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Abstract: The hedgehog pathway, which plays a significant role in embryonic development and
stem cell regulation, is activated in gastrointestinal cancers. Chemotherapy is widely used in cancer
treatment. However, chemoresistance becomes a substantial obstacle in cancer therapy. This review
focuses on the recent advances in the hedgehog pathway’s roles in drug resistance of gastrointestinal
cancers and the novel drugs and strategies targeting hedgehog signaling.

Keywords: the hedgehog pathway; chemotherapy; resistance; gastric cancer; colorectal cancer;
pancreatic cancer

1. Introduction

The hedgehog (HH) pathway plays a crucial role in embryonic development, tissue
homeostasis, and carcinogenesis [1,2]. HH ligands activate signaling by binding to receptor
patched 1 homolog (PTCH1). In the absence of HH ligands, PTCH1 prevents smoothened
(SMO) from transducing a signal to the downstream glioma-associated oncogene homolog
(GLI) transcription factors. HH ligands bind to PTCH1, and relieve PTCH1’s inhibition on
SMO, allowing SMO to signal downstream effectors GLI, which activates the target genes
via specific genomic DNA sequences (TGGGTGGTC) [3,4].

Activation of GLI proteins via the HH–PTCH1–SMO axis is regarded as the canonical
HH signaling pathway. In addition to the canonical pathway, some molecules can bypass
the ligand-receptor signaling axis to activate GLI, and these types of regulation are regarded
as non-canonical HH signaling. Non-canonical HH signaling is found in malignant diseases.
KRAS signaling [5,6], transforming growth factor β (TGFβ) [7], AKT [8], protein kinase
C (PKC) [9], and SOX2-bromodomain-containing protein 4(BRD4) [10] are reported to
regulate HH signaling via non-canonical pathways.

Chemotherapy is widely used in cancer treatment, and significant improvement is
achieved in the prognosis of patients. However, not all patients benefit from it. Chemore-
sistance becomes a substantial obstacle in cancer therapy due to intrinsic resistance, which
occurs at the beginning or even before the treatment, or acquired resistance after initial
response to treatment, resulting in relapse [11,12]. Platinum, 5-Fluorouracil (5-FU), and
gemcitabine are the most commonly used drugs in the chemotherapy of gastric, colorectal,
and pancreatic cancers, and the underlined mechanisms of drug resistance have been
studied. Mechanisms of chemoresistance include cancer stem cells(CSCs), tumor microen-
vironment, and ATP-binding cassette (ABC) transporter family proteins [13–15].

Our group studied drug resistance in gastrointestinal cancers and found the HH
pathway contributes to drug resistance. This review focuses on recent advances that link
the HH pathway to drug resistance in gastrointestinal cancers and examines novel drugs
and strategies that may overcome HH-mediated drug resistance.
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2. Cancer Stem Cells

CSCs are a subpopulation of cancer cells capable of self-renewal, metastasis, and
treatment resistance. Evidence indicates that CSCs are involved in chemoresistance and
relapse of cancers. As a classical developmental pathway, the HH pathway supports the
maintenance and survival of CSCs (Figure 1) [16]. Therefore, targeting the HH pathway
may be a promising strategy in eradicating CSCs [17,18].
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Figure 1. The HH pathway in gastrointestinal CSCs. The role of the hedgehog pathway in drug
resistance of gastrointestinal CSCs and inhibitors for hedgehog signaling is summarized. In gas-
trointestinal CSCs, CCN1, Notch1, Ski, Vasohibin2, and chemotherapy can activate the HH pathway
to increase stemness through upregulating CD44, CD24, CD133, SOX2, SOX9, OCT-4, Nanog, and
c-myc, to increase drug resistance by elevating the expression of the drug efflux protein ABCC1 and
ABCG2, and to adapt to hypoxia via high expression of HIF1α. The HH inhibitors (5E1, vismod-
egib, cyclopamine, IPI926, GANT61, GLI siRNA, and lncRNA cCSC1) can attenuate these processes.
Hedgehog (HH); cancer stem cells (CSCs); cellular communication network factor 1 (CCN1); ATP-
binding cassette subfamily C member 1 (ABCC1); ATP-binding cassette subfamily G member 2
(ABCG2); hypoxia inducible factor 1α (HIF1α).

