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COMPREHENSIVE REVIEW

Mesenchymal Stromal Cells in Neuroblastoma:
Exploring Crosstalk and Therapeutic Implications

Caroline Hochheuser,"? Laurens J. Windt,"" Nina Y. Kunze,"" Dieuwke L. de Vos,
Godelieve A.M. Tytgat? Carlijn Voermans, and lise Timmerman'?

Neuroblastoma (NB) is the second most common solid cancer in childhood, accounting for 15% of cancer-
related deaths in children. In high-risk NB patients, the majority suffers from metastasis. Despite intensive
multimodal treatment, long-term survival remains <40%. The bone marrow (BM) is among the most common
sites of distant metastasis in patients with high-risk NB. In this environment, small populations of tumor cells
can persist after treatment (minimal residual disease) and induce relapse. Therapy resistance of these residual
tumor cells in BM remains a major obstacle for the cure of NB. A detailed understanding of the microenvi-
ronment and its role in tumor progression is of utmost importance for improving the treatment efficiency of NB.
In BM, mesenchymal stromal cells (MSCs) constitute an important part of the microenvironment, where they
support hematopoiesis and modulate immune responses. Their role in tumor progression is not completely
understood, especially for NB. Although MSCs have been found to promote epithelial-mesenchymal transition,
tumor growth, and metastasis and to induce chemoresistance, some reports point toward a tumor-suppressive
effect of MSCs. In this review, we aim to compile current knowledge about the role of MSCs in NB devel-
opment and progression. We evaluate arguments that depict tumor-supportive versus -suppressive properties of
MSCs in the context of NB and give an overview of factors involved in MSC-NB crosstalk. A focus lies on the
BM as a metastatic niche, since that is the predominant site for NB metastasis and relapse. Finally, we will
present opportunities and challenges for therapeutic targeting of MSCs in the BM microenvironment.

Keywords: neuroblastoma, mesenchymal stromal cells, metastasis, bone marrow, chemoresistance, targeted
therapy

Introduction

CONSTITUTING 7%—-10% oF aLL childhood malignancies,
neuroblastoma (NB) is the second most common solid
childhood tumor [1,2]. The tumors arise from neuroepithe-
lial cells that migrate from the neural crest to form the
sympathetic nervous system in embryonic development
[3]. This origin explains some of the most prominent fea-
tures of the disease: both localization and genetic features
are highly heterogeneous, with primary tumors located in
various locations of the sympathetic nervous system, most
frequently in the adrenal medulla and paraspinal ganglia.
Furthermore, similar to sympathetic neurons, NB tumors
secrete catecholamines [4,5].

At the time of diagnosis, about 50% of the patients present
with disseminated disease [6]. With an incidence rate of >90%
in high-risk patients, the bone marrow (BM) is the most fre-
quent site of metastasis [7,8]. To tailor treatment according to
the severity of disease, an International Neuroblastoma Risk
Group (INRG) classification system has been established and
updated throughout the years [9]. Today, patients are classified
into very low-, low-, intermediate-, and high-risk groups. Key
factors that classify patients into the high-risk group are dis-
semination status, age >18 months at diagnosis, MYCN am-
plification, rearrangements of the TERT locus, inactivating
mutations in ATRX and chromosome 11q aberration [10-12].

Although nonhigh-risk groups have an excellent prognosis
with survival rates of >90% without intensive treatment, the

'Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, Amsterdam UMC, University of Amsterdam,

Amsterdam, the Netherlands.

Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands.

*These authors contributed equally to this work.

© Caroline Hochheuser et al. 2020; Published by Mary Ann Liebert, Inc. This Open Access article is distributed under the terms of the
Creative Commons License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited


http://creativecommons.org/licenses/by/4.0

60

standard-of-care treatment strategy for high-risk patients is
much more complex. It includes induction therapy, surgical
resection of the primary tumor, high-dose myeloablative
chemotherapy with autologous hematopoietic stem cell (HSC)
transplantation, radiation therapy, and postconsolidation im-
munotherapy consisting of antidisialoganglioside (GD2)- and
isotretinoin treatment [13]. Despite this intense treatment,
>30% of high-risk patients experience relapse [1] and their 5-
year overall survival rate remains <40% [14].

Relapse mainly emerges from those tumor cells that
survive therapy and remain undetected [minimal residual
disease (MRD)]. In the context of various cancer types,
these residual cells have been described to adopt a non-
proliferative and highly chemoresistant dormant state
[15,16]. The cellular and molecular foundation of dormancy,
however, as well as its role in NB metastasis are poorly
understood. Interestingly, similar to the quiescence of HSCs,
the BM might provide favorable conditions for the devel-
opment of tumor cell dormancy [17].

