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As the traditional treatment for glioma, the most common central nervous system
malignancy with poor prognosis, the efficacy of high-intensity surgery combined with
radiotherapy and chemotherapy is not satisfactory. The development of individualized
scientific treatment strategy urgently requires the guidance of signature with clinical
predictive value. In this study, five prognosis-related differentially expressed immune-
related genes (PR-DE-IRGs) (CCNA2, HMGB2, CASP3, APOBEC3C, and BMP2) highly
associated with glioma were identified for a prognostic model through weighted gene co-
expression network analysis, univariate Cox and lasso regression. Kaplan-Meier survival
curves, receiver operating characteristic curves and other methods have shown that the
model has good performance in predicting the glioma patients’ prognosis. Further
combined nomogram provided better predictive performance. The signature’s guiding
value in clinical treatment has also been verified by multiple analysis results. We also
constructed a comprehensive competing endogenous RNA (ceRNA) regulatory network
based on the protective factor BMP2 to further explore its potential role in glioma
progression. Numerous immune-related biological functions and pathways were
enriched in a high-risk population. Further multi-omics integrative analysis revealed a
strong correlation between tumor immunosuppressive environment/IDH1 mutation and
signature, suggesting that their cooperation plays an important role in glioma progression.

Keywords: glioma, muti-omics immune-related bioinformatics research, prognostic model, mechanisms’
exploration, tumor immunosuppressive environment, ceRNA regulatory network, IDH1 mutation

INTRODUCTION

Gliomas are the most common primary intracranial brain tumors, accounting for 81% of malignant
brain tumors (Ostrom et al., 2014). As the most malignant and aggressive form of brain tumors,
gliomas can cause significant death and morbidity (Ostrom et al., 2014; Ludwig and Kornblum,
2017). Glioma is composed of a variety of malignant cells and non-malignant cells, which can
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develop in the special environment of the tumor
microenvironment (TME), and the tumor evolution of glioma
is related to the immune changes in this microenvironment
(Wang Q. et al., 2017; Tan et al., 2020). At present, the
treatment of glioma is mainly surgery, radiotherapy,
chemotherapy, immunotherapy and targeted therapy (Lin
et al., 2017; Verburg and de Witt Hamer, 2021).

Intra-tumor heterogeneity, as the main factor affecting the
therapeutic effect, has brought enormous scope for the
improvement of these therapeutic approaches (Van Meir et al.,
2010). It is reported that TME with immunosuppressive
properties can help cancer cells evade immune detection, thus
leading to cancer progression (Jackson et al., 2011). Studies reveal
that TME not only plays a vital role in tumor initiation,
progression, and migration, but also affects the generation of
therapeutic resistance and malignancy (Huang et al., 2020). TME
in human glioblastoma exhibits considerable immune cell
infiltration, and the disproportion of immune cells in TME
may play an essential role in gliomas (Kong et al., 2020; Qiu
et al., 2020). However, due to the strong immunosuppressive
microenvironment of gliomas, immunotherapy strategies exhibit
a very limited effect on gliomas (Locarno et al., 2020; Xu et al.,
2020). Mounting evidence shows that the isocitrate
dehydrogenase (IDH) mutation is crucial for the alterations in
tumor immunological microenvironment, as indicated by
suppression of tumor-infiltrating lymphocytes, natural killer
cells and cytotoxic T cells (Bunse et al., 2018; Ren et al.,
2019). Moreover, IDH mutations cause neomorphic enzymatic
activity that would result in the production of the oncometabolite
2-hydroxyglutarate (2-HG), which can then directly affect the
TME (Leca et al., 2021). In gliomas, IDHmutation correlates with
decreased PD1/PD-L1 expression (Buege et al., 2018; Mu et al.,
2018), and specific inhibitors of mutated IDH may improve the
efficacy of immunotherapy in patients with IDHmutated gliomas
(Kohanbash et al., 2017). Meanwhile, inhibiting 2-HG production
may enhance a host’s ability to immunotherapy response (Leca
et al., 2021).

In 2011, Salmena et al. proposed a hypothesis that the crosstalk
among messenger RNA (mRNA), transcribed pseudogenes and
long non-coding RNA (lncRNA) based on microRNA response
elements (MRE) formed a network to regulate RNA transcripts
(Salmena et al., 2011). Theoretically, any transcript containing
MRE can act as a potential competing endogenous RNA
(ceRNA), including mRNAs, lncRNAs, pseudogene RNAs and
circular RNAs (circRNAs) (Karreth and Pandolfi, 2013; Qi et al.,
2015). CeRNA is reported to be involved in biological processes
and plays an important role in disease pathogenesis, such as
ovarian cancer (Braga et al., 2020), gastric cancer (Yang et al.,
2018), and human colon adenocarcinoma (Zhang et al., 2018).
Many lncRNAs play significant regulatory roles in the
progression of glioma and can be used as prognostic
biomarkers (Langfelder and Horvath, 2008; Liu Z. et al., 2020;
Mu et al., 2020; Zhu et al., 2020).

Weighted gene co-expression network analysis (WGCNA) is a
new biological method that can describe the connectivity of
modules within a comprehensive network and correlate the
modules with external sample traits (Langfelder and Horvath,

2008). At present, WGCNA has been successfully applied to the
research of numerous cancers, such as breast cancer, non-small-cell
lung cancer and ovarian cancer (Niemira et al., 2019; Yin et al.,
2020; Su et al., 2021). WGCNA provides an effective way to screen
genes that play an important role in tumors. This study aims to
screen out prognosis-related differentially expressed immune-
related genes (PR-DE-IRGs) that are highly associated with
gliomas to construct a prognostic model. Not only should it
have excellent prognostic performance, but also abundant
clinical application value. Moreover, considering the important
role of TME,mutation, cell stemness, ceRNA regulatory network in
tumor progression and treatment, we also hope to explore their
corresponding potential biological processes in gliomas.

MATERIALS AND METHODS

Collection of Glioma Samples and
Identification of Differentially Expressed
Immune-Related Genes
The flowchart shows the RNA sequencing and clinical data
sources used in this study (Figure 1): The Cancer Genome
Atlas (TCGA; cancergenome.nih.gov/), Gene Expression
Omnibus (GEO; ncbi.nlm.nih.gov/geo/) and China Glioma
Genome Atlas (CGGA; cgga.org.cn/) databases. While the
CGGA database shared the cohort of 1,018 glioma samples,
the TCGA database provided the cohort of 703 samples (698
glioma and 5 adjacent normal tissues). The GEO database
covered 4 cohorts, including the GSE108474 cohort (148
astrocytoma, 228 glioblastoma multiforme, 67
oligodendroglioma, and 28 normal brain tissues), GSE4290
cohort (26 astrocytoma, 81 glioblastoma, 50
oligodendroglioma, and 23 normal brain tissues), GSE4412
cohort (85 glioma samples) and GSE43378 cohort (50 glioma
samples). In addition, the ImmPort (immport.org/home) and
InnateDB (innatedb.ca/) databases provided us with a gene list of
6196 immune-related genes (IRGs).

