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model and devised a methodology that encompasses the dynamic behaviors of each in-
dividual, thereby explicitly capturing the count and spatial distribution of infected in-
dividuals with varying symptoms at distinct time points. Our model also permits the
evaluation of diverse prevention and control measures. Based on our findings, the wide-

Keywords: B . . . . .
COVID-19 spread employment of nucleic acid testing and the implementation of quarantine mea-
Agent-based method sures for positive cases and their close contacts in China have yielded remarkable
Antibody dynamics outcomes in curtailing a less transmissible yet more virulent strain; however, they may
Epidemic prediction prove inadequate against highly transmissible and less virulent variants. Additionally, our
Targeted epidemic-control measures model excels in its ability to trace back to the initial infected case (patient zero) through
Epidemiological investigation early epidemic patterns. Ultimately, our model extends the frontiers of traditional epide-
miological simulation methodologies and offers an alternative approach to epidemic
modeling.
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1. Introduction

The COVID-19 pandemic has exerted profound adverse effects on worldwide public health security and economic stability.
The virus exhibits ongoing evolution, as evidenced by clinical data revealing its heightened transmissibility (He et al., 2021;
Tian et al.,, 2022). This poses a substantial obstacle to public prevention strategies, particularly within jurisdictions that
espouse dynamic zero policies. Recent outbreaks attributable to the Delta variant in Xi'an, China, and the Omicron variant in
Tianjin have starkly illustrated the deleterious impact of the virus on societal and economic operations within a compressed
timeframe of several weeks to a month (Taylor, 2022).

Mathematical models have proven to be valuable tools for predicting and assessing the trends of the COVID-19 epidemic.
Currently, two primary modeling approaches are employed in forecasting the spread of the disease: ordinary differential
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equation (ODE) models, specifically compartment models, and agent-based models. ODE models can be categorized into
various subtypes, such as SIR (susceptible, infected, recovered) (Dos Santos et al., 2021; Roberto Telles et al., 2021), SEIR
(susceptible, exposed, infected, recovered) (Godio et al., 2020), and SEIQR (susceptible, exposed, infected, quarantined,
recovered) (Mishra et al., 2020), depending on the specific compartments included. These models exhibit exceptional ca-
pabilities in fitting empirical data and making predictions. In fact, as early as 2017, researchers extended the SIR model by
incorporating asymptomatic individuals and seasonal factors (Tang et al., 2017). Since the emergence of the COVID-19
outbreak, researchers have continuously enhanced these traditional models. For instance, Lai Yingcheng proposed the
SHIJR model, which introduces a time delay function to improve the accuracy of disease progression prediction (Long et al.,
2020; Zhai et al., 2021), while Wang Hao and Jiang Jifa developed a stochastic discrete-time SIR model (Schreiber et al., 2021).
Additionally, researchers have also made efforts to account for unreported cases (Griette et al., 2019, 2021). Nonetheless, ODE-
based compartment models possess certain limitations, particularly their inability to consider system heterogeneity (Chowell
et al., 2016). Although they demonstrate satisfactory fitting outcomes, employing these models with early-stage data often
results in underestimated initial susceptible population figures. Moreover, due to their failure to incorporate geographical
distribution and individual contact characteristics, these models lack precision in predicting the spatial dynamics of epidemic
development (Afzal et al., 2022; Chowell et al., 2016).

The agent-based model is another valuable tool employed for predicting the spread of COVID-19, benefiting from its ability
to leverage rapid computational capabilities. This model focuses on examining the probability of incidence among individual
agents, thereby providing a comprehensive understanding of epidemic characteristics across the entire population (Banisch,
2016; Wilensky & Rand, 2010). In contrast to traditional ODE models, the agent-based model offers a more accurate repre-
sentation of system heterogeneity. These approaches have found widespread applications in diverse fields such as supply
chain optimization (Macal et al.), the decline of ancient civilizations (Kohler et al., 2005), and dynamic modeling of the
immune system (Folcik et al., 2007). Following the outbreak of COVID-19, numerous researchers have adopted the agent-
based approach for prediction, prevention, and control of the disease. For instance, Hoertel et al. proposed an agent-based
model incorporating random perturbations to simulate the early stages of COVID-19 in France (Hoertel et al., 2020). Hinch
et al. developed “OpenABM-Covid19,” an agent-based framework for studying non-pharmaceutical interventions against
COVID-19 in the UK (Hinch et al., 2021). Erik Cuevas introduced a model that assesses the transmission risk by considering
changes in individual locations (Cuevas, 2020).

Meanwhile, there has been a growing recognition of the impact of fluctuating population immunity on the development of
the epidemic, leading many traditional compartment models to incorporate factors related to the temporal dynamics of
immunity (Crellen et al., 2021; Ghosh et al., 2022; Pérez-Alds et al., 2022). Accounting for the temporal changes in immunity
allows for a more realistic depiction of the evolving susceptible population over time, thus enabling more reliable predictions
of epidemic trends. By incorporating information on vaccination and secondary infection into an age-structured SEIRS model
of SARS-CoV-2 transmission, Anass Bouchnita et al. utilized the model to provide scenario projections for public health
agencies in Texas and the COVID-19 Scenario Modeling Hub as new Omicron subvariants emerged (Bouchnita et al., 2023).
However, population immunity is directly linked to antibody levels, and the decline of these antibody levels does not exhibit a
simple mathematical relationship with time. Therefore, these models still face significant limitations when it comes to
accurately predicting localized variations in the epidemic.

Drawing upon previous research achievements, we incorporated valuable insights to inform our current study. We have
developed a continuous Markov chain model that leverages individual characteristics to simulate the spatiotemporal
development of epidemics (Xu et al., 2022). Our model encompasses three primary features. Firstly, we incorporate individual
contact information, guided by extensive big data, to predict epidemics more effectively. Secondly, we account for time-
varying infection probabilities for individuals. Lastly, we consider epidemic resurgence by incorporating individual age and
the decay of immunity following natural infection or vaccination. Building upon our initial model, we have made significant
improvements to reflect the evolving epidemic landscape and introduce new functionalities. These enhancements primarily
encompass two aspects. Firstly, we have integrated the capability to trace the origin of the epidemic and potential trans-
mission chains based on current disease incidence. Secondly, to enhance the predictive accuracy of our model, we have
integrated information from individual antibodies and viruses into the overarching population network, drawing upon our
prior research findings (Xu et al., 2022, 2023a). By explicitly incorporating antibody dynamics for each individual, we model
the gradual decline in antibody levels and simulate infection risk deterministically based on the interaction between anti-
bodies and viruses. This refinement allows us to more accurately predict and evaluate disease progression and transmission
risks for both individual cases and population dynamics.

