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Objective: To investigate the feasibility of radiomics in predicting molecular subtype of
breast invasive ductal carcinoma (IDC) based on dynamic contrast enhancement
magnetic resonance imaging (DCE-MRI).

Methods: A total of 303 cases with pathologically confirmed IDC from January 2018 to
March 2021 were enrolled in this study, including 223 cases from Fudan University
Shanghai Cancer Center (training/test set) and 80 cases from Shaoxing Central Hospital
(validation set). All the cases were classified as HR+/Luminal, HER2-enriched, and TNBC
according to immunohistochemistry. DCE-MRI original images were treated by semi-
automated segmentation to initially extract original and wavelet-transformed radiomic
features. The extended logistic regression with least absolute shrinkage and selection
operator (LASSO) penalty was applied to identify the optimal radiomic features, which
were then used to establish predictive models combined with significant clinical risk
factors. Receiver operating characteristic curve (ROC), calibration curve, and decision
curve analysis were adopted to evaluate the effectiveness and clinical benefit of the
models established.

Results: Of the 223 cases from Fudan University Shanghai Cancer Center, HR+/Luminal
cancers were diagnosed in 116 cases (52.02%), HER2-enriched in 71 cases (31.84%),
and TNBC in 36 cases (16.14%). Based on the training set, 788 radiomic features were
extracted in total and 8 optimal features were further identified, including 2 first-order
features, 1 gray-level run length matrix (GLRLM), 4 gray-level co-occurrence matrices
(GLCM), and 1 3D shape feature. Three multi-class classification models were
constructed by extended logistic regression: clinical model (age, menopause, tumor
location, Ki-67, histological grade, and lymph node metastasis), radiomic model, and
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combined model. The macro-average areas under the ROC curve (macro-AUC) for the
three models were 0.71, 0.81, and 0.84 in the training set, 0.73, 0.81, and 0.84 in the test
set, and 0.76, 0.82, and 0.83 in the validation set, respectively.

Conclusion: The DCE-MRI-based radiomic features are significant biomarkers for
distinguishing molecular subtypes of breast cancer noninvasively. Notably, the
classification performance could be improved with the fusion analysis of multi-
modal features.
Keywords: breast cancer, radiomics, omics analysis, LASSO regression algorithm, infiltration
1 INTRODUCTION

According to the released data in 2020, breast cancer was the
most common malignancy occurring in women worldwide and
served as the main cause of cancer death (1). As one of the most
common histological types of breast cancer, IDC approximately
accounted for 80% of them. Patients who were diagnosed with
the same pathological type and clinical stage of the disease may
have distinct therapeutic outcomes due to tumor heterogeneity at
the molecular level (2). Based on the expression of several specific
molecular receptors, breast cancers are classified into three
distinct molecular subtypes as follows: hormone receptor (HR)
+/Luminal, HER2-enriched, and triple-negative breast cancer
(TNBC). As the varied biological characteristics of these
molecular subtypes, individuals generally respond differently to
the same therapy (3). For example, patients with (HR)+/Luminal
breast cancer subtype have the highest five-year survival rate and
low recurrence risk, operation and endocrine therapy would be
preferably suggested. For the patients with human epidermal
HER2-enriched gene amplification, target treatment is strongly
recommended to reduce the risk of recurrence. Given the strong
invasion and the worst survival of TNBC subtype, neoadjuvant
chemotherapy is recommended due to its relatively high
sensitivity (4). In this context, early identification for the
molecular subtypes could actively guide the targeted
personalized therapy and prognostic prediction.