Based on this list, we extracted the RNA sequencing data of
2365, 1879, 1879, 1638, 1879, and 1700 IRGs from the TCGA,
GSE108474, GSE4290, GSE4412, GSE43378, and CGGA cohorts,
respectively. To identify differentially expressed immune-related
genes (DE-IRGs) between tumor and normal tissues from TCGA,
we set |log2 fold change| (|log2FC|) >1 and false discovery rate
(FDR) < 0.05 as the filter condition. Similarly, FDR <0.05 was
used as a new filter condition to identify DE-IRGs from the
GSE108474 and GSE4290 cohorts, respectively. Finally, the R
package “venn” was used to visualize the overlapping process of
DE-IRGs lists and IRGs lists.

Identification of Differentially Expressed
Immune-Related Genes Highly Associated
With Glioma Based on Weighted Gene
Co-Expression Network Analysis
The RNA sequencing values of 163 common DE-IRGs were
extracted from the TCGA cohort to construct the co-
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expression network among them. After clustering the TCGA
samples for eliminating free samples, we used the function
pickSoftThreshold to select the best soft power β = 4 to
construct the best scale-free network. Based on the formula:

aij �
∣∣∣∣Sij/β

(aij: adjacency matrix between gene i and gene j, Sij: similarity
matrix which is done by Pearson correlation of all gene pairs, β:
softpower value), we created an adjacency matrix, and converted
it to a topological overlap matrix (TOM) and a corresponding
dissimilarity (1-TOM) (Yip and Horvath, 2007). Then, we took 1-
TOM as the distance to cluster the genes, and built a dynamic
pruning tree to identify the gene modules (Yip and Horvath,
2007). Finally, after merging similar modules with 75% similarity,
we identified 3 modules. Likewise, we chose the best soft power β
= 4 and β = 5 to identify two modules from the GSE108474 and
GSE4290 cohorts, respectively. The turquoise modules of the
GSE4290, GSE108474, and TCGA cohorts all exhibited the
strongest positive correlation with tumor status. The genes of
these three modules were extracted separately to obtain the
common DE-IRGs highly associated with glioma.

Acquisition of Prognosis-Related
Differentially Expressed Immune-Related
Genes and Model Construction
Samples with complete overall survival (OS) and RNA
sequencing data from 6 cohorts were extracted for subsequent
analysis, respectively. To obtain corresponding PR-DE-IRGs in
the TCGA, GSE4412, GSE43378 and CGGA cohorts, we
performed univariate Cox analysis with a cutoff value of p <
0.05. At the same time, we also performed Kaplan-Meier survival
analysis on the common PR-DE-IRGs in these four cohorts to
explore the relationship between their expression and OS.

668 samples from TCGA cohort were randomly matched to
the training set (n = 334) and test set (n = 334) on average. Lasso
regression analysis can screen out highly relevant PR-DE-IRGs
from the training set, thereby minimizing the risk of overfitting
the screening features, and achieving the purpose of accurately
predicting the patients’ prognosis (Lu et al., 2022). The optimal
penalty parameter (λ) obtained by the minimum 10-fold cross
validation was used to determine five PR-DE-IRGs and
corresponding coefficients for constructing the prognostic

FIGURE 1 | The flowchart of the whole study.
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model. We calculated each sample’s risk score from four cohorts
by the formula:

Risk score � ∑(PR − DE

− IRGs expression values × corresponding coefficient)

Verification of Model’s Predictive Ability
CCGA set, GEO’s GSE4412 and GSE43378 sets, and TGGA’s
training, test and whole sets were used for the verification of
model’s predictive ability. We used the median risk score of
samples from each cohort as a cutoff point to classify samples
into high-risk and low-risk groups. Kaplan-Meier survival analysis
was used to validate themodel’s ability in differentiating the glioma
patients’ prognosis. We also plotted the receiver operating
characteristic (ROC) curves to evaluate the accuracy of the
model in predicting prognosis. Univariate and multivariate Cox
regression analyses further identified the role of risk score as an
independent predictor of prognosis. In addition, we also performed
principal component analysis (PCA) and t-distributed random
neighborhood embedding (t-SNE) to evaluate themodel’s ability to
discretize samples through the R package “Rtsne".

Gene Set Enrichment Analysis
To enrich for potential biological functions and pathways involved in
different risk groups, we ran Gene Set Enrichment Analysis (GSEA)
based on the R package “clusterProfiler”. In this process, we used
“c5.go.v7.4.symbols.gmt” and “c2.cp.kegg.v7.4.symbols.gmt” as
reference gene sets and set nominal p value< 0.05 as thefilter condition.

Tumor Immunosuppressive Environment
and Immune Infiltration Type Analyses
First, the overall stromal and immune cell scores for each TCGA
sample were calculated using the ESTIMATE algorithm
(sourceforge.net/projects/estimateproject/). We compared their
differences between different risk groups, and analyzed their
correlations with risk score through Spearman. Next, based on
the single-sample gene set enrichment analysis (ssGSEA) of the R
packages “GSEABase” and “gsva”, we quantified the scores of 16
immune cells and 13 immune functions in each sample. After
visualizing their distribution across all samples using a heatmap,
similar differential expression and correlation analyses were again
applied to explore their relationship with the model.

Six types of immune infiltration were identified in human
tumors, which corresponded from tumor promoting to tumor
suppressing respectively, namely C1 (wound healing), C2 (INF-g
dominant), C3 (inflammatory), C4 (lymphocyte depleted), C5
(immunologically quiet), and C6 (TGF-b dominant) (Lin et al.,
2021). The two-way ANOVA was used to explore association
between risk score and different types of immune infiltration. To
compare the distribution of C3, C4, and C5 subtypes between
different risk groups, we ran a chi-square test.

Cell Stemness Analysis of Glioma
The one-class logistic regression machine learning algorithm
(OCLR) provided targeted training for stem cells (embryonic

stem cells; induced pluripotent stem cells) and their differentiated
ectoderm, mesoderm and endoderm progenitor cells (Malta et al.,
2018). Malta et al. calculated stemness index (mDNAsi) for each
TCGA sample by OCLR, ranging from low (zero) to high (one)
(Malta et al., 2018). The mDNAsi data from 564 glioma samples
from this study were used for our analysis. Next, we explored the
mDNAsi difference between different risk groups/clinical
subgroups as well as the correlation between mDNAsi and
risk score.

Mutation Analysis
After counting the somatic gene mutation data of gliomas from
TCGA, we obtained the top 30 genes with the highest mutation
frequency. The R package “GenVisR” was used to visualize the
statistical results of these 30 genes’ mutation in different risk
groups. A similar method was applied to the mutated DE-IRGs
highly associated with glioma. While analyzing the association
between tumor mutation burden (TMB) and model, we also
explored the effect of TMB on prognosis. Based on the mutation
status of IDH1, the samples were divided into wild and mutant
groups. In addition to the differences in the expression of 5 PR-
DE-IRGs and CD274 between the two groups, the differences in
the risk score, survival probability, 16 immune cells and 13
immune functions were compared.

