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Abstract: Due to safety concerns in recent years, much effort has been devoted to improving 

the outcomes associated with drug-eluting stents (DESs). This review summarizes the current 

status of methodological and technical achievements reported in second-generation DES. Novel 

stents are described based on the component (the platform, the polymer, and the drug) that has 

undergone the most significant changes compared to earlier generation DES. An overview of 

the currently available evidence on the use of novel coronary devices in patients undergoing 

coronary revascularization is also reviewed.
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Introduction
The introduction of first-generation drug-eluting stents (DESs) in the setting of per-

cutaneous coronary intervention (PCI) has led to a significant decrease in the need for 

repeat revascularization, a common limitation associated with the use of bare-metal 

stents (BMS). In-stent restenosis, the result of a maladaptive neointimal tissue prolif-

eration, is dramatically reduced by the long-lasting inhibitory effect exerted by the 

local elution of antiproliferative agents.1–3

First-generation DES commonly consist of three elements: an antiproliferative 

drug, a durable polymer that serves for drug loading and modification of release  kinetics, 

and the stent platform (Figure 1). The first generation of DES employs a cobalt–

chromium alloy, a durable polymer, and elutes sirolimus (Cypher; Cordis, Warren, NJ) 

or paclitaxel (TAxuS™; Boston Scientific, Natick, MA). Sirolimus- and paclitaxel-

eluting stents seem to provide similar rates of revascularization, although several 

studies report a more profound inhibition of neointimal hyperplasia by sirolimus.4–6 

While other first-generation DES have been produced,7 the second-generation DES 

now include the zotarolimus- (Endeavor; Medtronic, Minneapolis, MN) and the everoli-

mus- (xience V; Abbott Vascular, Redwood City, CA) eluting stents.8,9

Despite the higher efficacy compared to BMS, concerns remain regarding the 

long-term safety of DES, including localized hypersensitivity and late stent 

thrombosis.10–12 Although the exact mechanisms of these pathological reactions have 

not yet been fully elucidated, they seem to be most likely associated with the presence 

of durable polymers, representing a trigger for inflammation and subsequent impaired 

re-endothelialization.13 In previous years, several efforts have been devoted by research-

ers to address these limitations of DES. In particular, attention has been focused on 
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possible advancements of platform, carrier, and pharmaco-

logical technologies, and many innovations have been pro-

vided aiming at improving biocompatibility and long-term 

outcomes of patients undergoing PCI.

This review summarizes the current status of method-

ological and technical achievements reported in second-

generation DES, giving an account of the most recent clinical 

data and the latest improvements in treatment of de novo 

coronary lesions. For the purpose of the following discus-

sion, novel stents will be described based on the component 

(the platform, the polymer, and the drug) that has undergone 

the most significant changes compared to earlier generation 

DES (Figure 2). We searched Medline to identify studies 

which assessed second-generation DES, using search terms 

such as ‘novel stents’, ‘second-generation drug eluting 

stent’, ‘stent polymer’, and ‘biodegradable stents’. In addi-

tion, we identified relevant abstracts and presentations at the 

annual meetings of the American Heart Association, the 

American College of Cardiology, the European Society of 

Cardiology, the European Association of Percutaneous 

Coronary Intervention, Transcatheter Cardiovascular Thera-

peutics, and Transcatheter Cardiovascular Therapeutics Asia 

Pacific from July to September 2010. Expert slide presenta-

tions were consulted online from tctmd.com to complete 

data from abstracts. Internet-based sources of information 

on the results for clinical trials in cardiology (see http://

www.  theheart.org and http://www.tctmd.com) were also 

searched.

Innovations in stent platforms
Recent innovations in stent platforms include changes of the 

metallic alloy (ie, shifting from cobalt–chromium or stainless 

steel to platinum–chromium platforms) or development of 

dedicated stent platforms for the treatment of specific subsets 

of lesions (ie, bifurcations and small-vessel lesions).

Changes of the metallic alloy
Element™ Stent Platform
The Element Stent Platform (Boston Scientific) is made up 

 of a platinum–chromium alloy. The platinum–chromium 

platform has a new stent architecture with a thin strut thick-

ness (81 µm), which features high radiopacity, high radial 

strength, and conformability. The Element Stent Series 

includes an everolimus-eluting (PROMuS Element™;  Boston 

Scientific) and a paclitaxel-eluting stent (TAxuS™ Element; 

Boston Scientific). Both stents have received the Conformité 

Européenne (CE) Mark.

The safety and effectiveness of the PROMuS Element 

stent for the treatment of de novo atherosclerotic coronary 

lesions are the object of the ongoing prospective, randomized, 

multicenter PLATINuM (Clinical Trial to Assess the 

 PROMuS Element Stent System for Treatment of De Novo 

Coronary Artery Lesions) trial (Clinicaltrials.gov identifier 

NCT00823212). In the prospective, randomized PERSEuS 

(Prospective Evaluation in a Randomized Trial of the 

Safety and Efficacy of the use of the TAxuS Element 

Paclitaxel-Eluting Coronary Stent System) Workhorse trial 

(NCT00484315), the TAxuS Element has proven to be 
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Figure 1 Schematic representation of the structure of a conventional DES.
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noninferior to the first-generation TAxuS Express with 

regard to the incidence of 12-month target lesion failure 

(TLF) (5.6% vs 6.1% for TAxuS Element and TAxuS 

Express, respectively, P = 0.78) for the treatment of de novo 

atherosclerotic lesions of up to 28 mm in length in native 

coronary arteries of 2.75–4.0 mm diameter. In addition, there 

were no differences in terms of in-stent late loss between the two 

stents (0.34 ± 0.55 vs 0.26 ± 0.52 mm, P = 0.33) at 9-month 

follow-up.14 Conversely, the TAxuS PERSEuS Small 

 Vessel trial (NCT00489541) is a prospective, multicenter, 

single-arm superiority trial, currently ongoing, which aims 

to assess the safety and efficacy of the TAxuS Element stent 

for the treatment of de novo atherosclerotic lesions #20 mm 

in length in native coronary arteries of $2.25 to ,2.75 mm 

diameter.

Dedicated bifurcation stents
The dedicated stents have been developed with the goal of 

addressing some of the most common issues associated with 

PCI of a bifurcation lesion, including difficulties in maintain-

ing side-branch access throughout the procedure, main vessel 

stent struts jailing the side-branch ostium, distortion of main 

vessel stent after side-branch dilatation, and failure to cover 

and scaffold the side-branch ostium.15 First-generation 

bifurcation-dedicated BMS include the Multi-Link  Frontier™ 

(Guidant Corp, Santa Clara, CA),16 the SLK-View™ (Advanced 

Stent Technologies, Pleasanton, CA),17 the Petal™ (Advanced 

Stent Technologies),18 the Sideguard™ (Cappella Inc, Galway, 

Ireland),19,20 the Twin-Rail™ (Invatec Srl, Roncadelle, Italy),21 

the Nile Croco™ (Minvasys, Genevilliers, France),22 the 

Tryton™ (Tryton Medical Inc, Durham, NC),23 the Sidekick™ 

(Y-med Inc, San Diego, CA),24 and the Antares SAS™ (Tri-

Reme Medical Inc, Pleasanton, CA).25 These stents lack a 

drug-eluting coating and are associated with a high rate of 

restenosis ranging between 28% and 54%.26 A new generation 

of bifurcation-dedicated DES is currently under clinical inves-

tigation and will be discussed in the following paragraphs.