Clinically, immunohistochemistry is commonly used to
determine the molecular type of breast cancer. However, it is
invasive, and the molecular characteristics of the obtained tissue
samples may fail to represent the overall tumor, and sometimes
the molecular types of the specimens from the puncture and
post-operation are inconsistent. Radiomics has been proven as
an efficient noninvasive approach to correctly identify breast
cancer molecular type. Dynamic contrast-enhanced magnetic
resonance imaging (DCE-MRI) has been established as an
imaging technique to present the morphologic and
hemodynamic characteristics of tumors and is performed
effectively to distinguish the tumor from the background
parenchyma as the high-resolution of soft tissue (5, 6), thus it
is commonly used for the feature extraction in radiomics (7).
Prior studies have investigated radiomic signatures in the breast,
Fusco et al. (8, 9) demonstrated that quantitative analysis of the
morphology and texture features of breast lesions is feasible, a
multiple classifier system can optimize the accuracy for breast
2

lesion classification. Agner et al. (10) showed that good
performances could be yielded using a probabilistic boosting
tree classifier in conjunction with textural kinetic features for
differential diagnosis between breast cancer and benign breast
lesions. Some previous radiomics studies based on DCE-MRI
(11–18) have already investigated the radiomic features of the
breast, whereas the stability and reliability of models were
affected by the difference in imaging schemes and devices.
Furthermore, limited radiomic features or not complete
subgroups of breast cancer in some previous studies resulted
that the prediction performance of the provided models thus far
are not the best. Therefore, this is still a lack of a comprehensive
evaluation of MRI radiomic features for differentiating molecular
types in patients with breast cancer.

This study aims to investigate the value of MRI radiomic
features in distinguishing molecular types of breast cancer. To
our knowledge, our study is the first attempt to extract radiomic
features based on the original and wavelet-transferred DCE-MRI
images through the 3D volumetric imaging technique,
developing a nomogram combining radiomic characteristics
and clinical pathological risk factors. Moreover, an external
independent validation set was included to evaluate the
stability of our models. We believe that our findings could
provide valuable discriminative information of breast cancer
molecular typings.
2 MATERIALS AND METHODS

2.1 Patient Data
From January 2018 to March 2021, 382 patients diagnosed by
clinical examination and confirmed by ultrasound in two hospitals
were retrospectively included in this study. Patients were enrolled
according to the following inclusion criteria: common breast
invasive ductal carcinoma in pathology; complete breast MRI
data, pathological and immunohistochemical data; and a long-
term follow-up period. Exclusion criteria were pregnant or
lactating females, or a plan to get pregnant within 6 months;
prosthesis implantation; and a history of breast surgery that might
affect imaging diagnosis. Of the finally included 302 patients, 223
cases (from Fudan University Shanghai Cancer Center) were
randomly split into a training and internal test set with a ratio
of 7:3, and 80 cases (from Shaoxing Central Hospital) were treated
as an independent validation cohort. Demographic data from
May 2022 | Volume 12 | Article 799232
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Electronic Medical Record Systems of both hospitals included age,
menopause status, and tumor location. Pathological data included
tumor pathological type and histological grade, status of estrogen
receptor (ER) and progesterone receptor (PR), HER2, Ki-67, and
lymph node metastasis. The study protocol was approved by the
ethics committee of the Fudan University Shanghai Cancer Center
and Shaoxing Central Hospital. The workflow of the patient
selection process is given as Figure 1.