Since the late spring of 2020, China has implemented targeted control measures and a dynamic zero policy as part of its
epidemic prevention and control strategies. This approach involves the identification and isolation of positive patients and
their close contacts within susceptible infection groups, utilizing nucleic acid tests to promptly detect positive cases and
effectively disrupt transmission chains (Liang et al., 2022). Initially, this strategy exhibited favorable outcomes in terms of
cost-effectiveness during 2020 and 2021. However, its effectiveness has gradually waned, particularly with the emergence of
the omicron variant. Consequently, since March 1st, 2022, COVID-19 has spread rapidly across mainland China, leading more
local governments to abandon precision-based prevention and control policies aimed at complete infection containment. The
objective of this study is to establish a precise mathematical model capable of predicting the local development of the
epidemic, while evaluating the efficacy of different prevention policies currently implemented in China, including lockdowns,
quarantine measures for positive cases, and the dynamic zero approach. Furthermore, we seek to explore the effects of these
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various prevention strategies and elucidate the reasons behind the diminished efficiency of isolating close contacts in the
context of dynamic zero initiatives.

2. Methods
2.1. An overview of our agent-based model

Our agent-based model consists of two main components. The first part, as detailed in Section 2.2, focuses on the dynamic
changes in viral load after infection for each individual. Taking into account the interaction between virus and antibodies, the
invasion of the virus leads to an increase in the concentration of neutralizing antibodies in the body. The antibodies ultimately
neutralize and clear the virus, as illustrated in Fig. 1.

The second part pertains to the interactions among individuals, as described in Section 2.3. Each infected individual re-
leases virus particles into the environment, with the number of particles released proportional to the viral load in their body.
Simultaneously, each individual may inhale virus particles released by infected individuals. The amount of inhaled particles is
proportional to the viral load released into the environment and the frequency of contact between individuals.

By employing this agent-based model, individual infection events can give rise to group infection events. When a virus
invades an individual in the population, under the condition of low antibody concentration, the virus has an opportunity to
rapidly proliferate. The infected individual also releases virus particles into the environment, leading to the infection of in-
dividuals in close contact. However, transmission is not guaranteed. When individuals in contact have high levels of anti-
bodies, the interaction between the virus and antibodies prevents potential infections, as high antibody concentrations
rapidly neutralize the invading virus. Such individuals are not categorized as susceptible in our traditional mathematical
models. Nevertheless, our model's advantage lies in its ability to quantitatively describe the dynamics of antibodies, thereby
capturing changes in individual susceptibility over time. The aggregation of contact frequencies for each person yields the
contact matrix for the entire population.

Control measures exert inhibitory effects on population infections by selectively altering the contact matrix. For example,
implementing a large-scale distancing policy that increases social distance and reduces social interactions is equivalent to
proportionally reducing the values of each element in the distance contact matrix. However, such control measures are not
absolute; otherwise, our daily lives would be severely disrupted. Thus, reducing contact frequencies close to zero is chal-
lenging. This concept is discussed in pseudocode in Section 2.4.1. We can also simulate the occurrence of isolation. When a
person is isolated, all elements in the contact matrix related to this individual are set to zero during the isolation period,
effectively severing all connections with the external environment. This is described in the pseudocode in Section 2.4.2.
Similarly, we can simulate more extensive control measures, such as isolating confirmed cases and their close contacts, as
discussed in Section 2.4.3. In this case, not only do we set the contact vector of the infected individual to zero, but we also set
the contact matrix of the population in close contact with them to zero. Specific examples of these measures are provided in
Fig. 1. The relevant contact matrices return to their original states after the completion of isolation.

2.2. Modeling virus-antibody dynamics at individual level

A simple mathematical representation of the immune response is described in the diagram below.

In Fig. 2, x denotes the amount of antibody-antigen (virus) complex, y denotes the total number of antibodies, and z
denotes the number of viruses. Six processes are displayed in our model. The first reaction represents the proliferation or the
replication of virus with a reaction constant o«. The second reaction represents the binding reaction between virus and
antibody, with a forward reaction constant § and reverse constant vy. The third reaction represents the removal of antibody-
virus complex with a reaction constant 3. The fourth reaction represents the induction of new antibody by the antibody-virus
complex with a kinetic constant e. In immunology, those virus-antibody complexes are on the surface of B-cells since the
antibody are initially produced by B-cells and will attach to the plasma membrane of B cells. Those complexes would further
bind to the helper cells because the antibody has another structure binding region toward those receptors. Those helper cells
will present the antigen part, which is a virus in this case, to the T-cell. The physical placement should be B-cells bind to those
helper cells and further present themselves close to T-cells. The T-cells will handle those antigen substances; if those sub-
stances are not self-originated, they would secret signal molecules to promote the proliferation or the division of B-cells who
attached on them. Therefore, B-cell finally get proliferated, so are the antibodies generated by their B-cell. The fifth reaction
represents the degradation of virus with a constant ¢. The sixth reaction represents the degradation of antibody with a rate
constant . p denotes antigen-like substances in the environment whose concentration is supposed to be constant; q denotes
antibodies bound to antigen-like substances in the environment. Reaction 7 represents the binding reaction between anti-
body and environmental antigenic substances with a forward constant 6 and a reverse constant A. Reaction 8 represents the
remove of antibody-antigen complex q with a reaction rate 3 which is supposed to be same as the remove of antibody-virus
complex. Reaction 9 represents the induction of new antibody by q with rate e. Therefore, a set of equations is derived as
following:

1153



Z. Xu, J. Song, W. Liu et al. Infectious Disease Modelling 8 (2023) 1151-1168

Virus Dynamics in Each Agent

ssiboty dasic
e

) NG ‘(m Prevention Strategy
| ”

B W ¥ . s e : =
V{ Contact Matrix o o “ on o8
[>—— I

scontrol strategy

0.24f 0% 0.6 0% I
(F<1)

Fig. 1. An illustration of our agent-based model.

dx

Q- Byz—yx—0x, (1
dy

a- YX—Byz+ex—my—0py+Ag+eq, 2)
dz

Q- YX—Byz—Cz+0z, (3)
dp

dq

Frin Opy—hq—2dq. (5)