Construction of a Comprehensive
Regulatory Network Composed of
Interconnected ceRNAs
To further explore the possible mechanisms involved in glioma
progression from the perspective of ceRNA, we selected BMP2 as
the target gene to construct a comprehensive regulatory network
composed of interconnected ceRNAs. After annotating the
miRNA expression data from TCGA using mature miRNA file
from mirbase database (mirbase.org/), we obtained a miRNA
expression matrix for 535 samples (530 glioma and 5 adjacent
normal tissues). The starBase database (starbase.sysu.edu.cn/)
contains multiple target gene prediction programs (PITA,
RNA22, miRmap, microT, miRanda, PicTar, and TargetScan).
We selected miRNAs that appeared more than 2 times in all
prediction programs as candidate miRNAs for BMP2. During this
period, Cytoscape (v3.7.2) was used to map the co-expression
network of all predicted miRNAs and BMP2. Based on the
correlation analyses between these miRNAs and BMP2
expression (filter condition: correlation coefficient < −0.4 and
p < 0.001), we further screened out the differentially expressed
miRNAs between glioma and normal tissues (filter condition: |
log2FC| >1 and p < 0.05). Ultimately, only 3 miRNAs (hsa-miR-
365a-3p, hsa-let-7e-5p and hsa-miR-98-5p) showed significant
survival differences in the further Kaplan-Meier survival analyses
(filter condition: p < 0.05).

Next, starBase was used to predict candidate lncRNAs that
may bind to hsa-miR-365a-3p, hsa-let-7e-5p and hsa-miR-98-5p,
respectively. Similarly, the correlation analyses between these
lncRNAs and hsa-miR-365a-3p/hsa-let-7e-5p/hsa-miR-98-5p
expression (filter condition: correlation coefficient < −0.2 and
p < 0.001), as well as their difference analyses between glioma and
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normal tissues (filter condition: p < 0.05) were run separately.
Next, 13/13/11 lncRNAs that might bind to hsa-miR-365a-3p/
hsa-let-7e-5p/hsa-miR-98-5p were used for further screening.
Cytoscape was run again to map the comprehensive regulatory
network composed of interconnected ceRNAs. Finally, 4/2/4
lncRNAs upstream of hsa-miR-365a-3p/hsa-let-7e-5p/hsa-miR-
98-5p were identified from the following three analysis steps: 1)
The correlation analysis between 13/13/11 lncRNAs and hsa-
miR-365a-3p/hsa-let-7e-5p/hsa-miR-98-5p expression (filter
condition: coefficient < −0.28 and p < 0.001); 2) The
correlation analysis between 13/13/11 lncRNAs and BMP2
expression (filter condition: correlation coefficient < −0.4 and
p < 0.001); 3) The differential analysis of 13/13/11 lncRNAs
expression between glioma and normal tissues (filter condition: |
log2FC| >1 and p < 0.05). Kaplan-Meier survival analysis was
again used to explore the influence of these lncRNAs on
prognosis. We highlighted these lncRNAs with yellow in the
comprehensive regulatory network.

To further predict the regulatory network constructed by
circRNAs, miRNAs, and BMP2, we also downloaded the
circRNAs expression data of the GSE165926 set (12 gliomas
and 4 normal brain tissues) and the miRNAs expression data of
the GSE138764 set (33 astrocytoma and 9 normal brain
tissues). Based on the TCGA and GSE138764 sets,
respectively, the differentially expressed miRNAs (DE-
miRNAs) between glioma and normal brain tissues were
obtained (filter condition: |log2FC| >2 and p < 0.05).
Prognosis related differentially expressed miRNAs (PR-DE-
miRNAs) were obtained by Kaplan-Meier survival analysis
based on TCGA data (filter condition: p < 0.001). We re-
identified the common miRNAs (hsa-miR-129-5p and hsa-
miR-381-3p) from the PR-DE-miRNAs of the TCGA set, the
DE-miRNAs of the GSE138764 set, and the miRNAs upstream
of BMP2 predicted by starBase as candidate miRNAs that may
regulate BMP2 expression. StarBase was again used to predict
circRNAs that might bind to hsa-miR-129-5p and hsa-miR-
381-3p, respectively. A similar approach was used to obtain
differentially expressed circRNAs (DE-circRNAs) from the
GSE165926 set. We got the common circRNAs from DE-
circRNAs of the GSE165926 set and the circRNAs predicted
by starBase as candidate circRNAs that might bind to hsa-miR-
129-5p/hsa-miR-381-3p, respectively. Finally, only the up-
regulated hsa_circ_0004662 and hsa_circ_0007548 in
gliomas upstream of hsa-miR-129-5p satisfy the regulation
of ceRNA. Cytoscape plots the corresponding regulatory
network.

Clinical Application of Prognostic Model
We obtained the immunophenotypic score (IPS) of glioma
patient from the Cancer Immunology Atlas (TCIA) database
(tcia.at/home). Previous studies showed that immunogenicity
increases with increasing IPS score (Liu et al., 2020b). By
analyzing the gene expression of the four cell types that
determine immunogenicity (effector cells, immunosuppressive
cells, major histocompatibility complex molecules and
immunomodulators), the IPS of the sample was obtained (Liu
et al., 2020b). Spearman correlation analysis was used to analyze

the correlation between 4 types of IPSs and 5 PR-DE-IRGs
expression/risk score. We used the violin plot to show the
difference of Tumor Immune Dysfunction and Exclusion
(TIDE), microsatellite instability (MSI), T cell dysfunction and
exclusion score between high and low risk groups. TIDE scores
were calculated online at the TIDE website (tide.dfci.harvard.
edu/).

We accessed the NCI-60 database containing 60 different
cancer cell lines from 9 different types of tumors through the
CellMiner interface (discover.nci.nih.gov/cellminer). The
Pearson correlation analysis was run to explore the
relationship between 5 PR-DE-IRGs expression and 263 drugs
approved by the food and drug administration or clinical trials.

Establishment and Verification of a
Combined Nomogram
We used the R package “regplot” to combine the risk score with
two clinical prognostic factors (grade, age) to establish a
combined nomogram, which can more accurately predict the
survival probability of glioma patients at 1-, 2-, and 3- years. To
better prove the accuracy and effectiveness of nomogram, we
constructed internal calibration curves and ROC curves based on
the training, test, and whole sets.

Immune Checkpoint Inhibitors/
N6-Methyladenine/Multidrug-Resistance
Related Gene Expression Analysis
As the most common covalent modification of RNA at the
posttranscriptional level, N6-methyladenine (m6A) mRNA
modification plays a key role in gliomas through various
mechanisms and associates with clinicopathological features
and prognosis of gliomas patients, showing a great clinical
significance (Zhang et al., 2020; Zhang et al., 2021). To
explore the correlation between risk score and Immune
Checkpoint Inhibitors (ICIs)/m6A related gene expression, we
again used Spearman correlation analysis. In addition, we also
compared the expression differences of ICIs/m6A related genes
between high and low risk groups. Studies have shown that the
multidrug resistance-associated protein (MRP or ABCC)
expression may be related to the inherent multidrug resistance
in human gliomas (Mohri et al., 2000), so we respectively
analyzed the correlation between the ABCC1/ABCC3
expression and the risk score, as well as their expression
differences between different risk groups.

Stratified Analyses and
Immunohistochemical Staining Images
Verification
We used a heatmap to show the distribution of clinical
characteristics across all TCGA samples from different risk
groups. To visualize the differences in risk score between
different subgroups for each clinical characteristic, we drew
boxplots. Kaplan-Meier survival analysis was used to evaluate
the model’s predictive ability in each subgroup with different
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clinical characteristics. We obtained the immunohistochemical
(IHC) staining results from the human protein atlas database
(proteinatlas.org/) to verify the differences in protein levels of 5
modelled genes between normal tissues and glioma tissues.
Finally, only 4 PR-DE-IRGs (HMGB2, CCNA2, CASP3, and
APOBEC3C) IHC staining images were obtained.