We and others have discovered that the HH pathway is activated in gastric CSCs,
which is characterized by a side population [19], cell surface marker CD44 [20,21], CD24,
CD133 [22], aldehyde dehydrogenase (ALDH) [23], and Musashi-1 [24]. This pathway
is essential for maintaining the viability, motility, and chemotherapeutic resistance of
gastric CSCs. Recently, SOX2-positive gastric cancer cells were found to present CSC
properties [25]. The CSCs with activated HH signaling contributed to chemotherapy
resistance in variant kinds of drugs, such as platinum [19,20], 5-Fu [20,25,26], paclitaxel [27],
and doxorubicin [24]. Our group found that the GLI1 protein interacted with the promoter
of ATP-binding cassette subfamily G member 2 (ABCG2)through a GLI-binding consensus
site in gastric CSCs [19]. ABCG2 is a well-known drug efflux protein and transports small
molecules, including chemotherapeutic drugs. This mechanism may explain why gastric
CSCs enriched with the HH pathway are more resistant to chemotherapy.

The HH pathway also plays a vital role in colorectal CSCs. Colorectal CSCs showed
elevated expression of the genes downstream of HH signaling [28,29], and the HH pathway
inhibitor reduced the expression of stemness markers and resistance to 5-FU and platinum
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in colorectal CSCs [28,30]. Activation of HH signaling is associated with high expression of
CD133, SOX9, hypoxia inducible factor 1α (HIF1α), and ATP-binding cassette subfamily C
member 1 (ABCC1) in colorectal CSCs [29,30]. lncRNA-cCSC1 inhibited the self-renewal
of the colorectal CSCs and reduced their drug resistance to 5-FU by regulating the HH
pathway [31]. Culturing three-dimensional organoids becomes a valuable tool to study
CSCs by enriching CSCs from cancer cell lines and tissues. Usui et al. established an air–
liquid interface (ALI) method to culture organoids from colorectal cancers. These organoids
showed resistance to 5-FU and Irinotecan. The HH pathway inhibitors (GANT61) decreased
the organoids’ cell viability and inhibited the expression of the CSC markers c-Myc, CD44,
and Nanog [32].

Activation of the HH pathway is also found in pancreatic CSCs. Inhibiting HH
signaling downregulates Bmi-1 [33], CD133 [34], SOX2 [35], and ABCG2 [33], leading
to the reversal of gemcitabine resistance. Hh signaling is also associated with cellular
communication network factor 1 (CCN1), Notch1 [36], Vasohibin 2 (VASH2) [37], and
Ski [38] in pancreatic cancer. The HH pathway can be activated by VASH2, Ski, and active
Notch1 in pancreatic CSCs and contributes to maintain stemness and promote epithelial–
mesenchymal transition (EMT) [36–38]. Studies also found that combined inhibition of
HH and mammalian target of rapamycin (mTOR) signaling effectively reduced pancreatic
CSCs [34,39].

Since the HH pathway participates in CSCs, targeting the HH pathway is a promising
targeted therapy (Figure 1). In a Phase II trial of advanced gastric cancers, chemotherapy
combined with vismodegib was associated with improved survival in patients with high
CD44 expression [20]. The sonic hedgehog (SHH) antibody 5E1 reduced the self-renewing
capacity of gastric tumorsphere cells and enhanced the efficacy of chemotherapeutic drugs
in tumorsphere cells in vitro and in vivo [22]. The SMO inhibitors cyclopamine [22,28,33],
IPI-926 [27], and vismodegib [20,24] decreased the stemness of gastrointestinal CSCs
in vitro and in vivo. GLI inhibitor GANT61 increased doxorubicin-induced apoptosis in
gastric CSCs [24] and regulated drug resistance of colorectal CSCs [29,30]. GANT61 also
reduced the sphere formation and cell viability of pancreatic CSCs [34]. Targeting GLI1
using GLI1 siRNA nanoparticles significantly decreased GLI1 protein expression, inhibited
gastric CSC tumor spheroid and colony formation, and suppressed cell migration and
invasion [40]. Different groups use different types of inhibitors for their studies, from
inhibition of HH and SMO to GLI. Moreover, some studies found GLI, not SMO, activated
HH signaling in CSCs [34,41]. Therefore, identifying how the HH pathway is activated,
caused by HH/SMO, or regulated by other pathways, may help us make sure which
component should be targeted and if combined inhibition of the crosstalking pathway is
also needed.

3. Tumor Microenvironment

There is mounting evidence to indicate that the tumor microenvironment (TME) is
essential for carcinogenesis, angiogenesis, invasiveness, and immune escape [17,42,43].
The TME includes active fibroblasts, immune cells, endothelial cells, neurons, adipocytes,
and the extracellular matrix. A hypoxic microenvironment-derived HIF1α and cancer-
associated fibroblast (CAF)-derived TGF-β2 activated the expression of the HH transcrip-
tion factor GLI2 in colorectal CSCs, resulting in increased stemness and resistance to
chemotherapy (Figure 2) [44].
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testinal cancers and CAFs is summarized. Activated HH signaling is found in CAFs with elevated expression of αSMA
and periostin. NDRG1 reduces CAF-mediated cell migration and the CAFs’ activation through inhibition of HH signaling.
TME-derived HIF1α and CAF-derived TGFβ2, Gal1, TNFα, and IL-1β may activate HH signaling in tumor cells to induce
drug resistance. Hedgehog (HH); tumor microenvironment (TME); cancer associated fibroblasts (CAFs); alpha smooth
muscle actin (αSMA); N-myc downstream-regulated gene 1 (NDRG1); hypoxia inducible factor 1α (HIF1α); transforming
growth factor β2 (TGFβ2); glycan-binding protein galectin-1 (Gal1); tumor necrosis factor α (TNFα); interleukin-1β (IL-1β).