Based on the model described by Equations (1)—(3), it can be observed that the concentration of antibodies will eventually
diminish to zero. This decay is attributed to the presence of a decay coefficient, denoted as ¢, which ensures that the anti-
bodies fade away within a short time frame. However, in contrast to this observation, certain antibodies are capable of
persisting in the human body for extended periods, offering lifelong protection. This phenomenon forms the fundamental
basis for vaccine development. Immunologists commonly refer to these long-lasting B-cells or T-cells as “memory cells”.
Although empirical studies have confirmed that these “memory cells” are distinct subclasses of immune cells (Inoue et al.,
2018; Kurosaki et al., 2015), they exhibit similar half-lives to normal CD8" cells (van den Berg et al., 2021). Consequently,
the sustained antibody levels from “memory cells” can be attributed to a continuous stimulation triggering the proliferation
of these memory cells. We propose that this stimulation arises from the presence of environmental antigen-like substances.
These substances, which can be derived from various sources such as food, air, or even endogenous factors, exhibit weak
binding affinity with neutralizing antibodies. Termed “environmental antigen-like substances”, they elicit weak signals upon
presentation to T-cells, thereby promoting the proliferation of memory B-cells or T-cells. Due to their weak binding and the
close similarity of protein sequences between these substances and our own body, their antigenicity is relatively low.
Accordingly, the secreted stimulation signals by T-cells remain correspondingly weak. A dynamic equilibrium is established at
a certain time point where the decay of memory cells is counterbalanced by the generation of new memory cells. A
comprehensive elucidation of the virus-antibody interaction model can be found in our previous publication (Xu, Wei, Zhang,
& et al, 2023).

2.3. Modeling infections at population level

We proceed to incorporate the virus-antibody interaction within our agent-based model. In our previous study (Xu et al.,
2022), we introduced a continuous Markov-chain model for simulating epidemics. This model considers a population con-
sisting of N individuals, each exhibiting varying contact probabilities with others. The probability of infection is directly

proportional to the contact probability, with the infection probability being equal to the contact probability itself. Notably, the
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Fig. 2. A diagram of host-virus interaction.

contact probability between an individual and themselves is assigned a value of zero. Consequently, a matrix of size N x N is
constructed, exhibiting the following properties:

Minteraction (i7 i): 0 (6)

Minteraction (i7j) = Minteraction (jv i) (7)

where Mjy¢eraction (i,j) stands for the interaction possibility between individual i and individual j. An accurate contact matrix
can be obtained by tracking the individual contact probability in a natural population group. For example, each person's
mobile phone can be recorded to obtain the population contact matrix within a particular time phase. The contact matrix is
temporal and dynamic, which means it changes over time. However, it is difficult to obtain such accurate data at present.
Therefore, the contact frequency is determined according to the relative distance between individuals, as shown in Equation
(11).

.. . c2
Minteraction (1,J) = min (Cl ) W) (8)

where c1 is the maximal contact possibility between agent i and agent j. In particular, the values of c1, c2, and n are pre-
liminarily determined according to the initial reproduction constant Ry of the virus. According to the contact matrix, we can
further determine the number of environmental invasive viruses received by a specific individual in a specific period of time.

9 (zj) :f(zj> *Minteraction (1,J);

f(z)=nz 9)

¢(z;) represents the inhaled virus of individual i from infected people j. f(z;) represents the overall released virus from
infected person j. f(z;) is positive related to the virus loading z; in corresponding infected agent with a correlation factor p.

An extensive set of ordinary differential equations is further constructed. Assuming that the number of individuals in the
population is N, the antibody virus complex in individual i is represented as x;, the concentration of antibodies is represented
as y;, virus concentration is represented as z;, environmental antigenic substances concentration is represented as p; and the
antibody-environment antigen complex is represented as g;.

dx;
q = iz (10)
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dv:
%: YXi—Byizi+exi—nyi—O0piyi+Agi+eq; (11)
dz. n

q = a-Byizi-Citezi + jzzl(ﬂ(zj) (12)
] (zj) =M ZjMinteraction (i) (13)
dpi _

dr~° (14)
d .

£= 0pyi—Aq;i—0q; (15)
a=0g(1—p)f (16)
=t /(1-0) (17)

This system of equations contains 5 N variables, where the last term in Equation (12)21'7:1<p(zj) represents the overall
number of viruses transmitted to this individual by other individuals in the whole population. We can generate random
kinetic parameters that conform to the real population distribution through the first step of simulation. For such a large
system of ordinary differential equations, we can solve it quickly by increasing the step size.

In order to interpret the simulation outcomes in terms of individual morbidity and total population morbidity, we
establish distinct thresholds to identify infections presenting specific symptoms and compute the corresponding infected
populations exhibiting such symptoms. Specifically, we introduce a threshold for nucleic acid testing to distinguish between
positive and negative cases. When the value exceeds this threshold, an individual will yield a positive nucleic acid test result.
We define this threshold as 10% Moreover, we categorize asymptomatic patients within the range of 10% to 5104, individuals
with mild symptoms within the range of 5¥10% to 5*10°, and severe cases within the range of 5*10° to co. The selection of
these thresholds is based on the composition of each symptom during different stages of the epidemic. Notably, the pro-
portion of asymptomatic patients gradually rises to over 95% during Omicron infection, while the prevalence of severe and
mild cases steadily declines over time. We acknowledge that the selection of these thresholds is reasonable but necessitates
systematic fitting. Different criteria exist for defining asymptomatic cases in clinical practice; in this study, we define
asymptomatic patients as those without pneumonia. By examining the correlation between virus quantity within host cells
and exhibited symptoms, we can obtain comprehensive insights into the characteristic evolution of specific groups during the
epidemic.

2.4. Estimating the effects of different prevention strategies

2.4.1. Lock-down strategy

The main components of the lock-down measures include reducing social interactions and increasing social distancing. In
our model, we multiply the population interaction matrix with a factor f which ranges from 0 to 1 to mimic the lock-down
effect. The contact frequency of the whole population engages a non-discriminatory declination. The stricter the policy, the
smaller the f value. Specific examples can be illustrated in Fig. 1, where the implementation of lock-down measures results in
an equal decrease in the frequency of contact among individuals A, B, C, and D.

