36 
Low levels of vitamin A, correlating with reduced 
transthyretin and raised concentrations of C-reactive 
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Figure 2: Performance of SVM classifi ers based on subsets of peak clusters 
and combinations of identifi ed biomarkers
SAA=serum amyloid A. CRP=C-reactive protein. Gaussian SVMs were trained 
with the initial train set (table 2) using the specifi ed mass peak clusters or 
biomarker combination (ten-fold crossvalidation for parameter selection). 
Classifi er performance was then assessed on initial test (table 2). 
(A) Classifi cation performance of correlated mass clusters. 1=10 positively 
correlated and 10 negatively correlated; 2=remaining 199. 3=10 positively 
correlated; 4=remaining 209. 5=10 negatively correlated; 6=remaining 209. 
Raw values supplied in webtable 1. Red line represents convex hull defi ned by 
optimal classifi ers (4 and 1). (B) Biomarkers. 1g=transthyretin. 2g=CRP. 
3g=neopterin. 4g=SAA. 5g=neopterin-SAA. 6g=CRP-SAA. 7g=CRP-neopterin. 
8g=transthyretin-SAA. 9g=transthyretin-neopterin. 10g=transthyretin-CRP. 
11g=transthyretin-CRP-neopterin. 12g=transthyretin-CRP-SAA. 
13g=transthyretin-neopterin-SAA. 14g=CRP-neopterin-SAA. 
15g=transthyretin-CRP-neopterin-SAA. Raw values supplied in webtable 2. Red 
line represents convex hull defi ned by optimal classifi ers (2g, 6g, 12g, 9g).

See Online for webtable 3
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protein, have been reported in patients with tuberculosis.37,38 

A truncated form of transthyretin is a negative marker in 
proteomic fi ngerprinting studies on ovarian cancer;39 

serum amyloid A is a positive marker in severe acute 
respiratory syndrome (SARS),12 and indicates relapse in 
nasopharyngeal cancer.40 

Artefacts associated with collection and handling of 
samples or spectrum generation could create spurious 
classifi cations. Although collection biases were diffi  cult to 
control because we also used archived samples, we sought 
to minimise postcollection bias by interspersing the 
processing of samples from cases and controls over 
months and by using samples from four geographical 
sites and with varying HIV serostatus. Another possible 
source of bias is the predominance of African patients in 
the tuberculosis group and white people in the controls. 
However, at least 58 of 170 controls were of sub-Saharan 
African origin. It is possible, although unlikely, that our 
classifi ers detect the presence of tuberculosis infection 
rather than active disease. Tuberculin skin-test reactivity 
(as a questionable marker of latent tuberculosis) was not 
available for most control patients, but a substantial 
minority of the African and Asian control patients were 
probably latently infected. Moreover, the eff ectiveness of 
the classifi er on the basis of the four biomarkers (three of 
which are infl ammatory markers), provides evidence 
against discrimination between the groups on the basis 
of quiescent tuberculosis. Notably, of the fi ve patients 
with tuberculosis misclassifi ed by the SVM, three were 
Ugandan, whereas of the four misclassifi ed controls, two 
were white. The diverse pathologies in the control group 
are also likely to have made correct classifi cation more 
diffi  cult. Furthermore, the fi ndings are unlikely to have 
been biased by systematic diff erences in concurrent drug 
treatment, because only 12 of the patients with 
tuberculosis had started chemotherapy at the time of 
recruitment. 

Nevertheless, biases could have been introduced 
because of the predominance of archived samples in the 
tuberculosis group (collected in Africa and derived from 
the WHO databank), compared with the control set. We 
therefore applied our trained classifi er to a second, 
independent dataset that was collected prospectively at a 
later date in the UK, over 4 months. Patients in this 
dataset were more closely matched for ethnic origin and 
included a greater proportion of controls with respiratory 
disease than in the training set. All samples in the test set 
were processed with precisely the same standard 
operating protocol. The fact that the diagnostic 
performance of the classifi ers survived rigorous testing 
in this new set strengthens the conclusions of the fi rst 
part of the study. The small decrease in diagnostic 
accuracy might be at least partly attributable to the small 
size of the second dataset, and might also refl ect the 
existence of some biases in the fi rst dataset. The 
limitations of the SELDI-ToF platform with respect to 
reproducibility in peak intensity might also have an 