Axxess Plus™
The Axxess (Devax Inc, Irvine, CA) stent is a self-expanding 

nickel–titanium alloy stent featuring a conical configuration 

designed to conform with the bifurcation anatomy, which 

provides easy access to the distal branches for easy place-

ment of subsequent stents (Figure 3). The stent is coated  

with a resorbable polymer which elutes Biolimus A9.  

The Axxess Plus regis try reported low in-stent late loss  

(0.09 ± 0.56 mm) and rest enosis (4.8%) with the Axxess stent 

at 6 months follow-up.27 The DIVERGE (Drug-Eluting Stent 

Intervention for Treating Side Branches Effectively) study 

(n = 302) showed encouragingly low major adverse cardiac 

events (MACEs) (7.7%) and target lesion revascularization 

(TLR) rates (4.3%) at 9 months follow-up.28 The randomized 

COBRA (COmplex BifuRcation Lesions: A Comparison 

Between the AxxESS Device and Culotte Stenting: An 

Optical Coherence Tomography) study (NCT00895791) will 

enroll 40 patients and assess vessel healing at 9 months by 

optical coherence tomography (OCT) in bifurcation lesions 

treated using the Axxess stent or the culotte technique. This 

stent has received the CE Mark in July 2010.

TAXUS Petal™ stent
The TAxuS Petal (Boston Scientific) dedicated stent is the 

improved version of the AST Petal stent, acquired by Boston 

Scientific in 2004. Its platinum–chromium platform is stron-

ger and more radiopaque than a stainless steel platform with 

four radiopaque markers for good visualization on angiog-

raphy and includes a main branch section with a side-branch 

opening to provide mechanical scaffolding and drug delivery 

to the side-branch ostium. The TAxuS Petal stent is coated 

with the same poly(styrene-b-isobutylene-b-styrene) polymer 

as the TAxuS Express and the TAxuS Libertè stents and 

releases paclitaxel in the same manner. The first-in-man study 

of the TAxuS Petal stent reported a composite rate of all 

death, myocardial infarction (MI), or target vessel revascu-

larization (TVR) of 3.7% and 14.8% at 30-day and 12-month 

follow-up, respectively, 6-month in-segment late loss of 

0.47 ± 0.45 and 0.41 ± 0.57 mm for the proximal and distal 

main branch, respectively, and 0.18 ± 0.39 mm for the side 

branch.29

Figure 3 Representation of the self-expanding nickel-titanium Axxess stent in its 
definitive placement after deployment.
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Nile Pax™
The Nile Pax (Minvasys) dedicated stent is a chromium–

cobalt stent, with a 73-µm strut thickness and a modular 

design, developed using the Pax technology, previously 

utilized in the Amazonia Pax stent. Similar to this latter stent, 

the Nile Pax is characterized by a polymer-free paclitaxel 

abluminal coating to avoid long-term lack of endothelization 

and to deliver the drug exclusively onto the arterial wall. 

Paclitaxel is applied using a microdrop spray crystallization 

process. The stent has a dedicated bifurcation delivery system 

made of specific balloon catheters.30 The safety and efficacy 

of this novel stent is currently evaluated in the prospective, 

nonrandomized, single-arm multicenter BIPAx (dedicated 

bifurcation with the PAx technology) trial on 102 patients. 

Preliminary results have demonstrated good results for the 

treatment of de novo bifurcation lesions including high acute 

success (99%), neither cardiac death nor stent thrombosis at 

30 days clinical follow-up and absence of thrombotic events 

after hospital discharge.31

STENTYS™
The STENTYS (Stentys S.A.S., Paris, France) dedicated 

stent is a provisional, self-expanding nitinol stent developed 

both as a DES and as a BMS. The main peculiarity of this 

stent is the possibility of creating a side-branch access any-

where in the stent after implantation in the main vessel. The 

side-branch opening is created by inflating the angioplasty 

balloon into the mesh, thus, disconnecting the interconnections. 

The drug-eluting form elutes paclitaxel (dose: 0.8 µg/mm2) 

which is loaded in a blend of a durable polymer of polysulfone 

and polyvinyl-pyrrolidone. In the first-in-man trial of 

40 patients, the stent showed a 95.5% procedural success rate, 

which is defined as technical and angiographic success in 

the absence of any MACE at hospital discharge. Disconnection 

of the strut to create the side-branch opening was successfully 

achieved in 95% of patients. After stent implantation in the 

main branch, stenting the side branch was necessary in one-

third of the cases.32 In the prospective, nonrandomized, 

multicenter APPOSITION I study (n = 25), the in-stent late 

loss was 0.71 ± 0.70 mm and the rate of angiographic rest-

enosis (.50%) was 25% at 6 months; no cases of death, 

stent thrombosis, or MI were noted at the same follow-up.33 

In the randomized, multicenter APPOSITION II study 

(NCT01008085), 80 patients with ST-elevation myocardial 

infarction (STEMI) were randomized to the STENTYS stent 

versus a conventional balloon-expandable stent and followed 

up with OCT for 3 days. Preliminary data reported a significant 

reduction in stent strut malapposition with the STENTYS 

stent (0.51% vs 5.33%, P , 0.001).34 This stent has received 

the CE Mark in May 2010.

Lesions in small vessels
A small vessel diameter is still an independent predictor 

of angiographic and clinical restenosis. DES have been 

employed for the treatment of lesions located in the small 

vessels, but their impact on clinical and angiographic outcomes 

is not yet well established. It can be expected that DES 

implantation could bring a reduction in restenosis and the 

need for repeat revascularization, as shown in several studies, 

but large, randomized studies are necessary to elucidate the 

safety and efficacy of both traditional and next-generation 

DES in this scenario.35,36

Cardiomind Sparrow™
The Cardiomind Sparrow (Biosensors, Morges, Switzerland) 

stent is a self-expanding nitinol stent loaded into a 0.014″-

guidewire platform, which is developed to treat lesions in 

small vessels. It has a closed cell design and an ultrathin 

strut (0.0024″). The stent is deployed through a proprietary 

mechanism, which enables the electrolysis of mechanical 

latches at each end of the device. This process is initiated 

and controlled by electrical energy delivered from a handheld 

battery.37

Two versions of the Cardiomind Sparrow stent have 

been developed. The first version was a BMS assessed in the 

prospective, multicenter, feasibility CARE I study that 

enrolled 22 patients and reported a rate of MACE of 9.5% 

at 24-month follow-up and an in-stent late lumen loss of 

0.73 ± 0.57 mm at 6-month follow-up.38 The second version is 

a DES with a strut thickness of 67 µm (compared to 140 µm of 

Cypher stent and 132 µm of TAxuS stent) in which the anti-

proliferative agent sirolimus is combined in the SynBiosys™ 

polylactic acid (PLA) biodegradable copolymer matrix. 