Minteraction :f*Minteracn'on (18)

2.4.2. Extensive nucleic acid testing and quarantine positive cases

The primary measure of this approach lies in promptly identifying positive cases, and mass nucleic acid testing is the most
effective means of detecting infected individuals. When an individual's viral load exceeds the threshold for nucleic acid
testing, they will be screened and appropriate isolation measures will be implemented. During the isolation period (14 days),
the values associated with their contacts in the population's contact matrix become zero. After the isolation period concludes,
the contact matrix returns to its initial state. Specific examples can be referred to in Fig. 1.

The pseudocodes are presented as follows:

for i = 1:M (M represents the overall steps)

for j = 1:N (N represents the overall number of people in the population)

X = (BYajZaj) — YRaj) — ij) At+ Xij)

Vi) = (Raj) = BYajZaj) + eXaj) — Waj) — 0PajYaj + Maj + edaj)) A+ Yij)
if ;) > C (C is the qPCR threshold)
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Migteraction ;) = 0 for 14 days
restore to originalM,serqctionafter 14 days
end
Ziy) = (r¥ap — BYapZag) — Zap + 220y + YN 0(zacj)At+ 2,
(P(Z("J')) =K ZjMinteracn'on (i.J)

Pi1j) = Pij)

Q1) = OPajYij) — Maj) — )AL+ Gij)
End

end

X(ij) represents the antibody-virus complex level of individual j at i-th time point. y;; represents the antibody level of
individual j at i-th time point. z;; represents the virus level of individual j at i-th time point. p;;) represents the environ-
mental antigen level of individual j at i-th time point. q; ;) represents the antibody-environmental antigen complex level of
individual j at i-th time point.

2.4.3. Extensive nucleic acid testing and quarantine both positive cases and their close contacts
This approach represents the specific implementation strategy of China's dynamic zero-covid policy and is also known as
China's targeted prevention and control strategy. It also requires mass nucleic acid testing to identify positive cases. Once a
positive case is detected, not only does the individual undergo a 14-day isolation period, but also those who have been in
contact with them are required to undergo a 14-day isolation period. After the isolation period ends, if the isolated individuals
test negative in nucleic acid testing, the isolation measures are lifted. If they test positive, an additional 14-day isolation
period is imposed. In our model, this approach is reflected by setting the contact frequency to zero for the overall contact
matrix involving positive cases and their close contacts, and restoring it to its original state after the isolation measures are
lifted. Specific examples are presented in Fig. 1.
The pseudocodes are presented as follows:
for i = 1:M (M represents the overall steps)
for j = 1:N (N represents the overall number of people in the population)
Xig) = (BYajZaj) — v¥aj) — 9¥j)At+ X
Yang) = (VRaj) = BYajZiaj) + eXaj) — Waj) — 0Paj¥aj) + Maj) + eduj)At+ Vi)
if z;j, > C(C is the nucleic acid testing threshold)
Minteraction(.:) = 0 for 14 days
if Minteraction(ia m) ~= 0
Minteraction(M,:) = 0 for 14 days
end
restore to originalMy erqctionafter 14 days
end
Zii1j) = (&g — BVajZaj) — @aj + 924 + Lfae@ag))At+ 24
‘P(Z(kj)> =H szinterac[ion (i.7)

Pi+1j) = Pij)

Q1) = OPayYig) — My — i) At+ 4y
end

end

X(ij) represents the antibody-virus complex level of individual j at i-th time point. y;; represents the antibody level of in-
dividual j at i-th time point. z; ;, represents the virus level of individual j at i-th time point. p;;, represents the environmental
antigen level of individual j at i-th time point. q; j, represents the antibody-environmental antigen complex level of individual
j at i-th time point.

2.5. Tracing the epidemic origin based on current infection information

An important task in epidemic prevention and control is epidemiological investigation, which aims to effectively identify
the source of infection and the transmission chain. Traditional epidemiological investigations only focus on tracing close and
secondary contacts, identifying the original case based on the contact matrix. This retrospective approach does not consider
the influence of population immunity on the infection. By providing contact information of the population, our model can
better conduct the investigation of the disease source.

The overall idea of our algorithm is to globally traverse all individuals in a population consisting of N individuals. The index
case could be any individual from 1 to N. The outbreak generated by a specific initial case i will lead to a specific distribution of
the epidemic within a time period from 1 to M. By comparing this epidemic distribution with the actual distribution, the
similarity reflects the probability that individual i is the index case, which we represent as cos_similarity (S(i,j), Sarger) in our
pseudocode. Through this approach, we can identify the most likely original case.

We can create a morbidity landscape for the entire population at different time intervals. Each person can be assigned a
value based on their current symptoms. For example, a severe case would be assigned a value of 1, mild symptoms would be
assigned 0.5, asymptomatic infection would be assigned 0.25, and negative cases would be assigned 0. Therefore, a matrix S
can be generated to represent the symptoms of each individual at different time points. S(i,j) represents the symptoms of
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individual i at the j-th time point. The actual epidemic distribution can be represented as S target. We attempted to determine
the probability of each individual becoming the original zero patient. This probability can be represented as a vector P.
The pseudocode is as follows:

for i = 1:N (N is the population size, i = k stands for the individual k is the zero patient)
for j = 1:M (M is overall step sizes or the overall time points)
S(ij) (It can be derived based on Equation (10) to (15))
Pro(ij) = cos_similarity(S(ij), Starget)
end
P(i) = Max(Pro(i,:)).
end

cos_similarity (S(i,j), Starger) Stands for the cosine similarity between two vectors. P(i) stands for the probability of individual i
to become original zero patient.

3. Results
3.1. Parameter estimation based on clinical data

In previous studies, we presented a theoretical framework elucidating the dynamics of antibodies and proposed a
methodology to estimate the duration of antibody-mediated protection based on this model (Xu, Wei, Zhang, & et al, 2023).
By analyzing data obtained from clinical experiments, we successfully calibrated specific parameters to capture the temporal
characteristics of antibodies in distinct populations. An important characteristic of our model is the absence of units asso-
ciated with these parameters, which might pose a challenge for some readers. However, we deliberately omitted units as they
are not essential for simulation purposes. Instead, what remains crucial is the dynamic interplay between antibodies and the
viral agent. Moreover, obtaining precise units directly from experimental data is not feasible. For instance, although the CT
value in nucleic acid testing provides an indication of viral load, it is arduous to quantitatively determine the actual viral
burden within the host organism solely based on the CT value. The interaction between antibodies and viruses exhibits a
complex and multifaceted binding pattern. Furthermore, determining the absolute concentration of antibodies at different
time points is challenging since most experimental data are reported in terms of antibody titer.