2.2 Imaging Examination
Fudan University Shanghai Cancer Center: Aurora Dedicated
Breast MRI System and dedicated phase-array coil were used.
The patients were asked to stay in the prone position to allow
both mammary glands in the concave hole of phase-array coil
with a natural overhanging effect. In the plain scan, cross-
sectional T1-weighted images (T1WI) (TR 5 ms, TE 13 ms)
and T2-weighted images (T2WI) with fat suppression (TR 6680
ms, TE 68 ms) were selected, with a layer thickness of 3 mm and
a layer spacing of 1 mm. Phase I mask scan was performed before
contrast enhancement scan. Gd-DTPA was used as the contrast
agent at a dose of 0.2 mmol/kg and a flow rate of 2.0 mL/s.
Contrast images at 5 phases were consecutively collected, with
the scan time per phase as 120 s. In the contrast scan, cross-
sectional T1WI with fat and water suppression (TR 5 ms, TE 29
ms) was selected, with a layer thickness of 1.1 mm and a layer
spacing of 0, FOV 360 mm×360 mm, matrix 360×360×128. The
number of scanned layers in a single phase was 160. Shaoxing
Central Hospital: Philips Achieva 1.5T MR scanner (Holland)
and dedicated breast coil were applied. In the plain scan, cross-
sectional T1WI (TR 4.8 ms, TE 2.1 ms) and T2WI with fat
suppression (TR 3400 ms, TE 90 ms) were selected, with a layer
thickness of 3 mm and a layer spacing of 0.5 mm, matrix
512×512. Phase I mask scan was performed before contrast
enhancement scan. Gd-DTPA was also used as the contrast
Frontiers in Oncology | www.frontiersin.org 3
agent at a dose of 0.2 mmol/kg and a flow rate of 2.0 mL/s.
Contrast images at 6 phases were consecutively collected, with
the scan time per phase was 90 s. In the contrast scan, cross-
sectional T1WI with fat and water suppression (TR 5.0 ms, TE
2.2 ms) was selected, with a layer thickness of 1.0 mm and a layer
spacing of 0.5 mm, FOV 320 mm×320 mm, matrix
336×336×128. The number of scanned layers in a single phase
was 150.

2.3 Image Analysis
2.3.1 Image Segmentation and Transfer
The breast DCE-MRI data were imported as DICOM file into the
DeepWise scientific research platform v1.6 (http://keyan.
deepwise.com/) to semi-automatically outline three-
dimensional region of interests (3D ROIs) at the individual
level and then revised manually by two radiologists of more
than 10-years’ experience in breast imaging diagnosis.
Disagreements were resolved by consensus-based discussion.
The third sequence during the dynamic enhancement course
was selected, the first series was acquired before intravenous
injection, about 240 s for Aurora Dedicated Breast MRI System
and about 180 s for Philips Achieva 1.5T MR scanner after
injection of contrast medium. At this time point, malignant
lesions show the general peak enhancement to present clear
contrast with the surrounding normal breast parenchyma, which
is conducive to more accurate ROI delineation and feature
extraction. The chosen ROIs should conform to the following
criteria: (1) Including cystic lesion, necrosis, and halo-sign; (2)
invasion of surrounding structures: areas with connection to
focus and have the same enhancement pattern with the focus; (3)
reduction of volume effect for the upper and lower ends of focus:
ROI <5 mm2 is waived. The coronal and sagittal planes could be
further referenced to or getting calibration advice from superior
physicians for decision making if there is any uncertainty.
FIGURE 1 | Patient workflow.
May 2022 | Volume 12 | Article 799232
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Finally, B-spline interpolation was carried out to standardize the
image resolution into the same (1 mm × 1 mm × 1 mm) and
followed by the gray-level discretization with fixed bin widths
(25HU) as previous studies suggested.

2.3.2 Radiomic Feature Extraction and Screening
To emphasize the imaging characteristics, three-dimensional
wavelet decomposition was further applied at each level to
obtain all possible combinations in high-pass or low-pass
filters (LLH, LHL, LHH, HLL, HLH, HHL, HHH, LLL). For
original and wavelet-transformed images, first-order, shape and
texture features were extracted, respectively, which was
implemented with open-source PyRadiomics library (https://
github.com/Radiomics/pyradiomics). Subsequently, Z-score
transformation was used to normalize the features distribution
in the training set and the data in the other sets were then
standardized by the same calculated parameters to avoid data-
leakage. The implementation of feature extraction and
standardization was in compliance with Imaging Biomarker
Standardization Initiative (IBSI) (19).