The Microenvironment in the BM

The BM is the primary site of hematopoiesis and com-
prises a multitude of cell types, mainly of the hematopoietic
and mesenchymal lineage. The hematopoietic stem and
progenitor cells (HSPCs) found in these niches, giving rise
to immune cells and osteoclasts, maintain a balance of self-
renewal and differentiation, which is regulated primarily by
signals from the stromal microenvironment [18]. The term
“stroma’” comprises all nonhematopoietic cells, ie., cells of
the mesenchymal lineage, deriving from mesenchymal
stromal cells (MSCs), endothelial cells, and nerve cells.
Among the BM stromal cell types that are relevant within
the tumor microenvironment (TME) are MSCs and their
descendants (adipocytes and osteoblasts), fibroblasts and
endothelial cells (recently reviewed by Shiozawa [19]). This
review focuses on the role of MSCs within the TME.

In the past the acronym MSC has been used for “mesen-
chymal stem cells,”” but is nowadays used in a wider context
to include cells whose biologic characteristics do not meet the
definition of stem cells [20]. In this review, we use the term
MSC to describe multipotent mesenchymal stromal cells. The
latter are characterized in vitro by the International Society
for Cellular Therapy (ISCT) as cells that (i) express CD105,
CD73, and CD90, and lack expression of CD45, CD34, CD14
or CD11b, CD79a, or CD19, and HLA-DR surface molecules,
(i) have the potential to differentiate into osteoblasts, adipo-
cytes, and chondroblasts, and (iii) adhere to plastic in standard
culture conditions [21].

In the human body they can be found in various organs and
tissues, including the umbilical cord, adipose tissue, placenta,
and dental pulp. In fact, MSCs have been described to be
present in nearly all postnatal organs and vascularized tissues
[22,23]. Within the BM, their main functions are hemato-
poietic support, immunomodulation, and bone remodeling,
which they achieve through physical contact and secretion of
soluble factors [24-27].

Important to note when interpreting data from MSC studies
is that essential differences exist between primary MSCs di-
rectly derived from human BM (BM-MSCs) and (i) culture-
expanded MSCs, (ii) MSCs from other human tissues, and (iii)
MSCs from other species, for example mouse. (i) Cultured
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MSCs do not perfectly reflect the properties and physiological
functions of MSCs in vivo as they are known to alter the
expression of cell surface markers such as CD146, CD271,
CD106, and CD44 (I. Timmerman, personal observation, [28—
30]) and to impair their capacity for BM-homing [31], he-
matopoietic support [30], and multilineage differentiation [29].
(ii) MSCs from various human tissues differ from BM-MSCs
in their expression of cell surface markers (Rojewski et al. [32]
compiled a comprehensive summary of marker expression on
MSCs from various tissues), and furthermore in their protein
expression profile, and differentiation potency [33,34]. (iii)
Characterization of MSCs in other species and translating
findings to the human setting is difficult due to the heteroge-
neity of surface markers expressed in each species (compre-
hensively reviewed by Boxall and Jones [35]). Mouse models
are especially frequently used for in vivo studies of MSCs in
the BM niche. Various markers are shared by human and
mouse MSCs (eg, CD105, CD73, CD51, platelet-derived
growth factor receptor alpha and beta [PDGFRa,3/CD140a,b]
[36]), whereas others are predominantly studied in mouse
models (Nestin [37], neuron-glial antigen 2 [NG2] [38], Leptin
receptor [LepR] [39]). Although the latter have also been
shown to be expressed in human MSCs [28,40-42], the con-
crete function of these cells in the human BM, especially in the
metastatic setting of NB, has not yet been addressed.

Overall, insight obtained from studies with mouse MSCs
cannot necessarily translate to the human context and require
further validation. An interesting approach for avoiding these
interspecies differences and studying a human-like environment
in a mouse model is the xenotransplantation of a ‘“‘humanized
bone-marrow-ossicle niche,” derived from BM-MSCs [43].

The experimental details and important findings of key
studies investigating MSCs in the NB context are summa-
rized in Table 1 to facilitate comprehensive understanding
of the studies’ content.

Contribution of MSCs to NB Development
and Progression

Various forms of interaction between NB cells and the
TME at the primary tumor site have been described (Fig. 1).
The inflammatory environment of tumors is known to re-
cruit MSCs to the TME in many cancer types [44,45]. Nu-
merous signaling molecules, including stromal derived
factor-1 (SDF-1/CXCL12), transforming growth factor-f
(TGF-B), interleukin-8 (IL-8), matrix metalloproteinase-1
(MMP-1), and monocyte chemoattractant protein 1 (MCP-1/
CCL2) were shown to be involved in MSC recruitment to the
primary tumor site [46—49]. A detailed overview of MSC
migration to tumors and healthy organs, including chemo-
tactic stimuli, is given by Cornelissen et al. [50].

In NB, adipose tissue-derived MSCs were demonstrated
to successfully migrate to primary NB tumors in mice when
injected intraperitoneally [51]. An in vitro evaluation of a
clinical trial for oncolytic virotherapy with 12 patients re-
vealed that receptor/ligand pairs C-X-C motif chemokine
receptor-1 (CXCR1)/IL-8 and CC chemokine receptor 1/CC
chemokine ligand 5 (CCR1/CCLS) were involved in suc-
cessful migration of MSCs to the tumor [52] (Fig. 1A).