The dose of the drug is ∼6 µg/mm. This second-generation 

stent was compared to the BMS version tested in the CARE 

I study and traditional BMS in the prospective, multicenter, 

multinational three-arm randomized CARE-II study. The 

trial showed an in-stent late lumen loss of 0.29 ± 0.45 mm 

in the sirolimus-eluting stent arm versus 0.86 ± 0.54 of 

bare metal Cardiomind and 0.99 ± 0.45 mm of BMS at 

8-month follow-up; the rates of binary restenosis were 

6.7%, 45.2%, and 44.0%, respectively, and the rates of 

cumulative MACE were 6.25%, 8.6%, and 16.7% at the same 

follow-up.39,40

www.dovepress.com
www.dovepress.com
www.dovepress.com


Vascular Health and Risk Management 2011:7 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

107

Novel drug-eluting stents

Conclusions
The innovations in stent platform discussed in this section 

anticipate promising results, in particular for the treatment 

of challenging lesions, such as long lesions, bifurcations 

lesions, and those located in small vessels, but larger studies 

with adequate follow-up are needed to evaluate the safety of 

novel metal alloys and modified stent designs.

Innovations in polymers
Stents with durable polymers
Endeavour Resolute™
The Endeavour Resolute (Medtronic CardioVascular Inc, 

Santa Rosa, CA) is a next-generation zotarolimus-eluting 

stent developed by Medtronic to improve the clinical out-

comes associated with the first-generation Endeavor stent. 

It is comprised of a Driver cobalt–chromium stent platform, 

similar to the Endeavor stent, the antiproliferative agent 

zotarolimus, and, instead of the Endeavor stent’s phospho-

rylcholine polymer, a new biocompatible polymer called 

BioLinx™.41 This polymer is a blend of three different 

 polymers, a hydrophobic C10 polymer, a hydrophilic C19 

polymer, and a hydrophilic polyvinyl-pyrrolidinone, designed 

to provide a robust coating and to enhance polymer biocom-

patibility, reducing the risk of delayed healing and late stent 

thrombosis. The polymer also extends the duration of drug 

exposure in the vessel, such that ∼50% of the zotarolimus is 

released within the first week, with the remaining drug 

released beyond 31 days.42

The stent’s clinical effectiveness and safety have been 

evaluated in 139 patients enrolled in the prospective, multi-

center, nonrandomized, single-arm, controlled first-in-man 

RESOLuTE trial, which showed a late lumen loss of 

0.22 ± 0.27 mm and an in-stent binary restenosis of 1.0% at 

9 months angiographic follow-up.41 The cumulative rates of 

MACE, TLR, and target vessel failure (TVF) reported at 2-year 

follow-up were 10.1%, 1.4%, and 7.9%, respectively.43

Recently, the Endeavour Resolute stent has been compared 

to the xience™ V everolimus-eluting stent in the prospective, 

multicenter, randomized, two-arm, international, noninferiority 

RESOLuTE-III all-comers trial (NCT00617084), in which 

2300 patients were enrolled. The results of this study showed 

the Resolute to be noninferior to xience V for the primary 

endpoint of composite TLF (cardiac death, target vessel MI, 

or clinically driven TLR) at 12 months follow-up (Resolute 

8.2% vs xience V 8.3%, P
noninferiority

 , 0.001).44

The Endeavour Resolute stent has received the CE Mark 

in 2007.

Excella™ stent
This stent is described in the Innovations in drugs – New drugs 

section.

Stents with biodegradable polymers
Sirolimus-based
Supralimus™
The Supralimus stent (Matrix; Sahajanand Medical Technolo-

gies, Surat, Gujarat, India) is a stainless steel stent with a two-

layer biodegradable polymer coating. The base layer is a mix of 

poly-l-lactic acid (PLLA), poly-lactide-co- glycolide, and 

polyvinyl-pyrrolidone, which releases 50% of sirolimus 

within the first week and the remaining 50% in the next 41 days. 

The surface polyvinyl-pyrrolidone layer has a protective func-

tion and degrades completely within 2 h after implantation.

In the prospective, nonrandomized, first-in-man SERIES I 

study, 100 patients were treated with the Supralimus stent. Data 

showed a 6% rate of MACE at 9 months follow-up and an 

event-free survival rate of 93% at 30 months. The rates of 

6-month in-stent and in-segment restenosis in a prespecified 

subgroup of 60 patients were 0% and 1.7%, respectively; the 

in-stent and in-segment late loss were 0.09 ± 0.28 and 0.02 ± 

0.37 mm, respectively, at the same angiographic follow-up.45

The safety and efficacy of the Supralimus stent in the 

treatment of unselected patients with acute coronary syn-

drome undergoing PCI have been evaluated in the pro-

spective, multicenter E-SERIES registry which showed 

acceptable rates of MACE, TLR, and stent definite and prob-

able thrombosis of 10.0%, 2.7%, and 0.6%, respectively, at 

12 months follow-up.46

Further data will be produced by the prospective, mul-

ticenter, randomized, noninferiority SERIES III trial 

(NCT00917163), which is currently ongoing. This study 

includes a head-to-head comparison with the xience V stent 

for the primary endpoint of in-stent luminal late loss at 

9 months after stent implantation.

Excel™
The Excel stent (JW Medical Co Ltd, Shandong Province, 

Weihai, China) is composed of the S-Stent’s (Biosensor 

International) stainless steel laser-cut platform, which confers 

a high flexibility, a very thin coating (10–15 µm) of sirolimus, 

and a PLA biodegradable polymer, which can be expected 

to have a complete degradation within 6–9 months. The Excel 

stent has been investigated in the CREATE (Multi-Center 

Registry Trial of ExCEL Biodegradable Polymer Drug-

Eluting Stent, NCT00331578) registry in 2077 patients. 
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The predefined primary endpoint was the incidence of 

MACE (cardiac death, nonfatal MI, and TLR) at 12 months 

follow-up after stent implantation. The trial reported MACE 

rates of 2.7% and 3.1% at 12- and 18-month follow-up, 

respectively, and an angiographic in-stent late lumen loss of 

0.21 ± 0.39 mm.47 In this study, 80.5% of patients discontin-

ued clopidogrel treatment within 6 months, given the use of 

a biodegradable polymer. The rate of stent thrombosis proved 

to be 0.87% at 18 months of follow-up.

NEVO™
The NEVO stent (Cordis) is made up of a cobalt–chromium 

alloy platform, with open cell design to improve vessel 

conformability. It is the first DES applying the Cordis RES 

Technology™, which consists of hundreds of reservoirs 

embedded in the struts, each acting as a depot loaded with a 

drug–polymer mix. The active ingredient in the drug–

polymer composition is sirolimus, with similar drug dose 

and release kinetics as Cypher. The polymer loaded into 

reservoirs is a poly-lactic acid-co-glycolic acid (PLGA). 