Statistical Method
We used Student’s t-test orWilcoxon signed-rank test to compare
the differences between continuous variables, while the
differences between categorical variables were compared by
Chi-square test or Fisher’s exact test (Fan et al., 2021).
Univariate cox regression analysis was used to select PR-DE-
IRGs. Lasso and multiple Cox regression were used to construct
prognostic model and nomogram. Univariate and multivariate
Cox regression analyses were also used to identify independent
prognostic factors. Spearman or Pearson correlation analyses
were used to analyze the correlation among variables. The
above analyses were run in the R software (version 4.0.3), Perl
and SPSS Statistics 22.

RESULTS

Extraction of Common Differentially
Expressed Immune-Related Genes
We extracted 455 DE-IRGs (189 genes were down-regulated and
266 genes were up-regulated in glioma) from the TCGA cohort
(Supplementary Figure S1) and 968 DE-IRGs (492 genes were
up-regulated and 476 genes were down-regulated in glioma) from
the GSE108474 cohort (Supplementary Figure S2). In the same
way, we also identified 986 DE-IRGs from the GSE4290 cohort
(Supplementary Figure S3). Finally, by Venn diagram based on
the 6 cohorts, we obtained 163 common DE-IRGs (Figure 2A).

Identification of Differentially Expressed
Immune-Related Genes Highly Associated
With Glioma Based on Weighted Gene
Co-Expression Network Analysis
The merged dynamic pruning tree in Figures 3A,C,E showed the
results of genes and corresponding modules matched in the

FIGURE 2 | Extraction of PR-DE-IRGs. (A) Venn diagram showing the overlapping process of DE-IRGs lists from three sets and IRGs lists from three other sets. (B)
Venn diagram showing the overlapping process of genes from TCGA turquoise module, GSE4290 turquoise module and GSE108474 turquoise module. (C) Heatmap
reflecting the expression levels of 15 PR-DE-IRGs in TCGA samples. (D) Forest plot showing the univariate Cox regression analysis results of 15 PR-DE-IRGs in TCGA.
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FIGURE 3 | Merged dynamic pruning trees and heatmaps of TCGA, GSE4290, and GSE108474 cohorts. (A,C,E) Dynamic pruning trees merging similar gene
modules into one gene module. (B,D,F) Heatmaps showing correlation between gene modules and tumor status. The color label on the left is followed by the
corresponding module. The two squares after the gene modules shows the correlation coefficients and p values between the gene modules and normal/tumor status,
respectively.
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TCGA, GSE4290 and GSE108474 cohorts, respectively. Then we
identified 3 modules from the TCGA cohort (Figure 3B), 2
modules from the GSE4290 cohort (Figure 3D), and 2

modules from the GSE108474 cohort (Figure 3F). The
heatmaps (Figures 3B,D,F), reflecting the correlation between
modules and tumor status, showed that the turquoise module

FIGURE 4 | Survival curves of 15 PR-DE-IRGs from TCGA cohort.
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FIGURE 5 | Validation of model’s predictive performance using the data of the training, test, and whole set from TCGA. (A–C) Risk curves and survival point plots
with increasing risk score. (D–F) Survival curves. (G–I) ROC curves of OS at 1-, 2-, 3-years. AUC >0.5 is considered to have a predictive value. (J–O) Forest plots
reflecting the results of univariate and multivariate cox regression analyses.
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FIGURE 6 | Validation of model’s predictive performance using the data of the CGGA, GSE4412, and GSE43378 cohorts. (A–C) Risk curves and survival point
plots with increasing risk score. (D–F) Survival curves. (G–I) ROC curves of OS at 1-, 2-, 3-years. AUC >0.5 is considered to have a predictive value. (J–O) Forest plots
reflecting the results of univariate and multivariate cox regression analyses.
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from the GSE4290 cohort had the strongest correlation with
tumor status (|correlation coefficient| = 0.64, p < 0.001,
Figure 3D). Finally, we got 41 common DE-IRGs highly
associated with glioma using the Venn diagram (Figure 2B).

Construction of Prognostic Model Based on
Prognosis-Related Differentially Expressed
Immune-Related Genes
668 samples from the TCGA cohort, 85 samples from the
GSE4412 cohort, 50 samples from the GSE43378 cohort, and
983 samples from the CGGA cohort were used in the subsequent
analyses. Supplementary Tables S1,2 showed the statistical
results of these samples’ clinical characteristics. During the
overlapping process of TCGA cohort’s 41 PR-DE-IRGs,
GSE4412 cohort’s 17 PR-DE-IRGs, GSE43378 cohort’s 25 PR-
DE-IRGs, and CGGA cohort’s 40 PR-DE-IRGs, we obtained 15
common PR-DE-IRGs (Supplementary Figure S4A). The forest
plots showed the univariate Cox analyses’ results of 15 common
PR-DE-IRGs from 4 cohorts (TCGA cohort: Figure 2D; CGGA
cohort: Supplementary Figure S4B; GSE4412 cohort:
Supplementary Figure S4C; GSE43378 Cohort:
Supplementary Figure S4D). Except for BMP2 and PRKX
(HR < 1), the remaining 13 genes (HR > 1) were identified as
prognostic risk factors in all cohorts. This conclusion was
supported by further Kaplan-Meier survival analysis results
(TCGA cohort: Figure 4; CGGA cohort: Supplementary
Figure S5; GSE4412 cohort: Supplementary Figure S6;
GSE43378 Cohort: Supplementary Figure S7). In addition, we
also used a heatmap to visualize the expression levels of these 15
PR-DE-IRGs in the TCGA cohort (Figure 2C).

Finally, lasso regression analysis determined 5 PR-DE-IRGs
and corresponding coefficients (Supplementary Table S3) to
build the model according to the optimal penalty parameter
(λ) (Supplementary Figures S8A,B).

Verification of Model’s Predictive Ability
With survival point plots, we observed more deceased samples in
the high-risk group (Figures 5A–C and Figures 6A–C). Kaplan-
Meier survival curves further showed the lower survival
probability for high-risk group samples (Figures 5D–F and
Figures 6D–F). To better verify the model’s predictive
performance, we drew the ROC curves. In the ROC curves of
three TCGA’s sets, all area under curve (AUC) values were greater
than 0.85 (Figures 5G–I), showing our model’s excellent
performance. This conclusion was also supported by the ROC
curves of the three external cohorts (all AUC >0.7) (Figures
6G–I). The risk score was identified as a prognostic risk factor by
the univariate Cox regression analysis (Figures 5J–L and Figures
6J–L). After adjusting for various clinical factors, the multivariate
Cox regression analysis further determined the risk score as an
independent prognostic risk factor (Figures 5M–O and Figures
6M–O). Finally, both PCA and t-SNE dot plots showed that the
risk grouping separated the samples well (Supplementary
Figure S9).