Once MSCs are part of the microenvironment, they di-
rectly or indirectly interact with tumor cells [53]. These
interactions can either have phenotypic and functional
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MSC-NEUROBLASTOMA CROSSTALK
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FIG. 1.

Crosstalk between MSCs and NB cells at the primary tumor site and migration to/from the BM. (A) MSCs are

attracted from the BM to the primary site (among others through CXCRI1/IL-8 and CCR1/CCLS5 signaling) [52]. (B)
Unknown MSC-derived mediators can exert a tumor-suppressive effect [68]. (C) The CXCR4/CXCL12 axis plays a role in
proliferation and survival of tumor cells and decreased apoptosis rates [74]. MMP-9 [99,100] might play a role in promoting
EMT and metastasis: unknown signaling events from MSCs induce MMP-9 expression in NB cells [100], whereas MSCs
potentially also secrete MMP-9 themselves (dashed line). (D) NB cells are attracted to the BM metastatic niche through the
CXCR4/CXCL12 axis [100,109] and can dock to the BM endothelial cells (ECs) through IGF-1R, subsequently migrating
toward IGF-1 in the BM stroma [115]. BM, bone marrow; CCR1/CCLS5, CC chemokine receptor 1/CC chemokine ligand 5;
CXCR1, C-X-C motif chemokine receptor-1; ECM, extracellular matrix; EMT, epithelial-to-mesenchymal transition; IGF-1,
insulin-like growth factor 1; IL-8, interleukin-8; MMP-9, matrix metalloproteinase-9; MSC, mesenchymal stromal cell; NB,

neuroblastoma. Color images are available online.

effects on MSCs themselves, or induce signaling from
MSC:s to other cell types in the stroma through chemokines
or extracellular vesicles (EVs) [54-56]. Both supportive and
inhibitory effects on the tumor resulting from these inter-
actions have been described, depending on the cancer type,
localization of the tumor, investigation method (in vitro vs.
in vivo), and number and origin of MSCs [57].

MSCs exhibiting tumor-suppressive effects

Early evidence of tumor-suppressive effects by the tumor
stroma originates from studies from the 1990s and 2000s be-
fore a clear concept of MSCs had been developed: “‘(adherent)
BM stromal cells” were described to inhibit the growth of
leukemia [58], lung carcinoma [59], and colon carcinoma
[60]. Later, MSCs have been demonstrated to inhibit glioma
cell proliferation in vitro [61] and to have inhibitory effects on
the in vivo growth and metastasis of Kaposi-sarcoma [62],
breast cancer [63], and various hematological malignancies
(reviewed extensively by Lee et al. [64]).

Some mechanistic insights into the tumor-suppressive ef-
fect of MSCs implicate a role of Wnt signaling [65]. Both
activation of (noncanonical) Wnt signaling by MSC-derived
Wnt5a as well as inhibition of (canonical) Wnt-signaling by
MSC-derived Dickkopf-related protein-1 (Dkk1) have been

shown to decrease proliferation rates in two leukemia cell lines
[66,67]. Concrete mechanistic evidence for tumor-suppressive
functions of MSCs in NB is sparse. One study revealed that
intratumoral injection of MSCs into primary NB tumors in
mice significantly reduced tumor growth and prolonged sur-
vival of tumor-bearing mice. These effects were mediated by
decreased proliferation and higher apoptosis rates of tumor
cells [68] (Fig. 1B). However, assessment of proliferation in
an in vitro setting within the same study revealed that MSCs
could not only inhibit but also promote proliferation of NB
cells, depending on the cell line used. The effect of MSCs on
NB tumors is, therefore, not clearly defined and is instead—in
this context—dependent on the NB cell line used.

MSCs exhibiting tumor-supportive effects

In contrast to these tumor-suppressive effects of MSCs,
multiple studies describe a tumor-supportive role of MSCs
instead. Studies in breast cancer (in vitro and in vivo) [69],
prostate cancer (PC; in vitro) [70], adenocarcinoma and
Lewis lung carcinoma (in vitro and in vivo) [71] demon-
strated a beneficial effect of MSCs on tumor growth, cell
survival, drug resistance, and angiogenesis. According to
studies on several tumor types, it is believed that upon ar-
rival at the primary tumor site, BM-MSCs adapt a cancer-
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associated fibroblast (CAF)-like phenotype, while still re-
taining surface marker expression and differentiation po-
tential that is characteristic for MSCs [49,72,73]. In NB, it
was shown that these CAF-like MSCs as well as normal
BM-MSCs enhance tumor cell proliferation and survival in
vitro and stimulate tumor engraftment and growth in vivo
through the JAK2/STAT3 and MEK/ERK1/2 pathways in
NB cells [73]. The connection between MSCs and CAFs
is described in more detail in Box 1.