Polymer’s degradation time can be controlled by altering the 

lactide/glycolide ratio, and specifically for NEVO stent, 

PLGA completes bioabsorption in a very short duration of 

90 days. This technology offers several advantages, first a 

higher drug/polymer ratio and thus both higher drug dose 

and lower polymer mass than conventional DES. Moreover, 

reservoirs coat a small percentage of stent surface, which is 

therefore for the most part bare metal, in contrast to other 

DESs that are totally polymer coated. This feature conceivably 

increases stent vessel biocompatibility.48

In the randomized, multicenter, single-blind NEVO 

RES-I (Comparison of the Conor Sirolimus-eluting Coronary 

Stent to the TAxuS Liberté Paclitaxel-eluting Coronary Stent 

in the Treatment of Coronary Artery Lesions, NCT00606333) 

trial, the NEVO stent was compared to the TAxuS Liberté 

paclitaxel-eluting coronary stent in 394 patients. NEVO was 

associated with significantly lower in-stent late lumen loss 

(0.13 vs 0.36 mm, P , 0.001) at 6-month quantitative coro-

nary angiography (QCA) follow-up.49 In addition, NEVO 

showed lower rates of death (0.5% vs 2.2%), MI (2.0% vs 

3.2%), MACE (6.1% vs 10.8%), and TLR (3.6% vs 5.9%) 

than TAxuS at 12 months follow-up. No cases of stent 

thrombosis occurred at the same follow-up in the NEVO 

group in contrast with two late thromboses (one possible and 

one probable) in the TAxuS group.50 Further studies have 

been designed to investigate the NEVO stent, such as the 

ongoing prospective, multicenter NEVO RES-II study 

(NCT00714883). The NEVO II trial (NCT01202058) will 

be a randomized, noninferiority trial comparing the NEVO 

stent to the xience everolimus-eluting coronary stent with 

the aim of assessing clinical outcomes during 5 years of 

follow-up. The prospective CYNERGY (Cynergy: the 

CYPHER-NEVO Registry) study (NCT01106378) is recruit-

ing participants to assess the noninferiority of NEVO, once 

commercially available, to CYPHER in patients with acute 

STEMI, diabetes mellitus, or multivessel disease.

Biolimus-based
The BioMatrix Flex stent and the Nobori stent, both coated 

with a biodegradable polymer, are described in the Innova-

tions in drug – New drugs section.

Paclitaxel-based
Infinnium™
The biodegradable polymers, which coat the stainless steel 

balloon-expandable platform of the Infinnium stent (Matrix; 

Sahajanand Medical Technologies) are poly-l-lactide, poly-

dl-lactide-co-glycolide, poly-l-lactide-co-caprolactone, and 

polyvinyl-pyrrolidone. These polymers are stratified in 

composition with the antiproliferative agent paclitaxel, each 

layer with a different drug release kinetics. Infinnium stent’s 

safety and efficacy have been assessed in 103 patients 

enrolled in the multicenter, prospective, nonrandomized 

SIMPLE II study, which aimed at investigating the incidence 

of MACE (primary endpoint) at 30 days and in-stent binary 

restenosis by QCA at 6 months follow-up. Results showed 

rates of MACE at 30 days, 6 months, and 9 months to be 

2.9%, 4.9%, and 9.7%, respectively. Data from QCA indi-

cated in-stent and in-segment binary restenosis rates of 7.3% 

and 8.3% associated with in-stent and in-segment late loss 

of 0.38 ± 0.49 and 0.18 ± 0.46 mm, respectively.51

The Infinnium stent has been compared with the above-

mentioned Supralimus stent and a BMS control in the ran-

domized, multicenter PAINT trial (NCT00752362), which 

reported a significant reduction in late loss and TVR at 

9 months follow-up for DES (both Infinnium 0.54–0.44 mm 

and Supralimus 0.32–0.43 mm) compared with BMS 

(0.90–0.45 mm).52 This stent has received the CE Mark.

JACTAX™
The JACTAx™ (Boston Scientific) Liberté is made up of a 

premounted stainless steel platform coated with a polymer-

drug blend of a low molecular weight biodegradable poly-

lactide polymer and paclitaxel. This process, known as 

Juxtaposed Abluminal Coating technology, applies minimal 

amount of polymer-drug composition in discrete areas 
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(2750 microdots/16 mm stent) exclusively located onto the 

abluminal surface, such that the other three sides of the stent 

remain BMS surface. Polymer thickness is #1 µm, approxi-

mately 15 times thinner than that of the TAxuS Liberté stent 

polymer. The drug paclitaxel is fully released in 60 days, 

while the polymer degrades within 4 months.

The prospective, single-center, randomized OCTDESI 

(Optical Coherence Tomography Drug Eluting Stent Inves-

tigation) trial (NCT00776204) was designed to evaluate the 

long-term proportion of strut coverage and the vessel wall 

response with the JACTAx stent at 6 months, with either 

low drug dose (LD) or high drug dose (HD), compared to 

the TAxuS Libertè stent. Data showed that the primary 

endpoint of the percentage of uncovered stent struts per 

patient at 6 months follow-up measured by OCT was similar 

for the three devices (5.3% ± 14.7% for TAxuS Liberté, 

7.0% ± 12.2% for JACTAx HD, and 4.6% ± 7.3% for 

 JACTAx LD; P = 0.81).53,54 There were no deaths, Q wave MIs, 

or stent thromboses at 12-month clinical follow-up.

An evaluation of safety and clinical performance of the 

JACTAx HD stent have been performed in a prospective, multi-

center, nonrandomized first-in-man study (NCT00754728), 

which recruited 103 patients who had underwent PCI with 

the aforementioned stent compared to an historical control 

group of patients treated with the TAxuS Liberté stent from 

the ATLAS trial.55 Results in patients treated with JACTAx 

HD stent showed that the primary endpoint of MACE (cardiac 

death, MI, and ischemia-related TVR) occurred at 9 months 

in 7.8% of patients, a value significantly below the 17% 

noninferiority limit, thus meeting the prespecified criteria 

for noninferiority to the TAxuS Liberté stent. Moreover, 

there was no death, Q wave MI, or stent thrombosis during 

follow-up. Results of QCA demonstrated an in-stent late loss 

of 0.33 ± 0.45 mm and an in-stent binary restenosis of 5.2%, 

which are comparable values to those observed in similar-

matched patients from the TAxuS ATLAS trial. Mean net 

volume obstruction by intravascular ultrasound (IVuS) was 

11.4% ± 11.2%.56 The JACTAx LD stent has been assessed 

in the prospective, multicenter, randomized JACTAx LD 

Drug Eluting Stent Trial (NCT00754975) and completed in 

August 2010. This trial randomized 130 patients from the 

JACTAx LD stent or the TAxuS Libertè. The study results 

are awaited.

CoStar™
The CoStar stent (Conor MedSystems, Menlo Park, CA) is 

a cobalt–chromium stent that elutes paclitaxel without the 

use of a surface polymer using holes located on the surface 

of the stent, each one acting as a reservoir for a drug-polymer 

blend. The polymer loaded into the reservoirs is a bioresorb-

able PLGA polymer, which degrades mediating drug delivery 

such that at the end of biodegradation process, only the bare-

metal platform remains. The CoStar stent was first evaluated 

in several study (PISCES and COSTAR I ed EuroStar) and 

showed satisfactory results.57–59 However, in the multicenter, 

single-blind, two-arm, randomized, controlled, noninferiority 

trial COSTAR II study (NCT00165035) (n = 1700), the 

CoStar stent was not demonstrated to be noninferior in clinical 

and angiographic performance compared with the paclitaxel-

eluting TAxuS stent: the MACE rate was 11.0% for Costar 

and 6.9% for TAxuS (P , 0.005) at 8-month follow-up, 

and the in-segment late loss was 0.49 mm for CoStar and 

0.18 mm for Taxus (P , 0.0001).60 The CoStar stent has 

received the CE Mark.