Given the extracted high-throughput radiomic features, we
initially applied feature selection in the training set to minimize
the potential collinearity of variables and obtain the sparse
feature matrix for modelling, which included Spearman’s rank
correlation with a threshold of 0.9 and least absolute shrinkage
and selection operator (LASSO) regression analyses, resulting in
the most predictive covariates with non-zero coefficients.

2.3.3 Model Establishment and Evaluation
Multi-class classification model was constructed using a
transformed logistic regression. We transferred the multi-
class cases into binary-class cases, hence there were three
models: HR+/Luminal model (HR+/Luminal vs. rest), HER2-
enriched model (HER2-enriched vs. rest), and TNBC model
(TNBC vs. rest). We used the extended logistic regression
method penalized by LASSO with 10-fold cross-validation to
train the best performing classification models from the training
set prior to external validation. To investigate the classification
power of finally retained clinical and radiomic features, three
multi-class models were built for classifying three primary
molecular subtypes: clinical model, radiomic model, and
combined model. Receiver operating characteristic (ROC)
curves were used to evaluate the predictive discrimination in
three molecular types with one-vs.-res (OvR) averaging strategy,
which computes the average of the area under the curve (AUC)
scores for each class against all other classes.

2.4 Pathological Analysis
Surgical specimens were obtained for pathological classification,
histological grading, and immunohistochemical analysis.
Molecular typing of breast cancer was performed according to
the standard criteria proposed at the St. Gallen Conference (2, 20,
21): HR+/Luminal includes Luminal A and Luminal B, Luminal
A for ER and/or PR+ (>1% staining) and HER2-; Luminal B for
ER and/or PR+ (>1% staining) and HER2+; HER2-enriched for
ER-, PR-, and HER2+, fluorescence in situ hybridization (FISH)
was performed to assess gene amplification, and HER2 was
Frontiers in Oncology | www.frontiersin.org 4
considered positive if the ratio ≥ 2.0; and TNBC for ER-,PR-,
and HER2-.

2.5 Statistical Methods
Statistical analysis was conducted on R statistical software v3.6.1
(http://www.Rproject.org). Student’s t test and Chi-square test
were respectively used for continuous and categorical data with
normal distribution, Mann-Whitney U test was applied for data
with non-normal distribution. All tests were two-tailed, and a p-
value threshold of 0.05 was considered statistically significant.
The R package “glmnet” statistical software (R Foundation) was
used to perform the modelling process of multi-class
classification models. “PROC” R package was mainly used in
the ROC curve analysis.

After the completion of feature selection for multi-class
classification models, stepwise regression analysis based on
Akaike Information Criterion (AIC) was devised to establish a
nomogram for predicting molecular subtypes (HR+/Luminal
and HER2-enriched)of breast cancer in the training set. The
performance of the nomogram was evaluated by concordance
index (C-index). Calibration curves of this nomogram were used
to validate the agreement between prediction and observation in
all data sets. Furthermore, we performed decision curve analysis
(DCA) to visualize the net benefit for clinical decisions.
3 RESULTS

3.1 Enhanced Imaging Data, Clinical Data,
and Pathological Diagnosis Results
The detailed characteristics of patients are summarized in
Table 1. In our study, all the cases were breast malignant
tumors, 191 cases (85.7%) showed early enhancement with
wash-in and rapid washout type curve or plateau type curve,
and only 32 cases (14.3%) showed a slow increase followed
by persistent enhancement curve. The mean age was 50.07 ±
10.48 years ranging from 16 to 86 years. Of the included 303
cases: HR+/Luminal (Luminal A, n=45; Luminal B, n=71) in 116
cases (52.02%), HER2-enriched in 71 cases (31.84%), and TNBC
in 36 cases (16.14%). The HR+/Luminal breast cancer was the
most prevalent subtype among them. There were 17 cases that
were Stage I (7.62%), 114 cases were Stage II (51.12%), and 92
cases were Stage III (41.26%) in the histological grade
assessment. There were no significant differences among the
three subtypes in age (P=0.06) and histological grade (P=0.14).
In contrast, the value of Ki-67 (P=0.01) and status of lymph node
metastasis (P=0.03) were significantly different in the molecular
subtypes of breast cancer.