Furthermore, the CXCL12/CXCR4 axis has been implicated
in local tumor-supporting effects: experiments with NB cell
lines and an orthotopic NB mouse model revealed a CXCL12-
dependent beneficial effect of CXCR4 on tumor growth and
-survival [74] (Fig. 1C). In the healthy BM setting, expression
of CXCL12 in human and murine MSCs has been shown, for
example, in studies by Kortesidis et al. [75] and Méndez-Ferrer
etal. [76], who had characterized MSCs by expression of Strol
and Nestin, respectively, as well as their clonogenicity and
trilineage differentiation potential. An additional source of
CXCL12 in the BM is likely to be constituted by MSC’s
progeny like osteoblasts and/or other stromal cells like endo-
thelial and perivascular cells [25,77-79]. Interestingly, in a
recent study our group has also detected CXCL12 expression in
primary MSCs from metastatic BM samples of NB patients (I.
Timmerman, C. Hochheuser, personal observation). Other
prominent functions of CXCL12/CXCR4 signaling regarding
metastasis are discussed below.

Box 1. MSCs and CAFs

MSCs were first associated with CAFs after BM-
derived myofibroblasts were reported to accumulate in
tumor stroma and to constitute up to 25% of stromal fi-
broblasts [80-83]. Subsequently, the question arose whe-
ther MSCs differentiate into CAFs or only share certain
characteristics with CAFs. It is, therefore, important to
define this term: CAFs are cells in the TME defined by (a
subset of) the following characteristics: increased prolif-
eration and migration, a “CAF gene expression signa-
ture,” activation of TGF-B-, mitogen-activated protein
kinase (MAPK)- and nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-xB) signaling, and
expression of for example o-fibroblast activation protein
(oFAP), fibroblast-specific protein-1 (FSP-1), and alpha-
smooth muscle actin (x-SMA) [72,73,84-87]. A definition
based on genomic landscape, distinct surface markers or
cell of origin, however, is lacking.

Madar et al. [88] suggested to define CAF “‘as a ‘state’
rather than a cell type,”” meaning that several different
cell types, such as MSCs, fibroblasts, epithelial cells, and
tumor cells that have undergone EMT can adapt CAF
traits (ie, mesenchymal appearance and tumor-
supportive effects). This perception is in line with the
finding that (only) up to 20% of CAFs derive from
MSCs, implying that the other 80% must derive from
other sources [89]. CAF is, therefore, merely to be un-
derstood as a ‘“‘label”” that a cell gets once it becomes
part of the TME and supports tumorigenesis.

HOCHHEUSER ET AL.

Stimulation of Metastasis

MSC:s do not only exert a local tumor-supportive effect at
the primary tumor site, but also contribute to metastasis of
tumor cells. Two major processes leading to metastasis are
EMT, which allows tumor cells to detach from the primary
tumor site, and subsequent metastatic migration to distant
sites facilitated by adhesion molecules [90,91].

Epithelial-to-mesenchymal transition

During EMT, tumor cells undergo a change in cellular
structure and expression of surface molecules until their
morphological phenotype resembles that of mesenchymal
rather than epithelial cells [91]. Interestingly, this event also
happens during embryonic development of the sympathetic
nervous system as neuroepithelial cells detach from the
neural crest. Researchers, therefore, propose that in special
cases of NB, a natural BM dissemination can originate from
an early mutation event during the migration of neural crest
cells [92].

Although a few factors involved in NB EMT have been
discovered [93-95], it is poorly understood to what extent
MSCs promote this process. TGF-f3, for example, has been
described to cause functional changes in NB cells that are
characteristic for EMT: upon treatment with recombinant
human TGF-B1, NB cells showed a lower expression of
adhesion molecule and epithelial marker E-cadherin, a
higher expression of fibroblast marker a-SMA, and were
generally more motile [93]. MSCs from healthy adult BM
were shown to express TGF-B1 [96]. Whether the same
holds true for the metastatic pediatric BM environment re-
mains to be elucidated.

Furthermore, matrix metalloproteinase-9 (MMP-9) con-
tributes to EMT by remodeling the extracellular matrix
(ECM) and thereby facilitates invasion [97]. In head and
neck squamous cell carcinoma, tumor cells have been found
to instruct BM-MSCs to secrete MMP-9 in a three-
dimensional spheroid system [98]. In NB, however, MMP-9
has only been shown to be present in the tumor-surrounding
stroma, consisting of fibroblasts and (peri-)vascular cells
[99], but not specifically to be derived from MSCs. Inter-
estingly, MSCs might nevertheless contribute to the MMP-9
pool in the TME by inducing its expression in NB cells, as
shown by stimulation of NB cell lines with conditioned
medium from cultured MSCs [100]. Interestingly, MMP-9
was also found to be upregulated in high-risk NB tumors
[99,101], indicating that this enzyme might play an impor-
tant role in the dissemination process in NB (Fig. 1C).

Moreover, the reprogramming of adrenergic to mesen-
chymal NB cells was found to be mediated by a Notch
feedforward loop [102,103]. Although the factors inducing
this Notch signaling in NB remain to be unraveled, in vitro
studies on acute myeloid leukemia (AML) suggest an in-
volvement of MSCs: MSCs from AML patients expressed
higher levels of Notch ligands and -receptors than MSCs
from healthy donors and induced Notch signaling in AML
cells in a coculture system [104].