Nonpolymeric stent
YUKON®

A microporous stainless steel platform forms the basis of 

the completely polymer-free YuKON stent (Translumina, 

Hechingen, Germany), which has been combined with 

rapamycin using a technology denominated ISAR (Individu-

alised Drug-Eluting Stent System to Abrogate Restenosis). 

This technology consists of a two-component system, a mobile 

stent-coating device for the spraying process of the drug and 

a disposable stent cartridge holding the premounted stainless 

steel microporous stent. The ISAR process allows to coat the 

platform with various drugs directly on-site customizing the 

drug dose. During the coating process, as soon as the two 

components are correctly located, the drug is sprayed on the 

stent surface, and it is subsequently dried by removing the 

ethanol with pressured air. The entire process takes ∼8 min.61 

According to previous studies, ISAR stents are safe and effec-

tive with a 2% rapamycin-coating solution.62 The microporous 

surface has the function of drug reservoir and retards drug 

release, consequently the polymer serves no function.

In the randomized ISAR-TEST, in which a total of 

450 patients were enrolled, the YuKON stent has been 

compared to the polymer-based, paclitaxel-eluting TAxuS 

stent for the treatment of de novo coronary lesions, with the 

aim of assessing the noninferiority of the rapamycin-eluting 

stent. The results of the study demonstrated that the YuKON 

stent is noninferior to the TAxuS stent with regards to the 

incidence of angiographic and clinical restenosis.63 In the 

prospective, randomized ISAR-TEST-3 (Rapamycin-Eluting 

Stents With Different Polymer Coating to Reduce Restenosis), 

the Yukon DES was compared to a rapamycin-eluting stent 
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with biodegradable polymer and to a rapamycin-eluting  

stent with permanent polymer (Cypher) in 605 patients. The 

study was completed in 2007 and reported a 6- to 8-month 

in-stent late loss of 0.47 mm for the YuKON stent compared 

with 0.17 mm for the rapamycin-eluting stent with biodegrad-

able polymer and 0.23 mm for Cypher, showing low efficacy 

for the polymer-free YuKON stent.64

The safety of the YuKON stent has also been evaluated 

in a real-world registry (n = 410), in which a group of patients 

treated with YuKON stent was compared to a group of those 

who had undergone PCI with TAxuS stent. This study 

showed no statistically significant differences in terms of 

MACE at 6 months follow-up between the two groups of 

patients; specifically, one MI occurred in the TAxuS stent 

group and no case in the YuKON stent group (0.2% vs 0%, 

respectively), and 15 TLR (7.3%) were performed in the 

YuKON stent group versus 7 in the TAxuS stent group 

(3.4%).65 A prospective, observational study weighed the 

difference in in-stent late lumen loss between 6–8 months 

and 2 years in patients treated with permanent-polymer 

DES Cypher or TAxuS or with polymer-free rapamycin-

eluting stents. Angiographic data obtained after 2-year 

 follow-up indicate that the absence of permanent polymer 

from DES has a protective function against delayed in-stent 

late lumen loss (YuKON stent 0.01 ± 0.42 mm, Cypher stent 

0.17 ± 0.50 mm, and TAxuS stent 0.13 ± 0.50 mm; 

P , 0.001).66 This stent has received the CE Mark and is 

available for sale in Europe.

BioFreedom™
The BioFreedom (Biosensors) stent is a stainless steel 

polymer-free stent, currently under development and releas-

ing Biolimus A9™, a rapamycin derivate with immuno-

suppressive and antiproliferative properties which has already 

been used on the BioMatrix, Nobori, xtent, and DEVAx 

stents. In the first cohort of the prospective, multicenter, 

randomized, single-blinded BioFreedom FIM Clinical Trial 

(NCT01172119), the stent was compared to the TAxuS 

Libertè stent in two-drug dosage versions, namely a standard-

dose version (SD, 15.6 µg/mm of stent length) and a LD 

version (7.8 µg/mm of stent length). The 4-month follow-up 

results reported in the first cohort (n = 74) showed a signifi-

cant reduction (P , 0.0001) of in-stent late loss in both the 

 BioFreedom SD and LD groups (0.08 and 0.12 mm, respec-

tively), compared to the TAxuS Libertè group (0.37 mm). 

In addition, no cases of stent thrombosis were noticed in 

the study during 4 months. The 12-month angiographic 

follow-up of the second cohort (n = 107) demonstrated the 

noninferiority of the BioFreedom SD compared to TAxuS 

stent with regard to in-stent late loss (0.17 vs 0.35 mm, 

respectively; P = 0.001) and a trend toward superiority 

(P = 0.11). The rates of MACE at the same follow-up were 

6.1% for BioFreedom SD, 11.6% for BioFreedom LD, and 

5.5% for TAxuS stent in all patients (first and second 

cohorts), with no case of stent thrombosis.67 In a recent study, 

the BioFreedom stent showed equivalent early and superior 

late reduction of neointimal proliferation compared with 

the polymer-coated sirolimus-eluting Cypher stent in a 

 porcine model.68

Amazonia Pax®

The Amazonia Pax stent (Minvasys) is made up of a polymer-

free chromium–cobalt alloy platform, with open cell design, 

eluting the antiproliferative agent paclitaxel. The drug layer 

(thickness: 5 µm) is applied using a microdrop spray crystal-

lization process, exclusively onto the abluminal surface, and 

is loaded with a paclitaxel dose of 2.5 µg/mm2. The stent is 

designed to release ∼98% of the drug in 30 days, returning 

to regular chromium–cobalt after 45 days. Strut and coating 

thicknesses are 73 and 5 µm, respectively, ensuring a total 

stent thickness of 78 µm, less than that found on other stents 

(Cypher stent: 152.6 µm and TAxuS stent: 148 µm). Clinical 

evaluation of the Amazonia Pax stent is currently ongoing 

in the prospective, randomized, multicenter-active controlled, 

single-blinded PAx A trial and in the prospective, nonran-

domized PAx B trial. The 4 months follow-up results of the 

PAx A trial, in which the Amazonia Pax stent was compared 

with the TAxuS stent, showed in-stent late lumen loss of 

0.77 and 0.42 mm (P = 0.20), respectively, and a percentage 

of stent obstruction by IVuS of 19% and 6% (P = 0.08), 

respectively, revealing no significant difference between these 

two stents in angiography and IVuS quantitative 

parameters.69,70 Minvasys has received the CE Mark for 

Amazonia Pax stent in 2010.