Gene Set Enrichment Analysis Enrichment
Analysis and Tumor Immunosuppressive
Environment
In the low-risk group, we found GO analysis results
(neurotransmitter secretion, neurotransmitter transport,
regulation of neurotransmitter levels, regulation of
postsynaptic membrane potential, and regulation of synaptic
plasticity) (Figure 7B) and KEGG analysis results (calcium
signaling pathway, cardiac muscle contraction, long-term
potentiation, and neuroactive ligand-receptor interaction)
(Figure 7D) were all closely related to the nervous system. In
the high risk group, both GO analysis results (CD8-positive
alpha-beta T cell activation, interferon gamma mediated
signaling pathway, interferon gamma production, positive
regulation of B cell activation, regulation of T cell activation,
T cell activation involved in immune response, T cell mediated
immunity and toll-like receptor 2 signaling pathway)
(Figure 7A) and KEGG analysis results (cytokine-cytokine
receptor interaction, JAK-STAT signaling pathway, natural
killer cell mediated cytotoxicity, NOD-like receptor signaling
pathway, p53 signaling pathway and toll-like receptor signaling
pathway) (Figure 7C) contained numerous immune-related
biological processes. Because GSEA exhibited a strong link
between high-risk group and immunity, we further analyzed
the relationship between the model and the immune
microenvironment. Figures 7E,F showed a positive
correlation between risk score and overall immune cell score,
and higher overall immune cell score in the high-risk group.
Similar results were observed in the overall stromal cell score
(Figures 7G,H). After visualizing 16 immune cells and 13
immune functions scores for each sample (Figure 7I), we
further analyzed their correlation with risk score, and their
differences between high-risk and low-risk groups. The results
showed that the remaining immune cells and functions scores
were positively correlated with risk score except for natural
killer (NK) and mast cells (Figure 7J). The above results were
consistent with the differential analysis results presented in
Figure 7K.

Immune Infiltration Type and Cell Stemness
Analyses
Figure 8A showed the distribution of C3, C4, and C5 between the
high-risk and low-risk groups. We observed the most C5 subtypes
in the low-risk group and the most C4 subtypes in the high-risk
group. The results in Figure 8B further verified the above
situation. Cell stemness analysis was of great significance to
the epigenetic characteristics of glioma patients. We observed
a significant correlation between the mDNAsi and risk score
(Figure 8C), and higher mDNAsi in the high-risk group
(Figure 8D). Finally, we observed higher mDNAsi in the age
>60 group (Figure 8E), deceased group (Figure 8F) and G3
group (Figure 8H). But, there was no significant difference in
mDNAsi between different gender subgroups (Figure 8G).
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FIGURE 7 |GSEA and tumor immunosuppressive environment analysis. (A,B) GO enrichment analysis results of high-risk group and low-risk group. (C,D) KEGG
enrichment analysis results of high-risk group and low-risk group. (E,G) Correlation analysis results between risk score and overall immune score/stromal score. (F,H)
Difference analysis results of overall immune score/stromal score between the high-risk and low-risk groups. (I) Heatmap visualizing 16 immune cell and 13 immune
function scores for each sample. (J) Correlation analysis results between risk score and 16 immune cells/13 immune functions. (K) Difference analysis results of 16
immune cells/13 immune functions between the high-risk and low-risk groups. The symbols on the right and top of the graph represent different p values, respectively.
ns: no significance; *p < 0.05; **p < 0.01; ***p < 0.001.
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Mutation Analysis
From Figure 9A, we found that 32 of the 41 DE-IRGs highly
associated with glioma were mutated. The mutation frequency of
IDH1 was the highest in different risk groups (Figures 9B,C). We
observed that TMB was positively correlated with risk score,
which was supported by further differential analysis (Figures
9D,E). The survival analysis in Figure 9F showed that the high
TMB group samples have significantly lower survival
probabilities (p < 0.001). Lower risk score and higher survival
probability were observed in the IDH1 mutant group (Figures
9G,H). Except for BMP2, the expression levels of other genes

(CD274, APOBEC3C, CASP3, CCNA2 and HMGB) in the wild-
type group were higher (Figures 9I,K–O). Figure 9J showed that
NK cells infiltrated more abundantly in the mutant group, while
the others infiltrated more abundantly in the wild-type group.

Construction of a Comprehensive
Regulatory Network Composed of
Interconnected ceRNAs
After reasonable prediction, we obtained 52 upstream miRNAs
that may bind to BMP2. Figure 10J showed the regulatory

FIGURE 8 | Immune infiltration type and cell stemness analyses. (A) Table showing the distribution of immune infiltrating subtypes (C3, C4, and C5) between the
different risk groups. (B) Risk score difference among the 3 immune infiltrating subtypes. (C) Correlation analysis results between mDNAsi and risk score. (D) Difference
analysis results of mDNAsi between high-risk and low-risk groups. (E–H) Difference analysis results of mDNAsi between different clinical feature subgroups.
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network between these 52 miRNAs and BMP2. Supplementary
Table S4 showed all predicted miRNAs’ correlation and
differential analysis results. Figures 10A–I visualized the
results of the correlation, difference and Kaplan-Meier
survival analyses for 3 miRNAs (hsa-miR-365a-3p, hsa-let-
7e-5p, and hsa-miR-98-5p). Therefore, these three miRNAs
may become the most potential miRNAs regulating BMP2
expression in glioma.

Based on the starBase database, we successfully obtained 112/
101/112 possible upstream lncRNAs of miR-365a-3p/let-7e-5p/
miR-98-5p, respectively. Figures 10K–M showed the
comprehensive regulatory network composed of
interconnected ceRNAs (13 lncRNAs, hsa-miR-365a-3p and
BMP2; 13 lncRNAs, hsa-let-7e-5p and BMP2; 11 lncRNAs,
hsa-miR-98- 5p and BMP2). Then, 4 lncRNAs (TUG1,
LINC00689, NNT-AS1 and ZEB1-AS1), 2 lncRNAs (SNHG16

FIGURE 9 |Mutation analysis. (A)Waterfall plot reflecting the statistical results of mutations in 32 mutated DE-IRGs highly associated with gliomas. (B,C)Waterfall
plots visualizing the statistical results of these 30 genes’ mutation in different risk groups. The right panel of the waterfall plot showing the mutation frequency. The
different colors at the bottom of the waterfall plot showing different mutation types and clinical characteristics types. The histogram above the waterfall plot showing the
TMB statistical results for each sample. (D)Correlation analysis results between risk score and TMB. (E) TMB difference between the high-risk and low-risk groups.
(F) Difference in survival probability between high and low TMB groups. (G) Risk score difference between IDH1 mutant and wild-type group. (H) Difference in survival
probability between IDH1 mutant and wild-type groups. (I,K–O) Expression difference of CD274/APOBEC3C/BMP2/CASP3/CCNA2/HMGB2 between IDH1 mutant
and wild-type groups, respectively. (J) Difference in 16 immune cells and 13 immune functions between the IDH1 mutant and wild-type groups.
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FIGURE 10 | Construction of a comprehensive regulatory network composed of interconnected ceRNAs. (A,C,E) Correlation analysis results between BMP2 and
hsa-miR-365a-3p/hsa-let-7e-5p/hsa-miR-98-5p. (B,D,F) Difference analysis results of miR-365a-3p/let-7e-5p/miR-98-5p between the glioma and the normal groups.
(G–I) Kaplan-Meier survival curves of hsa-miR-365a-3p/hsa-let-7e-5p/hsa-miR-98-5p. (J) Regulatory network between 52 predicted miRNAs and BMP2. (K–M)
CeRNA regulatory networks based on lncRNAs, hsa-miR-365a-3p/hsa-let-7e-5p/hsa-miR-98-5p and BMP2.
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and AL590666.2), and 4 lncRNAs (PXN-AS1, ZEB1-AS1, TUG1
And NNT-AS1) were screened out separately through the
analysis of next three steps. Supplementary Figures S10A–J
showed the results of the correlation and difference analyses
for these 10 lncRNAs. Supplementary Figure S10K showed the
Kaplan-Meier survival curves of these seven lncRNAs.