BM invasion

NB metastasizes to distinct secondary organs, preferen-
tially the BM, which suggests that this invasion depends on
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interaction with resident cells and signaling factors. One
prominent signaling axis involves CXCR4 and its ligand
CXCL12: Early research showed that NB cells express
CXCR4, which seems to play a critical role in metastasis to
the BM [105,106] and that the level of CXCR4 expression is
correlated with BM metastasis and poor clinical outcome
[107]. Later, in vitro studies suggested that NB cells use the
same CXCR4/CXCL12 axis for metastasis as HSPCs do for
homing after stem cell transplantation [108] and that this
process is supported by MSCs (Fig. 1D): Upon incubation
with MSC-conditioned medium, NB cells showed increased
migration and invasiveness, which was dependent on the
CXCR4/CXCL12 axis [68,100,109].

Similarly, PC cells are also known to make use of the
CXCR4/CXCL12 axis for BM metastasis [110,111]. Fur-
thermore, circulating melanoma cells have been described to
interact with perivascular MSCs through CXCR4/CXCL12
signaling and melanoma cell adhesion molecule (MCAM,
CD146) in vivo, an interaction shown to be required for BM
invasion [112]. Interestingly, recent study from our group
with primary patient samples has determined CD146 to be
one of the surface molecules that identifies an MSC subtype,
which is specifically present in the NB metastatic BM and
might have tumor-related functions [113].

Other studies proposed a role of CXCR5 and CXCR6 in
migration of NB cells to the BM [114]. Invasion into the
BM could furthermore be mediated by insulin-like growth
factor 1 (IGF-1) receptors on NB cells and the high ex-
pression of IGF ligands in the bone, allowing NB cells to
bind to BM-endothelial cells and migrate through the en-
dothelium toward the IGF-1 pool in the BM environment
[115] (Fig. 1D).

Premetastatic niche

Since NB dissemination has a clear affinity for certain
organs, including the BM, the idea of a favorable pre-
metastatic niche (PMN) in the BM microenvironment
comes to mind. The PMN concept is based on the idea that
circulating tumor cells require a supportive niche at the
secondary organ to establish metastases [116]. Although
Paget described his ‘“‘seed and soil”” hypothesis about an
interaction between tumor cells and their future sites of
metastasis already in 1889 [117], the principle of a PMN
was only confirmed many years later upon the discovery
that melanoma-conditioned medium causes Lewis lung
carcinoma cells to metastasize into typical melanoma
metastatic sites instead of the lung [118]. The tumor cell
secretome and EVs have been proposed as the cause for
this distant effect [116], with organotropism being deter-
mined by the characteristic secretion profile of individual
tumors [119].

PMN formation has been extensively studied in common
tumors such as breast cancer, PC, and melanoma, and typ-
ical metastasis sites include lymph nodes, liver, bone, and
brain [116]. As the majority of NB patients already present
with BM metastasis at diagnosis, determining the role of the
PMN in NB is difficult and thus not well understood.
Nevertheless, understanding the potential role of factors and
EVs secreted by NB primary tumors could be of key im-
portance to prevent further metastasis and relapse. Since
MSCs represent an important interaction partner of NB cells
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at the primary tumor site, BM-MSCs could also play a role
as a distant messenger preparing the BM niche for meta-
static invasion.

MSCs at the BM Metastatic Niche of NB

As the primary site of some hematological malignancies
and the main metastatic site of several solid tumors [120-
122], the BM microenvironment is subject to intensive in-
vestigations in tumors such as multiple myeloma (MM),
breast cancer, and PC. Yet, the interactions between NB
cells and BM-MSCs are only starting to be investigated,
with a few studies indicating a crosstalk of NB cells with
BM-MSCs. Interestingly, our group recently demonstrated
in primary NB patient samples that the number of MSCs is
significantly increased in metastatic BM compared with NB-
free BM, pointing toward a direct or indirect effect of NB
cells on MSCs [113].

Crosstalk between tumor cells and their environment can
occur in a direct manner through membrane protein inter-
action and integrin signaling or indirectly through cytokines,
chemokines, growth factors, and EVs. Apart from their
potential role in creating a PMN at the BM, tumor-derived
EVs may also have tumor-supportive effects after the in-
vasion of tumor cells into the BM [116].

A proteomic analysis of EVs derived from NB cell lines
demonstrated the presence of proteins such as prominin-1,
B7H3, basigin, and fibronectin on EVs, which are associated
with cell survival and proliferation as well as chemoresis-
tance, immune evasion, and ECM destruction [123-127].
Interestingly, the NB EV signature is suggested to be site-
and stage-specific, as EVs secreted by BM-resident NB cells
differ from those derived from primary and brain-
metastasized NB cells [128], suggesting that they might
fulfil distinct functions at their respective location.