3.2 Feature Selection and Optimal
Omics Feature
Radiomic phenotyping of ROIs on the enhanced MRI images
produced a total of 788 radiomic features from original and
wavelet-transferred images, including first-order features
(n=162), shape-order features (n=14), texture features from
gray level co-occurrence matrix (GLCM, n=198), gray-level run
May 2022 | Volume 12 | Article 799232
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length matrix (GLRLM) (n=144), gray-level size zone matrix
(GLSZM) (n=144), and gray-level dependence matrix (GLDM)
(n=126). Before feature selection, 48 (6%) radiomic features were
excluded through stability analysis (ICC≤ 0.85). There were 148
radiomic features and 6 clinical features selected with the
|correlation coefficient| ≤ 0.9. Figure 2 shows the selection
process where the subset size of non-zero features tuned by the
parameter l is based on the minimum criteria. The optimal l
(log (l) = −3.331) resulted in 8 radiomic features with non-zero
coefficients (Figure 2C). We further verified that there was no
statistically significant difference in those features between the
training set and test set (Table 2).
Frontiers in Oncology | www.frontiersin.org 5
3.3 Model Construction and Validation
The algorithm of extended logistic regression penalized by
LASSO finally determined 8 optimal radiomic features
(Table 2) and 4 clinical features (age, tumor location,
histological grade, Ki-67, and lymph node metastasis). Three
multi-class classification models (clinical model, radiomic
model, and combined model) were constructed considering
not only single-modal features but also the fusion of multi-
modal features. The confusion matrix of the combined model
shown in Figure 3 demonstrates that the proposed multi-class
model performs well on most one-vs.-res (OvR) results. For
predicting molecular subtype, the model performance for
A B

C

FIGURE 2 | (A) Feature coefficients corresponding to the value of parameter l. Each curve represents the change trajectory of each independent variable. (B) The
most valuable features were screened out by tuning l using LASSO regression with 10-fold cross-validation via minimum binomial deviation. The dotted vertical line
represents the optimal log (l) value. (C) The 8 selected radiomic features with the most discriminative value according to the best penalty parameter (l).
TABLE 1 | Clinical and histopathologic characteristics of patients grouped by molecular subtypes.

Characteristics Total patients (N = 223, %) Molecular subtypes P value

HR+/Luminal (N = 116, %) HER2-enriched (N = 71, %) TNBC (N = 36, %)

Patient age 50.07 ± 10.48 51.62 ± 11.12 51.15 ± 8.98 45.91 ± 10.23 0.06
Histological grades:
Stage I
Stage II
Stage III

17 (7.62)
114 (51.12)
92 (41.26)

12 (10.34)
74 (63.79)
30 (25.87)

2 (2.82)
18 (25.35)
51 (71.83)

3 (8.33)
22 (61.11)
11 (30.56)

0.14

Ki-67 37.42 ± 24.42 24.09 ± 16.48 45.91 ± 21.18 63.88 ± 23.17 0.01
Lymph node metastasis:
Yes
No

106 (47.5)
117 (52.5)

56 (47.8)
60 (52.2)

35 (49.3)
36 (50.7)

16 (44.4)
20 (55.6)