We obtained 2 common miRNAs from 59 PR-DE-miRNAs
of TCGA set, 92 DE-miRNAs of GSE138764 set, and 52
miRNAs of starBase (Supplementary Figure S11A).
Supplementary Figures S11B–E showed the results of
difference and survival analyses corresponding to these two
miRNAs. 11/1 common circRNAs were obtained from 269 DE-
circRNAs of the GSE165926 set and 6618/3647 circRNAs
upstream of hsa-miR-129-5p/hsa-miR-381-3p predicted by
starBase, respectively (Supplementary Figures 11F,G).
Supplementary Figure S11H visualizes the differential

expression results of these 12 circRNAs. The mechanisms by
which miRNAs regulate target gene expression suggest that
there should be negative correlations between miRNAs and
BMP2, and between miRNAs and circRNAs. Only
hsa_circ_0004662 and hsa_circ_0007548, which were up-
regulated in gliomas, satisfied this regulation. Finally, the
regulatory network composed of hsa_circ_0004662/
hsa_circ_0007548, hsa-miR-129-5p and BMP2 was shown in
Supplementary Figure S11I.

Clinical Application of Prognostic Model
IPS is used to assess which patients are more inclined to respond
to ICIs therapy. A higher IPS evaluation value implies a better
therapeutic effect of ICIs (Liu et al., 2020b). IPS showed broad
correlation with risk score, CASP3, APOBEC3C, HMGB2, and
BMP2 expression (Figures 11A,B). Such results suggested that

FIGURE 11 | Model’s guiding value in ICIs therapy. (A) Correlation analysis results between 4 kinds of IPSs and 5 PR-DE-IRGs. (B) Correlation analysis results
between 4 kinds of IPSs and risk score. (C–F) Difference in TIDE, MSI, T cell dysfunction and exclusion scores between high-risk and low-risk groups. ns: meaningless;
*p < 0.05; **p < 0.01; ***p < 0.001.
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BMP2, CASP3, APOBEC3C, HMGB2 and risk score can be used
to predict the efficacy of ICIs. TIDE score was negatively
correlated with the therapeutic effect of ICIs (Liu et al.,
2020b). Figures 11C,F showed that there was no significant
difference in TIDE score and T cell dysfunction score between
the high-risk and low-risk groups. But, the T cell exclusion and
MSI scores in the low-risk group were higher (Figures 11D,E).

The correlation analysis results of the 5 drugs most closely
related to 5 PR-DE-IRGs were visualized, respectively (Figures
12A–E). These results implied the guiding value of the five PR-
DE-IRGs in these drugs’ clinical application. Unexpectedly, the
expression of CASP3 was positively correlated with the sensitivity
of carmustine, a drug recommended by the latest National
Comprehensive Cancer Network (NCCN) for the treatment of
glioma (Figure 12A).

Finally, we built a nomogram based on age, grade and risk
score to predict the glioma patients’ survival probability
(Figure 13A). The internal calibration curves showed that the
predicted results were basically consistent with the actual results

(Figures 13B–D). The ROC curves further confirmed the
excellent predictive performance of the nomogram (AUC
>0.8) (Figures 13E–G).

Immune Checkpoint Inhibitors/
N6-Methyladenine/Multidrug-Resistance
Related Gene Expression Analysis
Except for VTCN1, CD200, TNFSF9, HHLA2, and ADORA2A,
which were negatively correlated with the risk score, the
expressions of the other ICIs-related genes were all positively
correlated with the risk score (Figure 14A). We also observed that
half of the m6A-related genes’ expression were positively
correlated with risk score, while the other half were negatively
associated with the risk score (Figure 14A). The results of the
above ICIs-related and m6A-related genes were verified in the
further difference analysis (Figures 14B,C). We observed a
positive correlation between ABCC1/ABCC3 expression and
risk score as well as their higher expression in the high-risk

FIGURE 12 | Correlation analysis between 5 PR-DE-IRGs and the 5 drugs approved by the food and drug administration (FDA). (A) CASP3. (B) APOBEC3C. (C)
BMP2. (D) CCNA2. (E) HMGB2.
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group, further supporting the potential value of the model in drug
resistance prediction (Figures 14D–G).

Clinical Stratification Analysis Based on
Prognostic Model
The heat map showed the distribution of clinical
characteristics across all TCGA samples from different risk

groups (Figure 15A). Subsequently, we further explored the
relationship between survival status (Figure 15B)/age
(Figure 15C)/gender (Figure 15D)/grade (Figure 15E) and
risk score. The risk score of patients in the deceased group,
age >60 group and G3 group were higher (Figures 15B,C,E).
Figure 15F showed that the model still maintained the
excellent performance of discriminating prognosis in all
clinical characteristics subgroups. Figures 15G–J showed

FIGURE 13 | Establishment and verification of a combined nomogram. (A) Nomogram based on age, grade, and risk group. (B–D) Internal calibration curves for
verifying model’s prediction accuracy. (E–G) ROC curves for evaluating model’s prediction performance.
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the IHC staining images reflecting the protein expression
levels of the four PR-DE-IRGs (HMGB2, CCNA2, CASP3,
and APOBEC3C) in the model, respectively. We only

observed higher expression of three genes (HMGB2,
CCNA2, and CASP3) in the glioma tissues (Figures
15G–I), consistent with the conclusions from the previous

FIGURE 14 |Correlation analysis between risk score and ICIs-related genes/m6a-related genes/multidrug resistance related genes expression, and comparison of
them between different risk groups. (A,B) ICIs-related genes. (A,C) M6a-related genes. (D,E) ABCC1. (F,G) ABCC3.
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FIGURE 15 | Clinical stratification analysis and IHC staining images verification. (A) Heatmap reflecting the clinical characteristics of each sample in TCGA. no
asterisk: no significance; ***p < 0.001. (B–E) Risk score difference of between different clinical subgroups. (F) Kaplan-Meier survival curves reflecting the model’s ability
to discriminate prognosis in each clinical subgroup. (G–J) IHC staining images reflecting the protein expression levels of HMGB2, CCNA2, CASP3, and APOBEC3C in
glioma and normal brain tissue.
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analysis based on the TCGA cohort. The above results further
verified the model’s stability.

Immunohistochemical Staining Images
Verification
Figures 15G–J showed the IHC staining images reflecting the
protein expression levels of the four PR-DE-IRGs (HMGB2,
CCNA2, CASP3 and APOBEC3C) in the model, respectively.
We only observed higher expression of three genes (HMGB2,
CCNA2 and CASP3) in the glioma tissues (Figures 15G–I),
consistent with the conclusions from the previous analysis
based on the TCGA cohort. The above results further verified
the model’s stability.