EVs derived from NB cell lines have been demonstrated
to affect BM-MSCs: they stimulated the secretion of tumor-
supportive cytokines and chemokines from BM-MSCs in
vitro, most notably IL-6, IL-8/CXCLS8, vascular endothelial
growth factor (VEGF), and CCL2/MCP-1 [129] (Fig. 2A).
While IL-8 and VEGF are known stimulators of angio-
genesis [130,131], CCL2/MCP-1 has been demonstrated
to promote the recruitment of anti-inflammatory tumor-
associated macrophages [132]. Interestingly, IL-6 is a com-
ponent frequently implicated in tumor-supporting pathways.
In NB, its effect is believed to be controlled by a positive
feedback loop: NB-derived Galectin-3 binding protein (Gal-
3BP) activated the Ras/sMEK/ERK pathway in MSCs in vitro,
which in turn produced IL-6 [133,134] (Fig. 2A). In a STAT3/
ERK1,2-dependent manner, IL-6 promoted proliferation and
survival of tumor cells, protected them from drug-induced
apoptosis in vitro and stimulated tumor growth in vivo [135].
Of note, these studies [133,135] used “BM stromal cells” that
have not been confirmed to be MSCs based on surface marker
expression or differentiation capacity. Treatment of NB cell
lines with the chemotherapeutic agent sorafenib corroborates
the aforementioned findings, as it blocked the IL-6-induced
STAT3 phosphorylation and downstream signaling, inducing
apoptosis and cell growth arrest of NB cells [136].

Similarly, IL-6/STAT3 signaling has been described in
other tumors such as osteosarcoma [137], and targeting this
axis has been proposed for ablating tumor-stroma crosstalk
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FIG. 2. Interactions between MSCs and NB cells in the BM metastatic niche. (A) Several mediators, such as EVs [129],

Gal-3BP [133,134], and potentially CAs [169,170] can influence MSCs to secrete tumor-supportive factors that increase NB
cell proliferation and survival [109,135,151], promote angiogenesis [130,131] and recruit TAMs to the TME [132]. (B)
MSCs, stimulated by Gal-3BP and other unknown NB-derived mediators, secrete IL-6, thereby increasing osteoclast
differentiation and driving osteolysis [151]. NB cells secrete RANKL with a similar effect [150]. (C) Increased osteoclastic
activity leads to additional bone resorption, releasing bone-derived growth factors (TGF-f, BMP-4, and IGF-1) into the
marrow [152-154]. (D) BMP-4, IGF-1, and TGF-f increase osteoblastic differentiation of MSCs [152,153,155]. In addition,
IGF-1 could potentially support NB cell survival and proliferation through interaction with IGF-1R (dashed line) [157]. (E)
Unknown NB-derived factors drive differentiation of MSCs into osteoblasts through intrinsic VEGF-A signaling [153]. (F)
It is hypothesized that CAs create a tumor-supportive environment [167]. NB cells might use this mechanism in both para-
and autocrine ways to promote tumor progression. CAs, catecholamines; EVs, extracellular vesicles; Gal-3BP, Galectin-3
binding protein; RANKL, receptor activator of nuclear factor kappa-B ligand; TAMs, tumor-associated macrophages; TGF-
B, transforming growth factor-; TME, tumor microenvironment; VEGF, vascular endothelial growth factor. Color images

are available online.

[138]. However, targeting IL-6 with receptor blocking an-
tibodies alone seems inefficient, as several alternative
pathways lead to STAT3 activation (an overview is given in
Wendt et al. [139]).

In conclusion, secreted factors and the content of NB-
derived EVs can stimulate the secretion of tumor-supportive
factors from BM-MSCs and thereby contribute to commu-
nication with the TME to increase NB growth in the BM.
Other components of NB-TME crosstalk and their molecu-
lar mechanisms remain to be elucidated before we can un-
derstand the complex interactions that sustain NB BM
metastases.

Bone homeostasis in the metastatic BM niche

The bone is a dynamic tissue subjected to constant re-
modeling by osteoclasts and osteoblasts, which resorb bone
matrix and form new bone material, respectively [140].
Their activity is tightly regulated, resulting in a well-

balanced equilibrium of bone homeostasis [141]. However,
when tumor cells proliferate in the BM, this homeostasis is
disturbed and can lead to osteolytic or osteoblastic lesions.
While breast cancer and MM metastases are predominantly
osteolytic, characterized by increased osteoclast activity and
bone resorption, PC lesions are predominantly osteoblastic
[142-146].

In these osteolytic tumors, osteoclastogenesis is activated
by PTH-related protein (PTHrP) secretion by the tumor cell
or by receptor activator of nuclear factor kappa-B ligand
(RANKL) secreted by the tumor cell and/or BM-MSCs
[147,148]. Clinically, NB BM metastases have been de-
scribed to be predominantly of osteolytic nature, which has
been confirmed by an increase of osteoclasts in histological
examinations of NB bone lesions in a xenograft mouse
model [149] and osteoclast activation through upregulation
of PTHrP and RANKL in NB cells that were implanted into
the femur of mice [150]. In another study, however, it was
shown that various NB cell lines that induce osteolytic
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lesions in mice, did not secrete the osteoclast-activating
factors themselves [151]. An alternative way of osteoclast
activation through BM-MSC-derived IL6 was demonstrated
in vitro in a coculture system of rat osteoclasts, BM-MSCs,
and NB cell line CHLA-55. Only in the presence of BM-
MSCs, an increased osteoclast activation was observed,
which was dependent on IL6, secreted by BM-MSC solely
upon contact with NB cells [151] (Fig. 2B).