0.03

Menopause:
No 83 (37.2) 41 (35.3) 25 (35.2) 17 (47.2) 0.399
Yes 140 (62.8) 75 (64.7) 46 (64.8) 19 (52.8)
Position: 0.610
Central region 23 (10.3) 12 (10.3) 5 (7.04) 6 (16.7)
Upper_right 63 (28.2) 33 (28.4) 19 (26.8) 11 (30.6)
Lower_right 27 (12.1) 14 (12.1) 12 (16.9) 1 (2.78)
Upper_left 82 (36.8) 42 (36.2) 26 (36.6) 14 (38.9)
Lower_left 28 (12.6) 15 (12.9) 9 (12.7) 4 (11.1)
May 2022 | Volume 12 | Article
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classifying HR+/Luminal vs. non-HR+/Luminal, HER2-enriched
vs. non-HER2-enriched, and TNBC vs. non-TNBC in the three
data sets is shown in Table 3. The ROC analyses for the
combined model in distinguishing molecular subtypes of breast
cancer are shown in Figure 4. For the combined model, the value
of macro-AUC was 0.84 (95%CI: 0.80-0.90) in the training set
and 0.84 (95%CI: 0.77-0.86) in the test set. For the radiomic
model, the value of macro-AUC was 0.81 (95%CI: 0.78-0.87) in
the training set and 0.81 (95%CI: 0.75-0.87) in the test set. For
the clinical model, the value of macro-AUC was 0.71 (95%CI:
0.67-0.79) in the training set and 0.73 (95%CI: 0.68-0.79) in the
test set. In the external validation set, the combined model
yielded the highest value of macro-AUC (0.83, 95% CI: 0.77-
0.89) (Figure 4).

3.4 Nomogram Establishment
The nomogram for the classification model of HR+/luminal and
HER2-enriched is shown in Figure 5, in which original_
shape_Maximun2DDiameterRow has the most discriminative
power, and the value of C-index was 0.84 in the external
dependent validation set. The calibration curves of the
combined nomogram showed good calibration performances
Frontiers in Oncology | www.frontiersin.org 6
in the training set, test set, and external validation set, the high
agreements between ideal curves and calibration curves were
observed. The DCA curve revealed a more extensive range of
cutoff probabilities shown by the nomogram, the threshold
probabilities of the model had excellent net benefits and
enhanced performance for classifying the two molecular
subtypes with combined nomogram.
4 DISCUSSION

Radiomics is a rapid developing field of medical study that
quantitates the microstructure and biological information of
tumor tissue for exploring the intra-tumoral heterogeneity and
tumor characterization in a convenient and non-invasive way
(22). To date, some studies have already investigated the
discrimination between benign and malignant breast tumors
(23, 24), lymph node metastasis (25–27), tumor response
prediction of neoadjuvant chemotherapy (28, 29), and survival
analysis (30, 31). Our study found that radiomics showed
favorable predictive performance on molecular subtype based
on the DCE-MRI images. In the present study, we identified 8
A

B DC

FIGURE 3 | (A) The prediction results of confusion matrix when TNBC was labeled as the target. TP, true positive; TN, true negative; FP, false positive; FN, false
negative. (B–D) Confusion matrix of the combined model to the training, test, and external validation sets, respectively.
TABLE 2 | Analysis of the selected texture features in the training and test sets.

Characteristics Training set Test set P value

original_glcm_ClusterShade 1551.28 ± 367.89 1426.08 ± 355.01 0.09
original_shape_Maximum2DDiameterRow 32.32 ± 16.40 29.56 ± 12.31 0.23
original_firstorder_Skewness -0.22 ± 0.51 -9.24 ± 0.45 0.13
wavelet.LHL_firstorder_Kurtosis 3.83 ± 1.42 3.87 ± 1.28 0.26
original_glcm_Correlation 0.27 ± 0.16 0.23 ± 013 0.15
wavelet-LLL_glcm_Autocorrelation 14619.04 ± 7738.10 15728.27 ± 8115.49 0.08
wavelet-LLL_glrlm_RunEntropy 6.74+0.69 6.67 ± 0.63 0.35
wavelet-HHL_glcm_DifferenceVariance 142.67 ± 115.07 175.65 ± 124.28 0.16
May 2022 | Volume 12 | Article
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radiomic features as significant in the radiomics model and 4
clinical features in the clinical model. The combined model with
the fusion of clinical and radiomic features was proven to have
the optimal performance in distinguishing molecular subtype of
breast cancer, with the value of sensitivity, specificity, and macro-
AUC were 0.832, 0.781, and 0.830, respectively. Furthermore,
based on the optimal radiomic features and clinical risk factors
(patient age, pathological grade, Ki-67, and lymph node
metastasis), a clinical predictive nomogram for Her2+/Luminal
molecular subtypes was constructed. DCA, a method available to
obtain net benefit based on threshold probability, revealed the
superiority of the nomogram in the classification of molecular
subtype of breast cancer. To validate the stability and reliability
of all models, further testing was applied in the internal test set
Frontiers in Oncology | www.frontiersin.org 7
and an independent external validation set, the nearly similar
values of macro-AUC indicating the excellent robustness and
generalization, meaning good practical value for molecular
subtype classification in coming breast cancer cases.