VESTAsync™
In the VESTAsync-eluting stent (MIV Therapeutics, 

Atlanta, GA), a polymer-free stainless steel platform is 

incorporated with a nanothin-microporous hydroxyapatite 

surface coating impregnated with a low-dose lipid-sirolimus 

mixture. The hydroxyapatite coating dissolves completely 

after 9–12 months, while the elution of sirolimus is complete 

within 3 months. The stent has been evaluated in the prospec-

tive, nonrandomized, single-center VESTASYNC I FIM 

clinical trial in 15 patients. Data have confirmed the sustained 

efficacy of this polymer-free stent showing a lumen late 
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loss of 0.36 ± 0.23 mm by QCA analysis and an in-stent 

 percentage volume obstruction by IVuS of 4.0 ± 2.2 mm3 at 

9 months follow-up. Long-term clinical follow-up reported 

no MACE (cardiac/noncardiac death, cerebrovascular 

 accident, nonfatal MI, and stent thrombosis) at 12 months 

follow-up and only a case of TLR at 36 months follow-up.71 

In the randomized VESTASYNC II study (n = 120), the 

VESTAsync sirolimus-eluting stent was compared with a 

control BMS. The 8-month QCA analysis showed an in-stent 

late lumen loss of 0.39 ± 0.20 mm for VestaSync stent com-

pared with 0.74 ± 0.52 on the control BMS (P = 0.03).72

Conclusions
The polymer is one of the main DES elements in charge of 

hypersensitivity and late stent thrombosis after implantation. 

Therefore, innovations in this component, as showed by the 

early results of some devices of this category already used 

in daily practice, are likely to exert a positive influence on 

PCI outcomes in the near future.

Innovations in drugs
Drugs combination system
SymBio™
A new solution in developing DES consists of loading a stent 

with more drugs. This technology has been used in the 

 SymBio stent (Conor Medsystems). This stent includes the 

Conor reservoirs technology, already used in the Costar stent, 

which provides the capability to load drug in hundreds of 

small holes, each acting as a drug-polymer reservoir, and to 

control the delivery time and rate. In the SymBio stent, 

in contrast to the Costar stent loaded with paclitaxel, two 

drugs, specifically paclitaxel and pimecrolimus, are loaded 

in adjacent reservoirs. Pimecrolimus is an anti-inflammatory 

agent with immunosuppressant properties used for the topical 

treatment of atopic dermatitis.

Despite the combination of two drugs in a unique stent, 

in the randomized, multicenter GENESIS (Randomized, 

MultiCenter Study of the Pimecrolimus-Eluting and 

 Pimecrolimus/Paclitaxel-Eluting Coronary Stent Systems) 

trial (NCT00322569), which compared the paclitaxel-eluting 

Costar stent, the pimecrolimus-eluting Corio™ stent, and the 

dual-combination drugs SymBio stent by Conor Medsystem, 

data failed to demonstrate either SymBio or Corio angio-

graphic noninferiority when compared with paclitaxel-

eluting stent. The in-stent late loss values at 12 months 

follow-up were 0.58 ± 0.58 mm for the Costar stent, 

1.40 ± 0.67 mm for the Corio stent, and 0.96 ± 0.73 mm for 

the SymBio stent (P , 0.001).73

New drugs
Novolimus
Excella™
The Excella novolimus-eluting stent (Elixir Medical, 

Sunnyvale, CA) is a next-generation DES, which consists 

of a cobalt–chromium platform with a strut thickness of 

0.0032″ and eight-crown design for optimal scaffolding, 

a biocompatible methacrylate polymer with a coating thick-

ness of ,3 µm (compared with 7.6 µm for everolimus-eluting 

stents), and a new ‘limus’ family-related drug called novolimus. 

This drug is a macrocyclic lactone, metabolite of sirolimus, 

which demonstrates high potency to inhibit neointimal 

 proliferation. This feature results in a drug dose of 5 µg/mm, 

lower than that found in other stents like zotarolimus- or 

everolimus-eluting stents (10 µg/mm). Both lower drug dose 

and polymer load seem to confer to the stent significant safety 

and efficacy.

The results from the first-in-man ExCELLA I study, 

which recruited 15 patients, showed an in-stent late loss of 

0.31 ± 0.25 mm and a neointimal volume of 6.0% ± 4.4% 

by IVuS at 8 months follow-up.74 Recently, the randomized 

ExCELLA II (Elixir Medical Clinical Evaluation of the 

Novolimus-Eluting Coronary Stent System: a Randomized 

Study With a Single-Arm Registry) study (NCT00792753) 

demonstrated an angiographic lumen late loss of 0.11 ± 0.32 mm 

and a neointimal volume obstruction of 20.9% ± 11.3%.75

Biolimus
BioMatrix™ Flex
The BioMatrix Flex biolimus-eluting stent (Biosensors) 

incorporates a stainless steel stent platform with a strut 

thickness of 112 µm and an abluminal PLA biodegradable 

polymer. The PLA polymer completely degrades into carbon 

dioxide and water within 6–9 months. In the randomized 

LEADERS (Trial Limus Eluted from A Durable Versus 

ERodable Stent Coating) trial (NCT00389220) (n = 1707), 

the BioMatrix stent has been compared to the Cypher 

sirolimus-eluting stent with a noninferiority study design. 

At 12 months, the BioMatrix stent was noninferior to Cypher 

stent for MACE (10.6% and 12.0%, respectively; P = 0.37).76 

The BioMatrix stent noninferiority to Cypher stent has been 

ratif ied at 2 years follow-up with similar outcomes.77 

Recently, the safety and efficacy of the BioMatrix stent have 

also been demonstrated in a single-center trial. This study 

reported an in-stent late loss of 0.24 ± 0.39 mm for the 

BioMatrix group and 0.71 ± 0.47 mm for the control group 

(S-Stent, P , 0.001).78 The BioMatrix stent has received the 

CE Mark.
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Nobori™
The Nobori stent (Terumo Corporation, Tokyo, Japan) elutes 

Biolimus A9 and consists of the stainless steel S-stent and a 

biodegradable PLA polymer, similar to that of the BioMatrix 

stent, except for the delivery system and the stent coating 

process. For the nonrandomized, multicenter Nobori Core 

study, 107 patients were recruited to demonstrate the similar-

ity between the Nobori stent and Cypher stent. It reported an 

in-stent late loss of 0.10 ± 0.26 and 0.13 ± 0.44 mm 

(P = 0.66), respectively, at 9 months angiographic follow-up, 

thus confirming the predefined hypothesis of similarity 

between the two stents.79 The randomized Nobori 1 trial 

(n = 243) demonstrated the noninferiority of the Nobori stent 

versus TAxuS Libertè stent for the primary endpoint of 

angiographic in-stent late loss at 9 months postprocedure 

(Nobori 0.11 ± 0.30 mm and TAxuS Libertè 0.32 ± 0.50 mm; 

P = 0.001). In addition, in both stents, the rate of MACE was 

low, and no cases of stent thrombosis occurred at the same 

follow-up.80 The Nobori stent has the potential to reduce throm-

botic events, promoting a complete endothelial  regeneration.81 

Further and more extensive evaluations of this stent are 

awaited in the coming years. In particular, for a multicenter, 

randomized study (NCT01186120), ∼500 patients are being 

recruited to compare the Nobori stent with the PROMuS 

Element stent for long coronary lesions. A randomized trial 

(NCT01097434), currently enrolling participants (estimated 

enrollment, 45 patients), will evaluate the superiority of the 

Nobori stent versus the xience V stent with regard to the abso-

lute percentage of uncovered stent strut segments. The prospec-

tive, randomized ISAR-TEST 6 trial (NCT01068106) will 

compare the efficacy and the safety of the Nobori stent with 

that of the xience V stent. The Nobori stent has received the 

CE Mark.