The principal objective of our model is to faithfully simulate the reciprocal dynamics between antibodies and viruses,
thereby obviating the need to incorporate units within the mathematical framework. Through manipulation of diverse pa-
rameters, particularly the mean and variance, we can capture the inherent characteristics governing the dynamics of anti-
bodies within a given population. By comparing empirical statistical data, we can estimate the distribution of antibody
dynamics parameters across the entire population. Although these parameters lack immediate physical interpretation, they
provide a more precise depiction of waning immunity and the potential for reinfection across varying temporal contexts in
distinct individuals.

We postulate a constant concentration of the environmental antigenic substance in our model. The key variation arises
from inter-individual differences in the binding capacity of antibodies (B). Furthermore, the binding kinetics () between the
environmental antigenic substance and antibodies also exhibit variability across individuals. Fig. 3A visually depicts the
population-level performance characteristics of antibody kinetics based on these parameters. A longitudinal seroprevalence
study involving 3217 healthcare workers in the UK (Lumley et al., 2021) provided empirical evidence of declining levels of IgG
antibodies targeting the SARS-CoV-2 nucleocapsid within a few months. As displayed in Fig. 3A, a substantial decrease in IgG
levels becomes apparent following their peak attainment. However, this decline manifests in a non-linear fashion, with the
rate of descent gradually diminishing before stabilizing approximately 200 days post-infection. Remarkably, these simulation
outcomes closely align with clinical observations indicating that IgG levels reach their zenith approximately 20 days following
infection before gradually declining at a decelerating pace over time.

The peak concentration of antibodies is primarily determined by the parameter B, whereas the rate of antibody waning is
mainly governed by 6. Fig. 3A graphically represents the temporal dynamics of population-level antibody levels, while Fig. 3B
illustrates the corresponding changes in overall protective efficacy. Based on our model, we can infer that in the absence of
viral mutation, an initial COVID-19 vaccine efficacy of 100% in a human population (10,000 simulations) would diminish to
97.21% after 100 days, 65.44% after 150 days, 39.28% after 200 days, and 28% after 240 days. The simulation results in Fig. 1B
are broadly consistent with clinical evidence concerning vaccine effectiveness (Chemaitelly et al., 2021; Cohn et al., 2022;
Tartof et al., 2021). A cohort study conducted among US veterans from February 1st to October 1st, 2021, discovered a time-
dependent decline in vaccine effectiveness against infection (VE-I) (P < 0.01), even after adjusting for age, sex, and comor-
bidities. VE-I decreased for all vaccine types, with the most substantial declines observed for Janssen, followed by Pfizer-
BioNTech and Moderna. Specifically, in March, VE-I was 86.4% (95% CI, 85.2—87.6%) for Janssen, 89.2% (95% CI, 88.8—89.6%)
for Moderna, and 86.9% (95% Cl, 86.5—87.3%) for Pfizer-BioNTech. By September, VE-I had dropped to 13.1% (95% CI, 9.2—16.8%)
for Janssen, 58.0% (95% Cl, 56.9—59.1%) for Moderna, and 43.3% (95% CI, 41.9—44.6%) for Pfizer-BioNTech (Cohn et al., 2022). A
retrospective cohort study evaluating the effectiveness of mRNA BNT162b2 vaccine reported a decline in effectiveness against
infections from 88% (95% CI 86—89) during the first month following full vaccination to 47% (43—51) after 5 months. Notably,
among sequenced infections, vaccine effectiveness against delta variant infections remained high during the initial month
after full vaccination (93% [95% CI 85—97]) but decreased to 53% after 4 months (Tartof et al., 2021). Similar trends were
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observed in a cohort study conducted in Qatar (Chemaitelly et al., 2021). Consequently, in subsequent simulations, we will
employ these parameter combinations to investigate the epidemic progression under various prevention and control mea-
sures. Table 1 provides the parameters and initial values of variables.

3.2. Simulation of epidemic development at population level
This study is predicated on four assumptions:

I In this model, individual immunity to certain infectious diseases exhibits heterogeneity. This heterogeneity is captured
by varying B values, which reflect the kinetics of neutralizing antibody binding to the virus. To account for individual
behavior and its impact on epidemic dynamics at the population level, a normal distribution of  values is employed.
Fig. 3Avisualizes the temporal dynamics of population-level antibody levels, while Fig. 5B illustrates the corresponding
3D landscape of population antibody behaviors.

II The introduction of virus mutation factors into the model results in a reduction in virus proliferation capacity (indicated
by a decreasing ¢ value over time) and an increase in virus release (indicated by an increasing ¢(z;) in Equation (13)).
These evolutionary changes may lead to the emergence of viral variants with lower virulence but higher trans-
missibility. Consequently, the replication constant o diminishes over time, while ¢(z;) increases. The model also ac-
counts for the antibody attenuation effect through the antibody degradation constant m. The antibody dynamics
depicted in Fig. 3A reflect these trends.

Il Infections exhibit varying transmission potentials at different time points. An infected individual produces antibodies
and becomes contagious. Equation (9) incorporates f(z;), which represents the overall released virus from infected
person j. The quantity f(z;) captures the transmission potential of an infected individual and is linearly correlated with
the viral load level in the host's body. The virus dynamics across different host bodies are presented in Fig. 5A, showing
highly fluctuating, individualized, and time-dependent patterns.

IV Individuals recover from infection cycles without mortality, thereby maintaining a constant overall population size.

Using the parameter combination proposed in Section 3.1, a group of 1000 individuals was randomly distributed across
four regions based on a specific functional relationship between contact frequency and distance, as explained in our earlier
publication (Ghosh et al., 2022) and defined in Equation (8) of the methodology section. By incorporating individuals' lo-
cations, a population contact matrix was derived, assuming only one individual acted as the initial infected person (patient
zero) at the start time. Two scenarios were simulated based on Equations 10—17 in the methodology section. The first scenario
represents the spread of the epidemic under ideal conditions, assuming no virus mutation over time (Fig. 4A). Supplementary
Video 1A provides temporal and spatial information on all infected individuals. The second scenario approximates real-world
epidemic development, considering the impact of virus mutation. Experimental and statistical evidence has demonstrated
that SARS-CoV-2 is evolving to exhibit lower virulence and higher transmissibility (Alizon & Sofonea, 2021; Lan et al., 2021;
Xu, Wei, Zeng, & et al, 2023). This scenario is depicted in Fig. 4B, with supplementary Video 1B showcasing the temporal and
spatial distribution of infections. In Video 1, asymptomatic infections are depicted by light-colored gray level 0.25, mild
symptom infections by medium-gray level 0.5, and severe cases are represented by dark gray (scale of darkness: 1).