Previous studies (32–34) have suggested that MRI-based
radiomic features are definitely correlated with the molecular
subtypes of breast cancer. Wu et al. (35) selected the largest tumor
from the fourth sequence during the dynamic enhancement
course and obtained the accuracy of 0.786, 0.733, and 0.941 in
distinguishing between Luminal A and non-Luminal A, Luminal
B and non-Luminal B, and TNBC and non-TNBC. However, a
small sample size (79 cases) and no additional independent
validation set resulted that the reproducibility and reliability of
the models were needed to be further verified. Li et al. (7)
A B

C

FIGURE 4 | Receiver operating characteristic (ROC) curves of the combined model in distinguishing molecular subtypes of breast cancer. (A) The training set.
(B) The test set. (C) The external validation set.
TABLE 3 | ROC values of three models for distinguishing molecular subtypes of breast cancer.

Molecular subtypes Training set (n = 156) Test set (n = 67) Validation set (n = 80)

AUC 95%CI AUC 95%CI AUC 95%CI

Clinical model HR+/Luminal
HER2-enriched
TNBC
macro-averaging

0.75
0.71
0.69
0.71

0.67-0.79
0.66-0.78
0.63-0.74
0.67-0.79

0.77
0.74
0.70
0.73

0.68-0.79
0.70-0.78
0.64-0.77
0.68-0.79

0.76
0.77
0.72
0.76

0.71-0.79
0.73-0.84
0.68-0.76
0.72-0.82

Radiomic model HR+/Luminal
HER2-enriched
TNBC
macro-averaging

0.81
0.84
0.83
0.81

0.78-0.87
0.80-0.88
0.76-0.86
0.78-0.87

0.81
0.82
0.80
0.81

0.75-0.87
0.77-0.84
0.79-0.86
0.75-0.87

0.79
0.85
0.78
0.82

0.72-0.86
0.80-0.89
0.74-0.82
0.76-0.88

Combined model HR+/Luminal
HER2-enriched
TNBC

0.84
0.88
0.81

0.80-0.90
0.85-0.92
0.77-0.98

0.83
0.87
0.84

0.77-0.86
0.82-0.90
0.80-0.89

0.83
0.88
0.82

0.79-0.86
0.84-0.89
0.78-0.86

Macro-averaging 0.84 0.80-0.90 0.84 0.77-0.86 0.83 0.77-0.89
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achieved good results in distinguishing between ER+ and ER-
based on a radiomic signature (AUC=0.89), although only leave-
one-out cross validation (LOOCV) was used because of the
limited cases. Rossana et al. (36) investigated three advanced
machine learning algorithms, including support vector machine,
random forest, and Naive Bayes classifier, and successfully
identified the molecular prognostic markers (AUC: 86-93%).
The results from the previous studies are not completely
consistent, probably influenced by the difference in selected
phase/level in contrast scan, or the method for molecular
typing. In contrast, a few studies provided different views.
Grimm et al. (11) assessed the value of imaging features in
predicting molecular subtypes of breast cancer from three
aspects, including morphology, radiomics, and dynamic
enhancement, by a semi-automated segmentation approach
(i.e., fuzzy C-means clustering). They found that radiomic
features were inferior to the other two types of features. The
discrepancy between the views might be caused by the changes in
the scanner and the pulse sequence applied in the studies.
Notably, it has been proven that the matrix size is crucial in
feature calculation as its relationship with spatial resolution. The
model in our study provided high accuracy, which is consistent
with the study of Leithner et al. (33), which could be interpreted
as follows: First, in the most obvious enhancing phase, the
heterogeneity and invasiveness of the tumor will be reflected
obviously (32), and the much clearer boundary of focus will
minimize errors occurring in focal delineation. Second, the semi-
automated segmentation approach for the extraction of breast
DBT and 3D ROI on MRI original images is more reliable
compared to the other 2D or the maximum level analyses in