Myolimus
Myolimus™ Eluting Coronary system
Myolimus is a macrocyclic lactone, sirolimus analogous, 

used in the Myolimus™ Eluting Coronary system (Elixir 

Medical) in composition with three proprietary polymer 

technologies: a durable polymer, a biodegradable polymer 

developed to biodegrade within 6 months, and a biodegrad-

able polymer which biodegrades within 9 months. The results 

of the single-arm, multicenter, first-in-man study on the Elixir 

Myolimus-eluting stent with a durable polymer show an in-

stent late loss of 0.15 ± 0.11 mm at angiographic analysis 

and a neointimal volume of 1.4% ± 1.2% at IVuS at 6 months 

follow-up.82

Clinical data obtained from a single-arm, multicenter, 

first-in-man study on the Myolimus-eluting stent with bioab-

sorbable polymers indicate a late lumen loss of 0.13 ± 0.27 mm 

at angiographic analysis and a neointimal volume of 

5.4% ± 8.4% at IVuS at 12 months of follow-up.83

Conclusions
The combination of new drugs, as the biolimus, with other 

innovative DES components, as biodegradable polymers, 

has already provided good results, and it is an established 

fact in the landscape of interventional cardiology.

Biodegradable stents
In spite of so many improvements in the development of DES, 

there are still many concerns regarding the neointimal prolifera-

tion and the risk of late stent thrombosis by using this technol-

ogy. These complications have been attributed to the presence 

of uncovered metal struts in direct contact with blood and to 

the possibility of incomplete vessel healing. So far, DES have 

been modified in their components, namely drug, polymer, and 

platform, by the several aforementioned solutions with the aim 

of averting the complications of coronary angioplasty.

In contrast to older devices, biodegradable stents represent 

a new concept of coronary stent. The need for vessel scaffolding 

is transitory, so a permanent stent is unnecessary after the vessel 

has healed. Biodegradable stents completely degrade after 

implantation and, causing the disappearance of any foreign 

material exposed to blood if endothelialization is delayed or 

incomplete, they may hypothetically reduce the risk for late 

stent thrombosis. Moreover, biodegradable stents may have 

other potential advantages, such as promoting reconstitution 

of local vascular compliance, avoiding covering of side-branch, 

facilitating the use of lesion imaging with multislice computed 

tomography, angiography, or cardiac magnetic resonance, and 

allowing further surgical or percutaneous treatments to the same 

lesion.84,85 Biodegradable stents were first implanted in 1980s 

with good results, but none has received either the CE Mark or 

united States Food and Drug Administration approval. Further 

ameliorations and large-scale randomized trials with long-term 

follow-up are necessary to enhance and evaluate the safety and 

efficacy of this technology.

Poly-l-lactide stents
Bioresorbable Vascular Scaffold™
The Bioresorbable everolimus-eluting Vascular Scaffold 

(BVS; Abbott Vascular) is made up of a backbone of 

PLLA coated with a thin layer of poly-d,l-lactide (PDLLA) 
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and elutes everolimus. PLLA is a fully biodegradable 

 semicrystalline polymer, which forms a conglomeration of 

crystalline and amorphous phases when it solidifies. The 

structure and the state of this polymer change in relation to 

temperature and deformation history. PDLLA is a biodegrad-

able polymer coating PLLA, which forms, similar to the 

PLLA, an amorphous phase when it solidifies at room and 

physiological temperatures. The PDLLA allows controlled 

release of the drug such that ∼80% of everolimus is eluted 

within 28 days. The absorption process of PLLA and PDLLA 

occurs via hydrolysis, producing lactic acid, and subsequently 

degrades via the Krebs cycle, and small particles ,2 µm in 

diameter are phagocytosed by macrophages. With regard to 

preclinical trials, it seems that complete absorption of the stent 

could occur within 2–3 years after implantation (Figure 4).

Two versions of the stent have been developed. The design 

of the BVS stent Revision 1.0 consists of circumferential 

out-of-phase zigzag hoops of PLLA with a strut thickness of 

150 µm, linked either directly or by straight bridges, with two 

radiopaque markers at each end which enable a good visual-

ization on angiography. It has been evaluated in 30 patients 

in the cohort A of the prospective, open-labeled, first-in-man 

ABSORB (Bioabsorbable Vascular Solutions First-in-Man 

Clinical Investigation: a Clinical Evaluation of the Bioab-

sorbable Vascular Solutions Everolimus-Eluting Coronary 

Stent System in the Treatment of Patients With Single de Novo 

Native Coronary Artery Lesions) study (NCT00300131).86 

The in-stent late loss reported at 2 years angiographic 

 follow-up did not significantly differ from that found at 

6 months follow-up (0.48 ± 0.28 mm vs 0.43 ± 0.37 mm; 

P = 0.233). The multi-imaging approach (IVuS-virtual 

histology and OCT) at the same follow-up showed that the 

stent was incorporated into the vessel wall and that several 

implanted stents were no longer discernible by OCT.87 

The rate of MACE at 6 months follow-up was 3.3%, and no 

new MACE events occurred between 6 months and 3 years. 

No stent thrombosis or TLR occurred up to 3 years follow-up. 

A significant restoration of vasomotion was reported at the 

same follow-up, but the study showed some limitations. 

In particular, the duration of radial support may be insuffi-

cient to resist the coronary remodeling after PCI, and the 

scaffold shrinkage could cause quite high in-stent late loss 

value reported at 6 months follow-up.88

The BVS Revision 1.1 consists of the same polymer, but 

different process refinements allow the stent to increase its 

radial force, provide radial support for a longer time, and, 

consequently, avoid the slightly higher, but nonsignificant, 

recoil shown by QCA.89–91 This stent version has a different 

strut distribution, reducing the maximum circular unsup-

ported cross-sectional area, in contrast to BVS Revision 1.0.92 

It is currently under evaluation in the Cohort B of the non-

randomized ABSORB trial (NCT00856856) in 80 patients. 