Fig. 5 depicts the landscape of virus dynamics and antibody dynamics. Fig. 5A illustrates the temporal dynamics of virus
dynamics in diverse individuals over a period of 1400 days, while Fig. 5B showcases the antibody dynamics in each individual
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Fig. 3a. the dynamic behavior of antibodies in the overall population through time. (The blue zone around mean curve stands for 95% confidence interval).
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Fig. 3b. The protection performance of antibodies in the overall population through time.

during the same duration. Additionally, Fig. 5C demonstrates the dynamics of virus-antibody interaction in a specific indi-
vidual. Based on observations from Fig. 5A and C, it can be inferred that initial infections consistently manifest high viral loads
in the absence of neutralizing antibodies, leading to a higher proportion of severe cases and a lower proportion of asymp-
tomatic cases in the early stages of the epidemic, as exemplified in Fig. 4B. However, subsequent infections exhibit reduced
fatality and lower viral loads due to the induction of neutralizing antibodies, as indicated in Fig. 3B. This methodology not only
enables the determination of infection onset time and hotspots, but also facilitates quantitative descriptions of transmission
risk and infection severity for each infected individual. In our model, infection symptoms are correlated with viral load within
the host's body, which can be quantified by the quantity of antibody-antigen complexes. We propose several symptom
thresholds, including a low threshold for a positive nucleic acid test (10%), a moderate threshold for mild symptoms (5*10%),
and a high threshold for severe cases (5+*10°). Experimental evidence has revealed a significant positive correlation between
symptoms and in vivo viral content, as manifested by the low cycle threshold (CT) value of viral amplification in severe
patients (Gorzalski et al., 2020; Kim et al., 2020).

The severity of infection diminishes progressively over time, influenced by two contributing factors. Firstly, the declining
efficacy of virus proliferation, characterized by a reduction in virus virulence as indicated by the decreasing o value in our
model. Secondly, the augmented presence of antibodies within the population, leading to subsequent infections essentially
being reinfections with lower peak virus loads. Consequently, a greater proportion of asymptomatic cases emerges owing to
the heightened levels of antibodies, as depicted in Fig. 4B.

3.3. Evaluation of the efficiency of different epidemic prevention strategies

Utilizing the proposed model, we conducted an assessment of the impact associated with various epidemic prevention
strategies. In order to simulate epidemic scenarios under distinct prevention approaches, we employed a model that closely
emulates real-world conditions. Specifically, our model incorporates a dynamic virus proliferation parameter a, as elucidated
in section 2.3, which exhibits a progressively decreasing trend over time. Furthermore, considering pertinent clinical data, we
accounted for the fluctuating transmission parameter and the heightened formation of virus particles over time. Conse-
quently, we evaluated the efficacy of three standardized epidemic prevention methods.

The first strategy entails the implementation of enhanced social distancing measures along with a reduction in social
contact frequency. This can be achieved through multifarious measures such as widespread usage of masks and the
enforcement of lockdown policies. The second strategy involves the widespread utilization of nucleic acid testing on a large
scale, subsequently followed by the isolation of individuals who test positive. The third strategy encompasses the deployment
of quantitative polymerase chain reaction (qPCR) tests for all individuals residing in high-risk areas, followed by the sub-
sequent isolation of individuals who test positive, as well as their close contacts. This particular approach has been referred to
as “targeted control” by the Chinese government.

We conducted a simulation of disease onset within a small population consisting of 1000 individuals over a span of 1400
days, specifically focusing on the absence of vaccination and the subsequent increase in antibodies solely through natural
infection. The outbreak was initiated by patient 0 on the first day, and for the initial six weeks, the number of infected in-
dividuals remained relatively low. Various prevention measures were implemented starting from the seventh week onwards.

The first prevention strategy involved the reduction of social frequency by adjusting the overall contact matrix to 20% of its
original value. It is worth noting that a smaller value could be employed for a more stringent lockdown policy; however, this
would come with additional side effects. The efficacy of this strategy is illustrated in Fig. 6A, while the dynamic geographic
epidemic distribution can be observed in Video 2. It is important to highlight that while reducing social distance and contact
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Table 1
parameters and initial values of variables in this model.
Parameter Value Description Source
o Constant of reaction 1 No need
B ~N (1077, Forward reaction constant of reaction 2 Estimated based on initial values from (Xu et al., 2023a,
2%1079) 2023b)
Y 10714 Reverse reaction constant of reaction 2 (Xu et al., 2023a, 2023b)
d 0.1 Constant of reaction 3&8 Estimated
€ 2 Constant of reaction 4&9 Xu et al (2023a, 2023b)
[ 1 Constant of reaction 5 Xu et al (2023a, 2023b)
Ns 0.02 Constant of reaction 6 Xu et al (2023a, 2023b)
0 ~N (1.8*10°8, Forward reaction constant of reaction 7 Estimated based on initial values from (Xu, Wei, Zhang,
1*1079) & et al, 2023)
A 10714 Reverse reaction constant of reaction 7 Xu et al (2023a, 2023b)
n Cofactor between released virus and the virus loading in the host No need
p 5%107° Time-dependent declination factor of « (represents declining Estimated
virulence through time)
a 4%10~* Time-dependent increase factor of u(represents increasing Estimated
transmission through time)
do i 1 Initial value of o Xu et al (2023a, 2023b)
to 1077 Initial value of p Estimated
Xo 0 Initial value of antibody-virus complex in each agent Xu et al (20234, 2023b)
Yo 10% Initial value of antibody level in each agent Xu et al (2023a, 2023b)
Zg 0 Initial value of virus level in each agent Xu et al (2023a, 2023b)

frequency can effectively control the epidemic, the strategy does pose negative consequences on both the economy and social
life. Furthermore, its success is contingent upon the strictness of the lockdown policy.