eff ect. For example, although we found average interassay 
coeffi  cients of variation of about 24% for nine universally 
present peaks in our quality control spectra, there may be 
larger variations in low intensity peaks residing closer to 
noise. This suggestion is consistent with maintenance of 
greater diagnostic accuracy across two datasets seen with 
inherently less variable immunological assays, and 
strengthens diagnostic approaches that use two 
independent assays. A key advantage of SELDI-ToF MS 
lies in the discovery phase, which can profi le large 
numbers of samples in a high throughput fashion, and 
by using whole signatures, reduce problems with 
individual variability in peak detection. 

Although single protein markers might have 
insuffi  cient accuracy in the diagnosis of tuberculosis, the 
use of proteome-guided analysis combined with machine 
learning methods such as SVMs can achieve better 
accuracy than that of current standard methods. These 
fi ndings suggest that markers with low individual 
diagnostic specifi cities can boost diagnostic yields when 
used in particular combinations. In some cases, truncated 
or fragmented derivatives of common plasma proteins 
might be more specifi c markers of some diseases and 

Tuberculosis Control Total

Total number of patients 18 23 41

Mean (range) age in years 35 (18–61) 32 (18–60) 34 (18–61)

Sex (male:female) 12:6 7:16 19:22

Ethnic origin

African 10 13 23

Asian 6 4 10

White 2 6 8

Collection site

UK (St George’s Hospital) 9 7 16

UK (Hammersmith Hospital) 9 16 25

Symptoms

Persistent cough 14 13 27

Haemoptysis 5 2 7

Night sweats/fever 11 11 22

Weight loss 6 3 9

Tuberculosis smear-positive 10 N/A 10

Tuberculosis site of disease

Pulmonary 16 N/A 16

Extrapulmonary 1 N/A 1

Pulmonary and extrapulmonary 1 N/A 1

Abnormal chest radiograph 14 11 25

Cavitary disease 4 0 4

Previous BCG vaccination* 7 16 23

Controls with respiratory infections N/A 15 15

Controls with infl ammatory bowel disease N/A 4 4

Healthy volunteers N/A 4 4

HIV-negative† 8 3 11

*Data missing for ten patients with tuberculosis and six controls. †Tuberculosis: one HIV positive, nine undetermined. 
Controls: 20 undetermined.

Table 4: Characteristics of patients and controls in second dataset
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arise by proteolytic enzyme induction characteristic of 
defi ned disease states.41 For example, the des-arginine 
variant of serum amyloid A we identifi ed might be more 
specifi c than other variants for tuberculosis. Similarly, 
truncated forms of another apparently non-specifi c 
acute-phase protein, α1-antitrypsin, have been reported 
as relatively specifi c markers in SARS.12 Thus, a possible 
explanation for the apparent paradox that seemingly 
non-specifi c acute-phase proteins could provide 
diagnostic specifi city for particular infections, is the 
possibility of disease-specifi c modifi cation of common 
proteins, as has been proposed for several cancers.8

Preservation of high diagnostic accuracy when 
translating from proteomic signatures to immunoassays, 
and the plausible disease-association of the identifi ed 
biomarkers, establishes the value of SVM classifi ers for 
diagnosis of tuberculosis and provides strong evidence to 
support the use of serological testing. Although we have 
shown reasonable diagnostic accuracies based on a 
subset of four biomarkers as an illustration of the 
principle, better classifi ers might ultimately require use 
of a larger number of biomarkers. To adapt the test for 
fi eld use, antibodies to panels of defi ned biomarkers 
could be incorporated into dipstick-type formats, and 
patterns analysed with trained SVM classifi ers on 
personal computers. These tests can then be applied to 
longitudinal studies of tuberculosis and other diffi  cult 
diagnostic categories, such as sputum-negative 
tuberculosis, extrapulmonary cases, and paediatric 
infections.
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