Data reported an in-scaffold late loss of 0.19 mm at 6 months 

angiographic follow-up and a MACE rate of 4.4% (TVF 

4.4%) at 9 months clinical follow-up (one non-Q wave MI 

and one ischemia driven-TLR); no scaffold thrombosis 

occurred over the follow-up.93

REVA™
The scaffolding of the REVA bioabsorbable stent (REVA 

Medical, San Diego, CA) consists of a biodegradable tyrosine 

polycarbonate polymer, which metabolizes to amino acids, 

ethanol, and carbon dioxide. The rate of re-absorption 

depends on molecular weight and can be modified for dif-

ferent utilizations, for example, specific use in vulnerable 

plaques or diabetic lesions. This polymer is also radiopaque 

because of binding iodine molecules directly into the polymer 

backbone. The expansion mechanism of the stent is based 

on the ‘slide and lock design’. This technology enables the 

stent to expand without significant deformation, providing 

high-radial strength compared to stainless stent with negli-

gible recoil (,1%).94 The first-generation stent, which did 

not elute any drug, has been assessed in the prospective, 

multicenter, single-arm, safety, first-in-man RESORB (REVA 

Endovascular Study of a Bioresorbable Coronary Stent)  

study (27 patients enrolled), which showed a higher than 

anticipated rate of TLR at 4–6 months follow-up, most likely 

caused by reduction in stent diameter, even though without 

evidence of shrinkage or negative vessel remodeling.95,96  

The next-generation stent, called the ReZolve™ stent,  

everolimus

PDLLA

PLLA

Scaffold shirnkage

Intimal hyplerplasia

Baseline 6 months 24 months
artery wall

Figure 4 Bioabsorption process of the BVS stent and relative degradation times.
Abbreviations: PDLLA, poly-d,l-lactic acid; PLLA, poly-l-lactic acid; BVS, bioresorbable 
vascular scaffold.
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uses a ‘slide and lock’ mechanism, but it has been optimized 

using a coating of sirolimus, a more robust material, and a 

spiral design to enhance dimensional stability and to maintain 

mechanical integrity under high loading both initially and 

over time. This stent is undergoing clinical evaluation.97

BTI™
A bioabsorbable polymer of salicylic acid, the active ingre-

dient of aspirin with anti-inflammatory and antiplatelet 

properties, constitutes the basis for the BTI stent (Bioab-

sorbable Therapeutics Inc, Menlo Park, CA). The stent has 

two layers composed of salicylic-acid derivates: the core 

provides mechanical scaffolding, while the surface layer 

contains sirolimus that is eluted during the biodegradation 

process together with a dose of salicylic acid of ∼10 µg.98 

The blend of sirolimus and salicylic acid ensures both anti-

proliferative and anti-inflammatory actions. The complete 

absorption of the stent is expected within 6–12 months. 

 Following successful preclinical trials on porcine coronary 

arteries, the multicenter first-in-man WHISPER trial dem-

onstrated acceptable safety and the absence of acute or 

chronic recoil, but on the other hand, data reported an insuf-

ficient neointimal suppression presumably due to the low 

dose and very rapid elution of sirolimus. As a result, the first-

generation stent has been modified by increasing the drug 

dose and slowing down the elution time. Today, this second-

generation stent is under testing in a preclinical trial on 

porcine coronaries.99,100

IGAKI-TAMAI™
The bioabsorbable IGAKI-TAMAI stent (Kyoto Medical 

Planning Co Ltd, Kyoto, Japan) is made up of a monofilament 

of PLLA polymer (thickness: 0.17) with a zigzag design. It 

has two radiopaque gold markers at each end to facilitate 

visualization on angiography. This PLLA stent is both thermal 

self-expanding and balloon expandable; it gets its original 

size in 0.2 sec when heated to 70°C. The stent expansion in 

the implant site by balloon occurs within 30 sec and is per-

formed by balloon inflation of a heated dye at 80°C. After 

the inflation process, the self-dilatation continues progres-

sively until the definitive equilibrium size. The IGAKI-TAMAI 

stent was the first-biodegradable stent implanted in a human. 

The first version of the stent lacked an antiproliferative drug. 

In the first-in-man study, it was evaluated on 15 patients 

treated with 25 stents in 19 lesions. Data reported at 6 months 

indicate a late loss of 0.48 ± 0.32 and no ST or MACE at 

clinical follow-up, but the rates of  angiographic restenosis 

and of TLR per lesion were both 10.5%. IVuS revealed an 

expansion of the stent over the follow-up and the presence 

of stent strut at 6 months; in addition, the mean stent cross-

sectional area was similar at 3 and 6 months (8.18 and 

8.13 mm2; P = 0.30).101

In another study, in which 50 elective patients with 

63 lesions treated with 84 IGAKI-TAMAI stents were 

enrolled, a 10-year follow-up (the longest available follow-up 

of a biodegradable coronary stent) reported rates of cardiac 

and noncardiac death-free survival of 97.8% and 87.0%, 

respectively, a rate of MACE-free survival of 48.4%, and 

a rate of TLR of 23.8%.102,103 Data showed a low complication 

rate, but at present, due to concerns about the use of heat to 

induce self-expansion, no further human coronary implants 

have been carried out, and today, the stent is only available 

in Europe for peripheral use. A version of the stent with a 

coating of paclitaxel has been deployed in porcine coronary 

arteries; the drug coating was shown to effectively inhibit 

proliferation and coronary stenosis after vascular intervention 

in a long-term follow-up.104

Bioabsorbable magnesium stent
One of the problems with the bioabsorbable stent is the above-

mentioned lower radial strength when compared to stainless 

steel traditional devices. Biodegradable metallic stents have 

been developed with the aim of exceeding these limitations; 

in particular, they provide a combination of the advantages of 

a polymeric biodegradable stent, such as the complete degrada-

tion of the implants and a fast recovery of vasomotion, with 

the benefits of stainless steel stents, including an effective 

radial force.

The absorbable-metal stent (AMS; Biotronik, Berlin, 

Germany) is a balloon-expandable stent, laser cut from a tube 

of bioabsorbable alloy which is composed mainly of magne-

sium (.90%). This technology for tube production provides 

a reduced wall thickness. The expected degradation time is 

,56 days.105 Three generations of stent have been designed. 

The first-generation stent (AMS-1), which lacked a drug 

coating, was evaluated in 63 patients in the prospective, 

nonrandomized, multicenter PROGRESS-AMS trial, show-

ing no deaths, nonfatal MIs, or stent thromboses at 4 and 

12 months follow-up. On the other hand, the rate of TLR was 

39.7% and 45% at 4 and 12 months follow-up, respectively, 

and the in-stent late loss was 1.08 ± 0.49 mm at 4 months 

angiographic follow-up.106

A second-generation stent, called AMS-2, was developed 

to improve the results of the AMS-1. It is characterized by 

a slower degradation, a thinner strut thickness, and a modern 

design. In preclinical studies, the AMS-2 demonstrated 
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encouraging results with regard to neointimal proliferation 

and to prolonged stent integrity. After the AMS-2, a further 

version of the stent, called AMS-3, has been developed. 

This version of the stent, which is the first drug-eluting 

absorbable magnesium stent, has already been reported in 

animal trials and showed significant improvement in mini-

mum lumen diameter at 14 and 28 days compared to AMS-1 

and late loss indices comparable to conventional DES.107 

Currently, the nonrandomized first-in-man trial BIOSOLVE-I 

(BIOTRONIKS-Safety and Clinical Performance Of the 

First Drug-Eluting Generation Absorbable Metal Stent In 

Patients With de Novo Lesions in NatiVE Coronary Arteries. 

NCT01168830), which will assess the safety of the AMS-3, 

is recruiting participants.

Conclusions
Recent approaches in development of next-generation DES 

have been reported in this review. In past years, a lot of effort 

has been devoted to improving the safety and efficacy of new 

coronary stents. Some of the above are already available for 

daily practice, while others need further studies to validate 

their use on humans. Larger trials and longer  follow-up are 

necessary to assess the effectiveness of these novel devices, 

but, given that DES will continue to have a prominent part 

in PCI in the near future, the aims so far reached suggest the 

achievement of important results.
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