Fig. 6A demonstrates that reducing contact frequency by 80% through a lockdown policy can effectively control the
epidemic for the initial 300 days. However, as the virus's transmission capacity increases, a more stringent lockdown becomes
necessary to prevent a widespread outbreak. A complete lockdown accompanied by population quarantine theoretically has
the potential to eliminate any mutant strains; however, its implementation is impractical. Additionally, the risk of imported
cases must be taken into consideration.

Furthermore, Fig. 6A indicates that the effectiveness of lockdown measures varies depending on the specific mutant
strains. For high-transmission strains, preventive and control measures such as lockdowns and mask-wearing may delay the
large-scale outbreak of the epidemic. However, they are unable to alter the overall trend of the outbreak or reduce the peak
number of infections. Considering the costs associated with lockdown measures, it is evident that such an approach is not a
feasible long-term solution.

The second policy for epidemic prevention involves implementing large-scale nucleic acid tests and isolating individuals
who test positive. In our model, we simulate this strategy by setting the contact frequency to zero for a duration of 14 days
when the virus concentration in a host exceeds 10%. If the virus concentration drops below this threshold after two weeks, the
original contact matrix is reinstated, indicating a negative nucleic test result. However, if the threshold is not reached, an
additional 14-day isolation period is implemented. It is crucial to continuously monitor and evaluate the virus loading amount
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Fig. 4a. The development of epidemic in ideal condition (n = 1000).
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Fig. 4b. The development of epidemic in actual case (n = 1000).

within each individual through frequent nucleic acid tests. The effectiveness of this strategy is illustrated in Fig. 6B, while the
dynamic geographic epidemic distribution is presented in Video 3.

This prevention strategy solely quarantines individuals who test positive and is comparatively less costly and more feasible
to implement. Many countries have adopted this approach in their efforts to combat SARS-CoV-2. Nonetheless, as depicted in
Fig. 6B, the impact of prevention and control measures is limited. Even for variants with a lower transmission capacity, this
measure does not effectively suppress the spread of the epidemic.

The third policy for epidemic prevention involves conducting nucleic acid tests for individuals in high-risk areas and
isolating both positive patients and their close contacts. In our model, this is achieved by setting the contact matrix to zero for
individuals with a viral level exceeding 10%, as well as their close contacts, for a duration of 14 days. The virus levels of in-
dividuals residing in high-risk areas must be regularly monitored and evaluated through nucleic acid tests. The efficacy of this
strategy is depicted in Fig. 6, while a dynamic geographic distribution of the epidemic is presented in Video 4.

In comparison to the first approach, the cost of the third strategy is relatively low, yet its preventive and control measures
yield significant results, as observed in Fig. 6C. This targeted containment strategy proves effective in controlling the epidemic
during the initial 500 days, which explains China's attainment of the dynamic zero goal in 2020 and 2021 through targeted
containment measures. However, it is important to note that while the isolation of close contacts surpasses the effectiveness
of the first two strategies, its capacity for control remains limited and reliant on the virus's transmission potential. The
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Fig. 5a. the landscape of virus dynamics in the actual scenario (n = 1000).
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Fig. 5b. the landscape of antibody dynamics in the actual scenario (n = 1000).

effectiveness of this strategy gradually diminishes with increased virus transmissibility, particularly with the emergence of
highly transmissible variants.

As evidenced in Fig. 6C, after 500 days, the epidemic spreads extensively, underscoring the strategy's dependence on the
virus's transmission potential. Different expectations should be set for this strategy during different phases of the COVID-19
epidemic. If the virus's transmissibility is significantly heightened, solely isolating close contacts will prove insufficient in
effectively curbing the surge of the epidemic. Broader quarantine measures, such as isolating secondary close contacts, may
become necessary, thereby augmenting the challenges and costs of prevention efforts.

While the practical value of prevention has gradually waned with the decline in virus virulence, concerns persist regarding
the potential emergence of more virulent strains in the future. Our previous research predicted the delicate trade-off between
virulence and transmission in the evolution of SARS-CoV-2, elucidating its evolutionary trajectory and demonstrating that
future virulence will not be significantly enhanced. By integrating this agent-based model, we have demonstrated the limited
efficacy of precise prevention and control measures against highly infectious viruses. Imposing extensive and prolonged
large-scale quarantine policies is also impracticable. Therefore, coexistence with SARS-CoV-2 becomes necessary, gradually
alleviating people's fear of COVID-19 infection while acknowledging the merits of early prevention and control measures,
which can mitigate the impact of highly virulent variants during the early stages of an epidemic. Both the first and third
strategies substantially reduce the proportion of severe cases and overall mortality rates in the population, as evidenced by
the comparison between Figs. 6C and 5.

A comparison of the three different prevention policies is summarized in Fig. 7. As depicted, all three strategies would
eventually become ineffective and lead to an epidemic outbreak as the virus transmission capacity continuously increases.
However, large-scale lock-down (dashed blue line) and China's targeted-control policy (solid yellow line) are more effective in
preventing early infections compared to the positive case quarantine strategy (solid red line).

3.4. Epidemiological investigation to unearth patient number zero based on the early epidemic distribution

While SARS-CoV-2 has undergone evolutionary changes, resulting in a highly transmissible yet less virulent variant, the
significance of precise prevention and control strategies remains pertinent due to the potential emergence of new viruses
exhibiting high virulence but controllable infectivity. A vital component of the targeted-control approach involves identifying
the source of the epidemic and concealed transmission chains based on known patterns of the outbreak. Conducting
epidemiological investigations serves to identify potential positive cases and their close contacts, thereby emphasizing the
importance of tracing patient zero utilizing early epidemic information. In our model, we offer a systematic and scientifically
grounded approach to uncover the initial infection and elucidate the complete transmission chain. Through the utilization of
the population contact matrix and early epidemic distribution, we are capable of quantitatively assessing the probability of
patient zero for each individual (Xu et al., 2022). An illustrative example is provided to demonstrate the traceability of our
model.
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Fig. 5c. an illustration of the antibody and virus dynamics in specific agent (500th person in this case).