The subsequent bone resorption does not only create
space for tumor growth, but also leads to the release of
growth factors such as TGF-3, bone morphogenetic factors
(BMPs), and IGFs from the bone matrix (Fig. 2C), which in
turn can increase osteoblastic differentiation [152-155]
(Fig. 2D). Furthermore, IGFs have been shown to increase
survival and proliferation in NB cells, PC cells, and MM
cells in vitro, suggesting that IGF-1 released from the bone
matrix in the proximity of metastatic tumor cells could also
directly benefit tumor progression [156-158] (Fig. 2D).

In contrast to osteoclastic lesions, PC bone metastases are
predominantly osteoblastic [159]. Furthermore, AML cells
have been demonstrated to induce osteogenic differentiation
of MSCs in vitro through BMP-Smad1/5 signaling [160].
Interestingly, several studies also investigated the involve-
ment of osteoblasts in NB, but the results are contradicting.
On the one hand, NB cells seemed to impede MSC differ-
entiation into osteoblasts by secretion of Wnt-inhibitor
DKKI in an in vitro model [161], a process that has likewise
been described for osteolytic bone metastases of MM and
breast cancer [162,163]. On the other hand, a study with
murine BM-MSCs demonstrated that NB cells increased the
in vitro differentiation of MSCs into osteoblasts by in-
creasing the expression of intracellular VEGF-A [153]
(Fig. 2E). This enhanced the effects of BMP-4, which is—
next to Wnt- and Notch signaling—part of one of three
pathways that control osteoblastogenesis [164]. Importantly,
recent study from our group with ex vivo analyses of NB
patient-derived material demonstrated BM-MSCs from
metastatic NB patients to be more prone to differentiate
toward osteoblasts compared to MSCs from patients without
BM metastases [113].

In conclusion, the regulation of bone homeostasis in NB
and the involvement of the BM stroma are complex and
seem to implicate both osteolytic as well as osteoblastic
processes. The latter represent ‘‘two extremes of a con-
tinuum’ [165] and are thus coinciding events. Although
bone metastases of most tumors present lesions that display
both processes, they are termed ‘‘osteolytic’” or ‘‘osteo-
blastic”’ based on the predominantly occurring process
[159,166]. The benefit for the tumor is in both cases an
increased availability of growth factors, either when being
released from the bone matrix (in osteolytic lesions) or
produced by an increased number of bone cells (in osteo-
blastic lesions) [158].

Catecholamines in NB

Other important players in the metastatic BM environment
are catecholamines, such as dopamine, epinephrine, norepi-
nephrine, and their metabolites. In normal situations, ca-
techolamines are primarily secreted in a circadian thythm by
sympathetic neurons and are involved in regulating activity
and homing of HSPCs to the BM [167]. More specifically,
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secretion of norepinephrine by sympathetic neurons in the BM
downregulates CXCL12 expression by stromal cells, resulting
in HSPC release into the blood [168]. As a tumor originating
from the neural crest, nearly all NB tumors secrete catecho-
lamines and their metabolites, some of which are utilized as
diagnostic markers [5]. Although their function in NB is un-
known, they were found to promote tumor proliferation and
metastasis in several other tumors [167]. This makes the NB
metastatic niche particularly interesting and unique, as NB
cells contribute to catecholamine production. Interestingly,
MSCs from adipose tissue express various adrenergic recep-
tors [169], and catecholamines were suggested to regulate
MSC differentiation and migration (as reviewed by Hajifathali
et al. [170]). Considering these findings, one could speculate
that NB cells may utilize catecholamines to create a prolif-
erative environment in an autocrine or paracrine (to MSCs)
manner (Fig. 2F), or to assist in the creation of space for the
tumor within the BM niche by expelling HSPCs [171].

Therapy Resistance and Dormancy

Since >30% of NB patients relapse after complete re-
mission [1], it is essential to understand therapy resistance
and MRD in the BM. Whereas most macroscopic tumor
lesions respond to therapy, are resected, and become unde-
tectable, some cells may evade therapy, persist, and remain
undetected [6]. Although the majority of studies focuses
specifically on resistance to chemotherapy, there are also
efforts to elucidate resistance to other therapeutic ap-
proaches such as immunotherapy (discussed hereunder).

Chemoresistance can arise intrinsically (acquired chemore-
sistance) or be mediated by cells in the TME [environment-
mediated drug resistance (EMDR)] [172]. The latter can be
facilitated by soluble factors and EVs from the TME as well as
by cell adhesion to the ECM or stromal cells [17]. Furthermore,
dormancy of tumor cells enables them to escape treatment, since
chemotherapeutic agents often target fast-dividing cells in a
nonspecific way [173]. Dormancy on the cellular level is de-
fined by mechanisms that induce cellular quiescence, that is, a
reversible nonproliferative state [15,174].