Pancreatic ductal adenocarcinoma (PDAC) is characterized by dense stroma that are
generally refractory to conventional treatments. Pancreatic stellate cells (PSCs) contribute to
this stromal barrier and PDAC progression. The HH pathway plays a vital role in crosstalk
between cancer cells and PSCs (Figure 2) [45,46]. Stromal-derived glycan-binding protein
galectin-1 (Gal1) [47], tumor necrosis factor α (TNFα), and interleukin-1β (IL-1β) [48] could
activate HH signaling in PDAC cells. Moreover, TNFα and IL-1β activated GLI through
both SMO and nuclear factor-κB (NF-κB), and SMO inhibition did not altogether abolish
GLI activation, indicating that inhibition of canonical and non-canonical HH signaling
simultaneously may be more effective in PDAC cells [48]. Activated HH signaling is also
found in stromal cells. SHH protein was found co-expressed with markers of mesenchymal
cells, alpha smooth muscle actin (αSMA), and periostin [49]. N-myc downstream-regulated
gene 1 (NDRG1) reduced PSC-mediated cell migration and PSCs’ activation through
inhibition of HH signaling [46]. Our group found that SMO inhibition significantly altered
the gene expression profile of the tumor microenvironment but had no significant effects
on cancer cell metastasis. The SMO inhibitor combined with the MEK inhibitor showed a
reduced number of metastatic nodules in several mouse models for pancreatic cancer [50].
The SMO inhibitor GDC-0449 sensitized PDAC to gemcitabine [45] and doxorubicin [51].

4. Crosstalking with Other Pathways

Studies found that the HH pathway regulates chemotherapeutic resistance by crosstalk-
ing with other pathways in many types of cancer, including gastrointestinal cancers
(Figure 3). Yao et al. found that GLI1 was activated by the AKT–mTOR pathway in
gastric cancer cells. Inhibitors targeting GLI1 and p-AKT may reverse drug resistance and
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achieve better inhibition than agents targeted against a single molecule [52]. Our group and
other researchers found elevated expression of the HH pathway in chemotherapy-resistant
colorectal cancer cells [29,53–57]. Besides canonical HH signaling [53,54], GLI was activated
by AKT [29] and signal transducer and activator of transcription 3 (STAT3) [55] in colorectal
cancers. The activation of the HH signal promoted EMT-related pathways [53,54], and
GLI1 could bind to the promoter region of six ABC transporters in colorectal cancers [56].
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Figure 3. The HH pathway crosstalks with other signaling pathways in gastrointestinal cancers. The crosstalking of
the canonical and non-canonical HH pathways with other pathways in drug resistance of gastrointestinal cancers are
summarized. In gastrointestinal cancers, HO-1, ATK–mTOR, and EIF5A can activate the canonical HH pathway, while
TET1 and CHL1 inhibit the canonical HH pathway. STAT3, MAP3K10, AKT, and BRD4 may activate the non-canonical
HH pathway. Chemotherapy activates the HH pathway through different mechanisms. The active HH signaling increases
expression of SOX2 and ABC transporters, promotes EMT, and induces drug resistance. Hedgehog (HH); heme oxygenase-1
(HO-1); mammalian target of rapamycin (mTOR); eukaryotic translation initiation factor 5A (EIF5A); signal transducer and
activator of transcription 3 (STAT3); mitogen-activated protein kinase 10 (MAP3K10); bromodomain-containing protein
4(BRD4); ATP-binding cassette (ABC) transports; epithelial–mesenchymal transition (EMT).

The most commonly used chemotherapeutic drug for pancreatic cancer is gemcitabine.
The role of the HH pathway in gemcitabine resistance is well-studied (Figure 3). Several
molecules, including Heme oxygenase-1 (HO-1) [58], mitogen-activated protein kinase 10
(MAP3K10) [59], and eukaryotic translation initiation factor 5A (EIF5A) [60], increased
resistance to gemcitabine through activating the HH pathway. TET1 and CHL1 [61]
reversed the gemcitabine resistance by downregulating the HH pathway. HH signaling
increased resistance to gemcitabine by activating ABCB2 [62]. Our group revealed the GLI–
SOX2 signaling axis for regulation of gemcitabine sensitivity and found direct regulation of
SOX2 by GLI transcription factors [35]. Gemcitabine treatment also elevated HH signaling,
cancer cell stemness, and EMT-related pathways [63] through upregulation of BRD4 [64].
Recent studies found that Dasatinib [65] and Erlotinib [66] resistance was also associated
with HH signaling, and inhibition of GLI could reduce the resistance to Erlotinib [66].