A detailed representation of the spatial distribution of the one thousand individuals can be found in Fig. 8B. In Fig. 8B, there
are four blocks, each representing a community or small town. The spatial positions of individuals within each block were
generated using random numbers in MATLAB, within a 30 x 30 area. Specifically, for the first block, the X and Y coordinates of
individual positions were randomly generated between 0 and 30, including decimal values. For the second block, the X and Y
coordinates of individual positions were randomly generated between 43.33 and 73.33, including decimal values. For the
third block, the X and Y coordinates of individual positions were randomly generated between 86.66 and 116.66, including
decimal values. And for the fourth block, the X and Y coordinates of individual positions were randomly generated between
130 and 160, including decimal values. Fig. 8A illustrates the location information of infected individuals at a specific moment.
Through this approach, we attempted to identify the index case, maximizing the likelihood of reproducing the observed
distribution of infected individuals at that specific time.

Fig. 8A presents the infection distribution of 1000 individuals, representing the morbidity landscape with symptom in-
formation at 30 days (300-time units) since the initial infection of patient No.1. The landscape comprises three categories of
patients: severe, mild, and asymptomatic, with their precise locations depicted in Fig. 8A.

By applying the techniques outlined in section 2.5, we traced the origin of this epidemic and presented the results in
Fig. 8B, which illustrates the probability of patient zero for each individual in the population. Our method precisely identifies
patient zero and the virus transmission chain, as indicated by the highest probability assigned to individual No.1 (100%) in
Fig. 8B, accurately reflecting the actual situation.
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Fig. 6a. the effect of 80% lock-down on the epidemic development.
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4. Discussion

This study builds upon our prior research and introduces a Markov chain model to forecast the progression of an epidemic
(Xu et al., 2022). In contrast to traditional ODE models and other agent-based models, the Markov-chain model offers several
advantages. It characterizes individuals as distinct entities and incorporates contact information across a population to
furnish more precise and dependable forecasts regarding epidemic development. The model challenges the conventional
theory of herd immunity in the context of COVID-19 by projecting multiple waves of the epidemic resulting from declining
immunity over time following initial infection or vaccination. These projections have been substantiated by subsequent
developments in the epidemic. Nevertheless, a significant constraint of the Markov chain model lies in the absence of a simple
mathematical function to account for the waning effects of antibodies, as illustrated in Fig. 3B. To overcome this limitation, we
have devised a dynamic theory encompassing antibody dynamics that integrates antibody-related information into the
prediction of the infection spectrum within the population (Xu, Wei, Zhang, & et al, 2023). Our agent-based model generates a
unique landscape specific to a given population contact matrix and the dynamic parameters governing antibodies for each
individual within the cohort. By explicitly incorporating antibody concentration and viral load, our model adeptly forecasts
the likelihood of infection and the quantity of released viruses at different time intervals, thereby markedly enhancing the
accuracy of the Markov chain model.

Our model posits three pivotal factors contributing to the resurgence of the COVID-19 epidemic: geographic diffusion,
antibody degradation, and virus mutation effects. While geographic diffusion plays a crucial role in precipitating multiple
waves in the COVID-19 pandemic, our small-scale model, limited by computational constraints, only simulates 1000 in-
dividuals and thus omits its impact. Regarding the SARS-CoV-2 virus, as expounded upon in our prior research (Xu, Wei, Zeng,
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& et al, 2023), its overall evolutionary trajectory during the initial stages tends towards augmented infectivity and diminished
virulence. This evolutionary progression may transpire in an intermittent fashion; nonetheless, our model employs
continuously changing parameters over time to capture this variation for the sake of simplicity. Throughout the evolutionary
process, numerous strains will emerge, each harboring multiple subtypes. While our model cannot precisely forecast specific
mutation sites, it can elucidate the ramifications of mutations on virulence and transmissibility. A key component of this
entails the matter of virus assembly efficiency. When the virus exhibits low assembly efficiency, its RNA evinces feeble binding
activity with its structural proteins, resulting in exposed RNA and heightened replication and translation efficacy. During this
stage, the virus manifests heightened virulence, denoted by relatively magnified values of o within our parameters. Never-
theless, owing to diminished assembly efficiency, the abundance of fully assembled virus particles diminishes, subsequently
yielding a relatively reduced quantity of released virus particles within the environment, correspondingly reflected by a
comparatively smaller value of p. The variability of the virus assumes a critical role in our simulations and serves as the
foundation for examining diverse control measures. A more refined modeling approach may encompass the virus's life cycle
and explicit incorporation of viral mutations and assembly processes. However, such an undertaking would undoubtedly
amplify the intricacy of the present model, as each potential random mutation would engender a distinct strain necessitating
supplementary independent structures in the programming process. Nonetheless, we aspire to enhance this model in the
future by not only treating infected individuals as autonomous entities but also considering myriad virus strains as inde-
pendent agents. Such bidirectional heterogeneity will unquestionably engender more insightful prognostications.

Our model encompasses the advantages of the Markov-chain model while offering a more comprehensive representation
of morbidity dynamics. It incorporates antibody levels, virus levels, spatial distribution, and symptom classification for each
individual at any given time, thereby presenting a more detailed landscape of disease progression. Moreover, it demonstrates
commendable contact tracing capabilities, enabling the estimation of patient-zero probabilities within a small-scale popu-
lation based on recent contacts and morbidity status. This feature facilitates the identification of hidden transmission
pathways and potential future-positive cases, rendering it a valuable tool for epidemiological investigations and epidemic
control.

According to our model, stringent lockdown measures effectively curb the spread of the epidemic, whereas relaxed
lockdown policies may prove insufficient in this regard. However, it is important to recognize that large-scale lockdowns
entail significant costs, and thus, we do not advocate for their widespread adoption as a strategy for future infectious disease
control. While extensive qPCR testing and quarantining of positive patients may not yield the desired epidemic control
outcomes, expanding the scope of quarantine to include close contacts can yield substantially better prevention results. This
observation elucidates why China's targeted-control policy in 2020 and 2021, whereby quarantine measures were imple-
mented for close contacts, was successful in reducing severe cases and fatalities. Our model affirms and acknowledges the
effectiveness and feasibility of China's targeted-control policy, while also recognizing its eventual loss of efficacy with
increased virus infectivity.

Finally, it is worth noting that various factors, such as specific government policies (Han et al., 2021) and weather patterns
(Ganslmeier et al., 2021), exert an influence on the development of the epidemic. In this regard, our agent-based model,
which incorporates antibody information, serves as a viable alternative for simulating COVID-19 epidemic scenarios.

Supplementary Materials: Videos 1 to 4 are displayed in supplementary materials. Matlab codes can be accessed at:
https://github.com/zhaobinxu23/antibody_dynamics_agent-based_model.
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