DISCUSSION

This study extracted multiple datasets from TCGA, GEO, and
CGGA databases for analysis. WGCNA identified 41 DE-IRGs
highly associated with gliomas. The 15 PR-DE-IRGs screened
out by prognostic analysis were used in lasso regression
analysis. Finally, five PR-DE-IRGs highly associated with
glioma were used to construct a prognostic model. Kaplan-
Meier analysis, multivariate Cox regression and ROC curves
validated the excellent performance of risk score as an
independent predictor in predicting prognosis. In addition
to external cohorts, the data from clinical subgroups also
supported this conclusion. The IHC staining images of
HMGB2, CCNA2, and CASP3 demonstrated their
differences in protein expression between glioma and
normal brain tissues, further supporting the stability of the
model. Through correlation analysis, we determined the
excellent value of the model in guiding immunotherapy and
chemotherapy. In addition, integrating the analysis of Muti-
Omics data, we also found many results closely related to the
progression and prognosis of glioma in terms of cell stemness,
ceRNA regulatory axis, mutation and tumor
immunosuppressive microenvironment.

Combined with previous studies, 5 genes are closely related to
numerous cancers and immunity (Kwon et al., 2010; Galluzzi
et al., 2016; Gan et al., 2018; Bernard et al., 2019; Constantin et al.,
2021). Cyclin A2 (CCNA2) is a cyclin gene that acts as a
biomarker for various tumors (Hydbring et al., 2016; Gan
et al., 2018; Guo et al., 2020; Wang et al., 2020). Cancer cells,
such as colorectal cancer, esophageal carcinoma, and ovarian
cancer, can be inhibited from growing and progressing through
the cell cycle by the silent CCNA2 (Gan et al., 2018; Guo et al.,
2020; Wang et al., 2020). In particular, the study of Xi et al.
showed that the invasion and metastasis of gliomas could be
inhibited by reducing the expression of CCNA2 protein (Xi et al.,
2019). HMGB2 belongs to the high mobility group box (HMGB)
protein family, which can participate in the innate immune
response of mammalian nucleic acid mediators (Rao et al.,
2013; Morinaga et al., 2021). In addition, HMGB2 has been
proved to be an independent influencing factor of the patient’s
prognosis by its protein or mRNA level in hepatocellular

carcinoma, epithelial ovarian cancer and glioblastoma
multiforme (Ouellet et al., 2006; Kwon et al., 2010; Wu et al.,
2013). Caspase 3 (CASP3) belongs to the caspase protease family,
whose activation can cause the cleavage of many important
functional proteins in cells, thereby achieving the purpose of
apoptosis (Eckhart et al., 2005; Galluzzi et al., 2016). Furthermore,
Bernard et al.’s study showed that the inhibition of CASP3 can
reduce the development of spontaneous tumors and make cells
sensitive to chemotherapeutics (Bernard et al., 2019).
Apolipoprotein B mRNA-editing catalytic polypeptide-like 3C
(APOBEC3C), a member of the APOBEC3 subfamily, is
implicated in HIV-1 restriction, with an unclear relationship
to cancer (Refsland et al., 2010; Constantin et al., 2021). As a
member of the transforming growth factor-β super-family,
enhanced expression of bone morphogenetic protein 2 (BMP2)
can check the growth of colorectal cancer cells, enhance
apoptosis, and reduce tumor development in the body
(Vishnubalaji et al., 2016; Zhou et al., 2016). The conclusions
of the above studies all support the accuracy of our analysis
results.

A growing body of research has revealed that ceRNA
regulatory networks are closely associated with the
pathogenesis of glioma. The members that emerged in our
ceRNA network were all closely related to tumors, and a large
proportion was closely related to gliomas. The hsa-let-7e-5p was
found to be a tumor suppressor to inhibit the progression of head
and neck squamous cell carcinoma by targeting CCR7 expression
(Wang et al., 2019) and a potential prognosis marker for rectal
carcinoma with liver metastases (Chen et al., 2018). Many
previous studies have also demonstrated that hsa-miR-365
functions as a tumor-suppressor in various cancers (Nie et al.,
2012; Wang Y. et al., 2017). Li et al. revealed that ZEB1-AS1
interacts with hsa-miR-365a-3p and inhibits hsa-miR-365a-3p
function (Li et al., 2019). Interestingly, both hsa-let-7e-5p and
hsa-miR-98-5p belong to a tumor suppressor family of miRNA,
the let-7 family, which is down-regulated in many tumor types
and is closely related to tumorigenesis (Lu et al., 2005; Croce,
2009; Blandino et al., 2014). The expression level of let-7 is
positively correlated with the malignant grade of gliomas,
indicating that let-7 is likely to be a crucial inhibitory factor in
the progression of gliomas (Lee et al., 2011). The abnormal
expression of hsa-miR-365a-3p has been reported in many
tumors, and it is also a tumor suppressor gene in gastric
cancer (Guo et al., 2013; Hamada et al., 2014). Hsa-miR-129-
5p, a tumor suppressor, is down-regulated in gliomas and inhibits
glioma proliferation, migration and development by targeting
TGIF2, WNT5A, DNMT3A, HOXC10, FNDC3B (Xu et al., 2017;
Gu et al., 2018; Zeng et al., 2018; Liu et al., 2020a). The
relationship between BMP2 and hsa-miR-129-5p has been
reported in many diseases, such as hepatocellular carcinoma
(Liu et al., 2021) and intervertebral disc degeneration (Yang
and Sun, 2019). Liu et al. proved that BMP2 is the target gene
of hsa-miR-129-5p and is post-transcriptional regulated by miR-
129-5p (Liu et al., 2021). All these researches support our
analytics results.

Previous studies have shown that lncRNAs are involved in
glioma progression and prognosis (Kiang et al., 2015; Peng et al.,
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2018; Xi et al., 2018). The aberrant expression of taurine up-
regulated gene 1 (TUG1) is associated with cell proliferation,
migration, cell cycle changes, apoptosis and drug resistance in
numerous tumors (Khalil et al., 2009). In glioma, TUG1 functions
as a tumor suppressor by promoting cell apoptosis via activating
caspase-3 and caspase-9 mediated intrinsic pathways and
inhibiting Bcl-2 mediated anti-apoptotic pathways (Li et al.,
2016). Additionally, small nucleolar RNA host gene 16
(SNHG16) suppressed the expression of p21, caspase-3 and
caspase-9, while promoting cyclin-D1 and cyclin-B1
expression to inhibit apoptosis in glioma cells (Zhou et al.,
2020). CircRNAs can recruit other RNA species, and affect the
transcriptional silencing, translation and/or decay of specific
mRNAs through the binding of miRNAs (Patop et al., 2019).
Han et al. observed a high expression of hsa_circ_0004662 in
hepatocellular carcinoma, suggesting its important role in the
occurrence and development of hepatocellular carcinoma (Han
et al., 2022). The crosstalk based on shared MREs in RNA
transcript forms a complex network. The expression of
lncRNAs and circRNAs alters the levels of miRNAs, which in
turn affects the expression of their target mRNAs (Yang et al.,
2014; Panda, 2018). Theoretically, the expression level of
lncRNA/circRNA is negatively correlated with that of miRNA,
and our results are highly consistent with this (Gawronski et al.,
2018; Goodall and Wickramasinghe, 2021). Our results suggest
that the down-regulation of miRNAs as suppressors in ceRNAs
leads to up-regulation of the protective factor BMP2 and the
corresponding lncRNAs and circRNAs. Compared with studying
the isolated ceRNA axis, the analysis of a more extensive
interconnected ceRNA network may be closer to physiological
conditions and is conducive to more profound insight into
ceRNA-mediated gene regulation. In our study, the mRNAs,
miRNAs, and lncRNAs in the network showed a significant
correlation with the prognosis of glioma, suggesting that
miRNAs, circRNAs and lncRNAs may affect mRNAs
expression in a combined way involving multiple pathways,
thus affecting the progression and prognosis of the tumor.

