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Abstract: Encapsulated bacteria such as Streptococcus pneumoniae, Haemophilus influenzae type b and
Neisseria meningitidis cause significant morbidity and mortality in young children despite the availabil-
ity of vaccines. Highly specific antibodies are the primary mechanism of protection against invasive
disease. Robust and standardised assays that measure functional antibodies are also necessary for
vaccine evaluation and allow for the accurate comparison of data between clinical studies. This mini
review describes the current state of functional antibody assays and their importance in measuring
protective immunity.

Keywords: functional antibodies; assays; opsonophagocytosis; serum bactericidal assays; encapsu-
lated bacteria

1. Introduction

Invasive bacterial infections caused by encapsulated bacteria such as the Streptococcus
pneumoniae (pneumococcus), Haemophilus influenzae type b (Hib) and Neisseria meningitidis
(meningococcus) are the leading causes of morbidity and mortality in children under five
years of age globally [1,2]. Together, they are responsible for more than half a million
deaths each year, with most of these cases occurring in low- and middle-income countries
(LMICs) [1,2]. The high burden of disease in LMICs is largely attributed to limited access
to vaccines and appropriate healthcare [2].

The pneumococcus, Hib and meningococcus are commensal bacteria that colonise
the human upper respiratory tract [3]. Colonisation by these bacteria is necessary to cause
invasive bacterial diseases. In healthy individuals, colonisation is usually asymptomatic
and does not lead to disease, but in certain populations, such as children <5 years of age
or adults >65 years of age, and those who are immunocompromised (i.e., HIV-infected,
asplenic patients and those who have undergone solid organ transplant), colonisation by
these bacteria can cause serious diseases such as pneumonia, meningitis and sepsis [4].

Highly specific antibodies generated by the host immune response are the primary
mechanism of protection against bacterial colonisation and disease [5], although cellular
immune responses such as Th17 and regulatory T cells are also thought to be involved in
preventing bacterial colonisation [6,7]. These antibodies bind to the capsular polysaccha-
rides surface of the bacterium, effectively blocking infection, and can also act as opsonins
that elicit bacterial clearance by recruiting immune factors (complement) and innate im-
mune cells (neutrophils or macrophages) [8]. Functional antibodies that mediate bacterial
clearance are an important measure of protective immunity.
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Functional antibody assays such as serum bactericidal assays (SBA) and opsonophago-
cytic assays (OPA) are used to measure antibody-mediated clearance of encapsulated
bacteria. Currently, different methods have been used to evaluate functional antibodies,
making comparison of immunogenicity data from different studies difficult, particularly
in clinical trial settings. Robust and standardised assays are critical for licensure of new
vaccines and for evaluating vaccine immunogenicity, including alternate vaccination sched-
ules such as reduced doses or extended intervals between doses [9–11]. Alternate vaccine
schedules that are more cost-effective and logistically friendly are particularly relevant for
LMICs and remote settings. Many LMICs have limited laboratory capacity and may have
difficulty performing functional antibody assays, particularly the OPA. Nevertheless, a
standardised assay that is feasible to implement would be of significant value. Such assays
could be transferred from an established laboratory of another country to build capacity, or
alternatively there are also World Health Organization (WHO) reference laboratories that
can provide technical support for countries wishing to establish these assays.

2. Functional Antibody Assays against Encapsulated Bacteria

Encapsulated bacteria are mainly cleared via a type-specific antibody through com-
plement-mediated killing and/or opsonophagocytosis. The functional capacity of the
antibodies can be measured by assays such as OPA, SBA and antibody avidity assays. The
theoretical concepts of OPA, SBA and antibody avidity assays are described in Figure 1,
and their advantages and disadvantages summarised in Table 1.
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Figure 1. Theoretical concept of opsonophagocytic assays (OPA), serum bactericidal assay (SBA) and avidity assay. OPA:
antigen-specific antibodies along with complement proteins opsonise encapsulated bacteria and facilitate uptake of the
antibody-bacteria complex by phagocytes. SBA: antigen-specific antibodies recruit complement proteins that activate the
complement cascade. This leads to the formation of the membrane attack complex (MAC) in the bacterial cell membrane,
resulting in bacterial cell lysis. Avidity assay measures the strength of the antigen-antibody binding and is usually performed
using a modified enzyme-linked immunosorbent assay (ELISA). Chaotropic agents such as thiocyanate are incubated with
serum to elute antibodies that bind weakly to the antigen.
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Table 1. Advantages and disadvantages of currently available functional assays.

Assays Advantages Disadvantages

Traditional Killing OPA/MOPA
pneumococcal-specific • Standardised gold-standard assay

• Labour intensive
• Time consuming
• Can have high repeat rate ˆ

Fluorescent OPA/MOPA
pneumococcal-specific

• Single-day assay
• Eliminates colony-counting
• Semi-automation

• Non-standardised output
• Requires specialised equipment (i.e.,

flow cytometer or fluorometer)
• Variable results for some serotypes

Serum Bactericidal Assay
Hib and meningococcal

• Does not require phagocytic cell line
• Non-standardised reagents
• Does not measure opsonophagocytic

activity
• Time consuming

Antibody Avidity Assay
pneumococcal, Hib and
meningococcal

• Easy to perform
• Does not require live bacteria

• Non-biological assay
• Non-standardised method (dilution vs.

elution)

ˆ due to a difference in antibody levels for different serotypes within each MOPA panel.