the same research field. Third, the additional exploration of
wavelet-based features revealed some more specific image
characteristics of overall lesions.
Frontiers in Oncology | www.frontiersin.org 8
In this study, an extended logistic regression with LASSO
penalty was applied to obtain 8 optimal radiomic features from
the total 788 candidate radiomic features. The 8 features include
morphological, first-order, GLCM and GLRLM characteristics,
which are predominantly related to tumor heterogeneity.
Shape_Maximum 2D Diameter Row depicts the tumor size and
morphology, which was proved significantly correlated with the
molecular type of breast cancer, indicating the molecular subtype
could be influenced by tumor size. Consistent with the previous
report (37), the morphology and size of lesions varied with the
expression of different hormone receptors, and hormone receptor-
negative plus HER2-positive or TNBC breast cancers tend to have
larger lesions than hormone HR+/Luminal cancers. We also found
that the low kurtosis and skewness appeared in HR+/Luminal
cases, which are highly important in the radiomic model.
Compelling evidence provided by Fan et al. (14), who
constructed a predictive model for four molecular subtypes of
breast cancer based on DCE-MRI radiomic, dynamic, and 2
clinical features, revealed the heterogeneity-related low kurtosis
and skewness in Luminal A cases and highlighted the potential of
skewness as a predictor for molecular subtype classification of
breast cancer. It is reported that higher kurtosis and skewness
values are associated with treatment failure (38), while lower values
indicate good responses to treatment. This is supported by the fact
that HR+/Luminal breast cancers have favorable clinical outcomes.
Correlation, Autocorrelation, DifferenceVariancewavelet and
glrlm_RunEntropy are second-order or high-order features
based on original and wavelet transforms. They reflect the
roughness of texture and the consistency between tumor texture
images, conducive to better predicting intra-tumor heterogeneity
and subtle differences in gray level texture feature (13). Moreover,
they are regarded to be of vital significance in texture analysis in
the field of medical imaging.
A B

D

C

FIGURE 5 | Nomogram for classifying HR+/Luminal and HER2-enriched molecular subtypes of breast cancer. (A–C) Calibration curves of the nomogram in the
training, test, and external validation sets, respectively. (D) Decision curve analysis of the nomogram.
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There are still some limitations in this study. For instance,
only the phase with the most obvious dynamic enhancement was
selected for analysis. The further requirement of T1WI, T2WI,
and DWI images, which are essential in breast cancer analysis,
may provide a more comprehensive information of the lesions.
In future research, a complete sequence will be involved to
further investigate the value of multi-parameter radiomic
features in predicting molecular subtype of breast cancer.
Another limitation is that the TNBC showed an unbalanced
distribution in all breast cancers, though it reflected the general
distribution of breast cancer molecular subtypes in the patient
population. Hence, we adopted the cross-validation method to
ensure the stability of results in a different split training cohort.

To sum up, the radiomics signature based on DCE-MRI has
good clinical application value in predicting molecular subtype of
breast cancer, and it may help clinicians make beneficial
treatment decisions before surgery.
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