5. New Drugs and Therapeutic Strategy

The HH inhibitors vismodegib and sonidegib have been approved by the Food and
Drug Administration to treat recurrent, locally advanced basal cell carcinoma (BCC) or
metastatic BCC, or for those who are not eligible for surgery or radiotherapy. The efficacy
and safety of vismodegib and sonidegib have been reviewed in [67]. Vismodegib and
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sonidegib are also used in clinical trials for other solid tumors (medulloblastoma, prostate
cancer, pancreatic cancer, and small cell lung cancer) and hematologic malignancies (ac-
tively reviewed in [68,69]).The results from these clinical trials show that the HH inhibitors
only promote treatment efficacy in HH-driven cancers.

Since current therapy is still far from satisfactory, novel drugs and new therapeutic
strategies were developed to improve the treatment. Novel HH inhibitors also have been
developed. GDC0449 analog MDB5 [70] and GLI1 inhibitor NanoHHI [71] overcame SMO
mutation and improved the treatment effect. Other drugs, such as curcumin, sensitized col-
orectal cancer to chemotherapy through downregulating HH signaling [72], and Dpc [46],
ormeloxifene [73], Patched 1-interacting peptide [74], and metformin [75] targeted HH
signaling was found to reduce the tumor-associated stromal tissue in pancreatic cancers.

Due to dense stromal tissue, chemotherapeutic and targeted drugs, immune cells are
hard to get to cancer cells; therefore, targeting stromal cells is a new promising strategy
in pancreatic cancers. Since the HH pathway contributes to the development of the dense
stromal tissue, several studies combined SMO inhibitors with either cytotoxic chemothera-
peutic drugs [76–78] or a targeted antibody [79] to increase the delivery of the drugs and
promote tumor infiltration of the CD8 T cells. Inhibition of the HH pathway increased in-
tratumoral vasculature density. Some studies found that SMO inhibitors reduced collagen,
α-SMA, and GLI-1 expression [76,79]. However, another study found that SMO inhibitor
did not decrease the α-SMA-positive fibroblasts and type I collagen in the stroma [77], indi-
cating more studies should be performed to identify the mechanisms how SMO inhibitors
increase the delivery of drugs. Furthermore, research suggested that combined the hepato-
cyte growth factor (HGF)/c-Met and HH pathways inhibitors overcame the resistance to
the single-inhibitor treatment and led to sensitization to the gemcitabine treatment [80].
Despite the promising results above and the excellent responses to sonidegib in a mouse
model [81], vismodegib does not show improvement in metastatic pancreatic adenocar-
cinoma (NCT01088815, NCT01064622, [82]). The preclinical model may not accurately
reflect the tumor context of patients; patient-derived xenografts, and maybe in the future,
patient-derived 3D culture models with tumor cells and a microenvironment, are better
materials for studying the efficacy and mechanisms of action of therapeutic drugs.

6. Conclusions and Perspectives

Accumulating data suggest that the HH pathway plays an important role in chemore-
sistance in gastrointestinal cancers. CSCs are the well-known cause for drug resistance and
are extensively studied in gastric, colorectal, and pancreatic cancers, and the HH pathway
is a promising target for eradicating CSCs. Due to the dense stromal tissue in pancreatic
cancers, the role of HH signaling in PSCs is actively being investigated. Inhibition of
the HH pathway in PSCs reduces stromal tissue and increases drug delivery, suggesting
that HH signaling may also play a mechanical role in chemoresistance. However, studies
focused on the HH pathway in the TME of gastric and colorectal cancer chemoresistance
are relatively scarce. Despite the different pathological characteristics in gastric, colorectal,
and pancreatic cancers, the HH pathway regulates the ABC transporter family proteins in
all three types of cancer.

Studies from gastrointestinal cancers and their CSCs provide evidence for the existence
of both canonical and non-canonical HH signaling, which do sound the alarm to us.
Inhibition of SMO may not inhibit HH activation, and this may partially explain the dismal
results of vismodegib in some clinical trials for advanced solid tumors. Identifying how
HH signaling is activated, caused by either a ligand-dependent or ligand-independent
mechanism, may help us choose the correct inhibitors to attenuate activation of the HH
pathway in different cancer contexts.
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