Recently, there has been growing interest in evaluating the Fc-mediated function
of the antibody response in addition to the antibody binding activity facilitated by the
Fab region [12]. ‘Systems serology’ is a relatively new approach that uses data-driven
computational analysis and high-throughput experimental data to interrogate important
antibody features associated with protective humoral immunity and/or Fc functional activ-
ity. The Fc region of the antibody is important in activating a range of antibody-dependent
(AD) immune responses such as AD cellular cytotoxicity, AD cellular phagocytosis, AD
complement activity and AD cytokine, chemokine and enzyme release [12]. While some
of these mechanisms are the basis for OPA and SBA, these antibody-dependent activities
may act independently or in combination to control bacterial growth and survival. Using
systems serology may therefore aid in elucidating novel functional antibody mechanisms
associated with pneumococcal, Hib and meningococcal bacteria, although more research
is needed.

3. Importance of Measuring Functional Antibodies Following Vaccination

Measurement of functional immunity is a critical aspect of vaccine evaluation and
is often required by regulators for new vaccine licensure [13]. The absolute correlates of
protection for pneumococcal, Hib and meningococcal opsonophagocytic or bactericidal
antibodies are summarised in Table 2 [5].

Table 2. Correlates of protection for pneumococcal, Hib and meningococcal vaccines.

Vaccines Correlates of Protection

PCV

ELISA
>0.35 µg/mL

OPA
≥8 titre

Hib

ELISA
Long term: ≥1.0 µg/mL
Short term: >0.15 µg/mL

SBA
≥4 titre

Meningococcal * SBA
rSBA (≥8 titre) or hSBA (≥4 titre)

Data obtained from [5]. PCV: Pneumococcal conjugate vaccine. Hib: Haemophilus influenzae type b. ELISA:
enzyme-linked immunosorbent assay. OPA: opsonophagocytic assay. SBA: serum bactericidal assay. rSBA: rabbit
complement serum bactericidal assay. hSBA: human complement serum bactericidal assay. * only been formally
correlated with effectiveness for Serogroup C; no defined cut-off for ELISA as correlate of protection.
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Functional antibody assays except antibody avidity assay require in vitro or ex vivo
cell and bacterial cultures, which are labour intensive and time consuming to perform. As a
result, ELISA and electrochemiluminescence-based immunoassay [14] are more commonly
used to measure antibody concentrations to define protection and are more easily able
to set up in LMICs. Generally, higher antibody concentration indicates better protection.
However, this is not always the case since the ELISA method measures functioning and
non-functioning antibodies, including those that are not involved in protection.

The level of functional antibodies against these encapsulated bacteria following im-
munisation appears to be dependent on the population, serotype, and the clinical endpoint
(disease or carriage) assessed. In certain age groups and demographics, such as the very
young and elderly adults or immunocompromised individuals, as well as in countries with
a high burden of disease, discordance in antibody levels and functions following immunisa-
tion have been reported for pneumococcus [15–17], Hib [18–20] and meningococcus [21,22].
This discordance is likely due to the generation of non-functioning or weakly binding anti-
bodies, including reduced antibody diversity, defects in isotype switching, and/or a lack of
somatic mutation [20,23]. Deficiency in IgM memory B cells is also more commonly seen in
the elderly [24]. There is also the possibility of ‘antigen sin’ where previous exposure to
cross-reactive antigens may induce non-functional antibodies in the case for Hib [20,25].
Discordant pneumococcal antibody levels and function for certain pneumococcal serotypes,
particularly Serotype 1, have also been reported following immunisation with 10- and
13-valent pneumococcal conjugate vaccines [26,27]. Therefore, some of the correlates of
protection need to be better defined, especially by standardised functional assays.

4. Standardisation of Functional Antibody Assays against Encapsulated Bacteria

Assay standardisation is crucial for the reliability of data and for the comparison of
study findings in vaccine evaluation and surveillance studies. Earlier versions of OPA
or SBA methods differed in reagents, including the bacterial strains, complement source
and effector cells (for OPA, donor neutrophil vs. HL-60). These parameters can influence
the outcome measurements, making it challenging to compare results across different
laboratories and studies. This is also true for antibody avidity assays where there is also a
need for standardisation [28].