Except for activated dendritic cells (aDCs), mast cells, and
NK cells, the remaining 13 immune cells were more abundant in
the high-risk group, which further supported the observation in
the GSEA enrichment analysis that the high-risk group covered
more immune-related biological functions and pathways.
Neutrophils and macrophages play a vital role in regulating
the immune response to inflammation in cancer (Galdiero et al.,
2013). The presence of neutrophils at melanoma ulcer sites is
strongly associated with the cell proliferation at these sites,
which is associated with poor prognosis (Antonio et al.,
2015). When macrophages are exposed to T helper 2 (Th2)
cytokines (such as IL-4 and IL-13), they polarize into M2
macrophages and promote tumor growth, while tumor-
associated macrophages (TAMs) are mainly characterized by
M2 macrophages (Galdiero et al., 2013).

Hambardzumyan et al. found that TAMs interact with tumor
cells, providing a conducive microenvironment that allows the
tumor to escape from immune detection, thereby promoting the
proliferation and metastasis of gliomas (Hambardzumyan et al.,
2016). Plasmacytoid dendritic cells (pDCs) are responsible for

creating an immunosuppressive microenvironment in various
tumors (Vermi et al., 2011). Peritoneal pDCs infiltration may
represent an immune pathogenic pathogen microenvironment
and can be used to predict poor prognosis in patients
undergoing therapeutic profiling for intrahepatic
cholangiocarcinoma (Hu et al., 2020). The above analyses
suggest that the poor prognosis of high-risk groups may be
closely related to the tumor immunosuppressive environment
generated by these immune cells. According to previous reports,
IDH1 mutation is common in many malignant tumors, such as
glioma, acute myeloid leukemia, thyroid cancer and chondroma
(Murugan et al., 2010; Amary et al., 2011; Losman et al., 2013;
Bai et al., 2016). Studies have shown that mutation in the IDH1
gene, especially the R132H mutation, can promote NK cell
recruitment through CX3CL1/CX3CR1 chemotherapy and
are associated with a better prognosis in gliomas (Ren et al.,
2019). This finding suggests that NK cells can be enriched in the
IDH1 mutant group, suggesting a good prognosis for glioma,
which coincides with our results. Furthermore, this may explain
why NK cells were negatively correlated with risk score in our
study. BMP2 gene was expressed more in the IDH1 mutant
group. Blood circulating NK cells express type I and type II BMP
receptors, BMP-2 and BMP-6 ligands, which mediate the
signaling of the BMP family members (Robson et al., 2014).
The results of the study by Robson et al. showed that the
inhibition of BMP signal could effectively inhibit the effect or
function of NK cells, providing a new idea for immunotherapy
to kill tumor cells (Robson et al., 2014). Through the above
studies, we speculate that the better prognosis of patients with
IDH1 mutation is due to the fact that BMP signaling pathway
can stimulate the effect or function of NK cells.

As the results show, our model has excellent capabilities in
predicting the prognosis of patients with glioma and guiding
clinical treatment. However, the research is not perfect and still
has numerous limitations. For example, the difference in protein
expression of APOBEC3C is still not supported by IHC images
obtained based on experiments. Moreover, this study did not
combine basic experiments to verify the results of the study. Still,
it only used the results of others to explain and further speculate
on our results rationally. Even if limited by these shortcomings,
the rich mechanism discussion results may provide new
directions for follow-up research.
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Supplementary Figure S1 | Difference analysis results of IRGs from the TCGA
cohort. (A)Heatmap showing the expression levels of the top 100 DE-IRGs in glioma
and normal tissues. (B) Volcano plot showing the expression status of all IRGs. The
red/black/green dots represent up-regulated genes/genes with no significant
difference/down-regulated genes, respectively.

Supplementary Figure S2 | Difference analysis results of IRGs from the
GSE108474 cohort. (A) Heatmap showing the expression levels of the top
100 DE-IRGs in glioma and normal tissues. (B) Volcano plot showing the
expression status of all IRGs. The red/ black/green dots represent up-regulated
genes/genes with no significant difference/down-regulated genes, respectively.

Supplementary Figure S3 | Difference analysis results of IRGs from the GSE4290
cohort. (A)Heatmap showing the expression levels of the top 100 DE-IRGs in glioma
and normal tissues. (B) Volcano plot showing the expression status of all IRGs. The

red/black/green dots represent up-regulated genes/genes with no significant
difference/down-regulated genes, respectively.

Supplementary Figure S4 | PR-DE-IRGs shared by the TCGA, CGGA, GSE4412,
and GSE43378 cohorts. (A) Venn diagram showing the overlapping process of PR-
DE-IRGs from 4 cohorts. (B–D) Forest plot showing the univariate Cox regression
analysis results of 15 PR-DE-IRGs from CGGA, GSE4412, and GSE43378 cohorts,
respectively.

Supplementary Figure S5 | Survival curves of 15 PR-DE-IRGs from the CGGA
cohort.

Supplementary Figure S6 | Survival curves of 15 PR-DE-IRGs from the GSE4412
cohort.

Supplementary Figure S7 | Survival curves of 15 PR-DE-IRGs from the GSE43378
cohort.

Supplementary Figure S8 | The process of determining 5 PR-DE-IRGs and
corresponding coefficients based on the optimal penalty parameter (λ) via Lasso
regression. (A) The penalty coefficient was utilized tominimize themean square error
of the model. (B) LASSO regression model profile for the 5 selected PR-DE-IRGs.

Supplementary Figure S9 | PCA and tSNE dot plots based on the training, testing,
whole, CGGA, GSE4412, and GSE43378 sets.

Supplementary Figure S10 | Corresponding analysis results of 10 screened
lncRNAs. (A–D) Correlation and difference analysis results of TUG1, LINC00689,
NNT-AS1, and ZEB1-AS1 upstream of hsa-miR-365a-3p. (E,F) Correlation and
difference analysis results of SNHG16 and AL590666.2 upstream of hsa-let-7e-5p.
(G–J) Correlation and difference analysis results of PXN-AS1, ZEB1-AS1, TUG1,
and NNT-AS1 upstream of hsa-miR-98-5p. (K) Kaplan-Meier survival curves of
TUG1, LINC00689, NNT-AS1, ZEB1-AS1, SNHG16, AL590666.2, and PXN-AS1.

Supplementary Figure S11 | Construction of the regulatory network consisting of
circRNAs, miRNAs, and BMP2. (A) Obtaining common miRNAs by Venn diagram.
(B,C) Differential expression results of hsa-miR-129-5p and hsa-miR-381-3p based
on GSE138764 set and TCGA set, respectively. (D,E) Kaplan-Meier survival curves
for hsa-miR-129-5p and hsa-miR-381-3p based on the TCGA set, respectively.
(F,G) Obtaining common circRNAs from 269 DE-circRNAs of the GSE165926 set
and 6618/3647 circRNAs upstream of hsa-miR-129-5p/hsa-miR-381-3p predicted
by starBase, respectively. (H)Differential expression results of 12 common circRNAs
based on GSE165926 set. (I) The regulatory network consisting of
hsa_circ_0004662/hsa_circ_0007548, hsa-miR-129-5p and BMP2. *p < 0.05;
**p < 0.01; ***p < 0.001.
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