Standardisation of functional assays has been successful for pneumococcal bacte-
ria and, to a certain extent, for Meningococcal A and C (Table 3). Selection of target
strains in the SBA assay is of critical importance for evaluating meningococcal antibodies.
Meningococcal strains for capsular groups A and C have been recommended for use in
a standardised SBA assay [29]; however, there is currently no consensus on strains for
Groups B, W135 and Y. Although there has been effort to standardise Meningococcal B
(MenB) SBA [30], no formal method has been established. One of the challenges for stan-
dardising SBA against Serogroup B is the diverse epidemiology of prevalent strains in
different populations [31,32], making the choice of a ‘universal’ reference strain difficult.
In addition, selection of a bacterial strain that is susceptible (i.e., the alternative and lectin
activation pathways, which do not require an antibody) or resistant (i.e., the production
of bacterial proteins that interfere with complement killing and/or the overproduction of
bacterial polysaccharide) to complement killing may not be suitable for use in the assay [33].
There have been efforts to evaluate and validate SBA against Hib [34], but no standardised
protocol has been established and no standardisation exercise among laboratories has
been conducted. A new high throughput SBA to measure functional antibodies to Hib
has recently been developed using frozen bacteria and the automated colony counting
method based on agar plates with a chromogenic dye [35]. This assay was found to corre-
late strongly with anti-Hib IgG antibody levels, although further assay standardisations
are required.
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Table 3. Standardised OPA and SBA for evaluating pneumococcal and meningococcal ACYW vaccines.

Bacterial Assay Bacterial Strains Complement
Source Immune Cells Reference

Pneumococcal OPA Serotype-specific strains
available through BEI resources

Baby Rabbit
complement HL-60 [11]

Meningococcal A
and C SBA Serogroup A strain F8238

Serogroup C strain C11
Baby Rabbit
complement NA [29]

NA: not applicable.

The complement proteins from intrinsic human serum or exogenous sources such as
human or animal sera (i.e., baby rabbit complement) used in SBA can have a profound
effect on study results [36]. While human serum is the preferred complement source for
SBA when evaluating human immunity, it usually contains endogenous antibodies that
may interfere with the assay. Baby rabbit complement was found to be a suitable source of
complement for SBA to minimise variability, although it generally results in comparatively
higher titres when compared to using human complement [36].

To enable comparison across different studies, a standardised assay is preferred
by regulators, such as the pneumococcal OPAs. This may serve as a reference for the
establishment of OPA for other bacterial pathogens, particularly those that involve antibody
clearance through complement-killing as well as opsonophagocytosis.

5. OPA for Evaluating (New) Bacterial Vaccines

The killing OPA for pneumococcus has been successful in evaluating pneumococcal
functional antibodies. The use of standardised reagents minimises assay variability and
enables comparison of results from different clinical studies. Both Hib and meningococcal
bacteria are susceptible to complement-dependent serum bactericidal and opsonising
antibodies [37]. Immunisation with meningococcal polysaccharide vaccines was found to
elicit both complement-dependent serum bactericidal and opsonising antibodies [38,39].
The development of standardised OPAs for meningococcus would be a worthwhile exercise,
but there have been very few developments in this space.

Two different versions of meningococcal OPA have been described previously: a
polysaccharide-specific flow cytometric-based OPA using HL-60 cells [40], and a method
measuring respiratory burst activity using donor polymorphonuclear neutrophils [41].
Both were found to strongly correlate with SBA. More recently, an OPA has been developed
for meningococcal B using the immune dominant outer membrane proteins rather than the
capsular polysaccharides. The use of OPA to evaluate MenB vaccine immunity has been
particularly important in patients with primary terminal complement deficiency. Since SBA
relies exclusively on complement-mediated killing, studies in children and adults with
primary terminal complement deficiencies found no serum bactericidal activity against
MenB. However, complement-dependent opsonophagocytic killing was still detectable in
these individuals, suggesting that they might still be protected following vaccination [38,42].
Measurement of this immune mechanism in this immunocompromised cohort may also
be relevant to vaccines against other bacterial pathogens. We have developed a Hib OPA
based on the pneumococcal OPA method and found the method to be a more sensitive
assay for assessing functional Hib vaccine-induced immunity compared to SBA, and the
results reproducible (P Licciardi, personal communication). This represents a novel way
to evaluate Hib antibodies, although further testing and validation in larger cohorts are
needed. There has also been the development of OPA for non-encapsulated bacteria such
as Group A Streptococcus (GAS) and Group B Streptococcus (GBS) to evaluate candidate
vaccines [43–45]. Both methods were adapted from the pneumococcal OPA method using
HL-60 cells and baby rabbit complement which eliminate major sources of variations seen
with the use of donor neutrophils and complement.
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6. Conclusions

Functional antibody assays are important for the measurement of protective antibodies
against encapsulated bacteria. They are often labour intensive and time consuming, and
current study methods vary considerably between laboratories. Standardisation of assay
parameters eliminates major sources of assay variations, enabling the comparison of data
from population studies and/or vaccination trials more accurately. The pneumococcal OPA
method has been standardised and allows for multiplexing. Recently, the development
of OPA for other non-encapsulated bacteria such as GAS and GBS has been adapted
from the pneumococcal OPA method. Future development of OPA for other bacteria will
be of interest, particularly for other encapsulated bacteria that are susceptible to both
antibody-mediated complement killing and opsonophagocytosis.
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