A contribution of MSCs to chemoresistance and dor-
mancy has been demonstrated in several cancer types. In
breast cancer, for example, MSCs have been described to
promote chemoresistance and induce tumor dormancy by
secreting cell cycle-inhibitory miRNAs and creating a
tumor-protective niche [175,176]. Breast cancer cells were
also shown to enter a dormant state in vitro after cannibal-
izing BM-MSCs, after which they acquired a senescence-
associated secretome [177]. In bone metastatic PC, BMP-7,
which normally regulates HSC dormancy, was secreted by
BM-MSCs and induced a reversible senescence-like state in
the tumor cells by inhibiting EMT [178].

In the BM metastatic setting of NB little is known about
the processes leading to dormancy and therapy resistance.
However, in in vitro settings and in the in vivo environment
of the primary tumor the contribution of MSCs to therapy
resistance has been investigated. Chemoresistance in NB
was shown to involve MSC-mediated STAT3 signaling in in
vitro experiments: NB cells cocultured with patient-derived
BM-MSCs were protected from etoposide-induced apopto-
sis [73,179,180]. The results suggested Sphingosine-1-
phosphate receptor 1 (S1PR1) to play a role in the activation
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of STAT3 signaling in NB cells and showed that anti-
apoptotic proteins Bcl2 and survivin are involved in the
STAT3-related chemoresistance mechanism [179,180].
Consistently, knockdown or inhibition of SIPR1 abrogated
the STAT3-mediated chemoresistance [179]. These results
are corroborated by in vivo studies: inhibition of STAT3
with AZD9150 increased sensitivity of NB to cisplatin, as
seen by decreased tumor growth (64%) and significantly
prolonged survival of mice [181]. Furthermore, combined
inhibition of STAT3 (by ruxolitinib) and ERK1/2 (by tra-
metinib) sensitized NB cells to etoposide and led to de-
creased tumor size and prolonged survival of mice [73].

Resistance to anti-GD2-immunotherapy was mediated by
BM-MSCs in an in vivo study: BM-MSCs isolated from NB
patients, co-injected with monocytes into the renal capsule
of mice, protected NB cells from toxicity induced by di-
nutuximab (an anti-GD2 antibody) and activated natural
killer cells (aNKC) [182]. Whether these BM-MSCs were
isolated from BM with metastases, where they might have
been manipulated by tumor cells to become protective, was
not addressed in this study. Addition of an anti-CD105
(Endoglin) antibody restored the efficiency of the aNKC/
dinutuximab treatment. Since the anti-CD105 antibody
eliminates not only MSCs but also monocytes and endo-
thelial cells, the protective effect cannot be attributed solely
to MSCs here. Based on analyses of conditioned medium
from cocultures of MSCs, monocytes and NB cells, TGF-1
was proposed to be a major contributor to MSC-/monocyte-
induced protection from aNKC/dinutuximab treatment
[182]. Corroborating this hypothesis, another study reported
inhibition of TGF-BR1 with galunisertib to restore antitumor
activity of the aNKC/dinutuximab combination treatment in
vitro and in vivo [183].

These studies provide intriguing evidence for the contri-
bution of MSCs and some molecular mechanisms of therapy
resistance. Further research into factors and signaling
pathways involved in MSC-mediated therapy resistance in
the BM is needed to advance our understanding of the
mechanisms that underlie NB relapse.

Clinical Perspective
MSCs as cellular therapy

Because of their multipotent nature, MSCs are often used
in regenerative medicine and in addition to treatment for a
variety of nonmalignant diseases [184,185]. Although a
range of studies show tumor-supportive properties of MSCs,
a potential clinical use of MSCs in tumor therapy is being
investigated. The safety of such application must, therefore,
be taken into account and be treated with caution [186].

One property of interest is their hematopoietic supportive
function to promote recovery of the hematopoietic system
after myeloablative cancer therapy and stem cell trans-
plantation. MSC co-transplantation can be used to support
the nesting of HSPCs in the BM hematopoietic niche, to
reduce the inflammation of damaged tissue and thus to
sustain an overall functional BM niche [187]. Although the
benefits of MSC co-transplantation to enhance engraftment
in allogeneic HSC transplantation and to prevent graft-
versus-host disease have been studied extensively [188], its
use in the autologous context, as common in NB, remains
largely unexplored [189,190].
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The second MSC property with a potential clinical benefit
is their tumor-tropism to selectively deliver anticancer
agents to tumors. In NB tumors, a few possible agents have
been tested in vitro and in vivo, including TNF-related
apoptosis-inducing ligand (TRAIL) [191], interferon-
gamma (IFN-y) [192], IFN-f [193], and the neuronal
differentiation-associated microRNA miR-124 [194]. Fur-
thermore, the use of oncolytic virus-infected MSC products
has been tested in vivo [195] and showed only small side
effects in NB therapy in a phase I/II clinical trial [196].

However, there is evidence that indicates rapid clearance
of ex vivo expanded MSCs after systemic administration
[197], questioning the ability of MSCs to migrate to their
target tissue in NB therapy. Utilizing EVs as a delivery
vehicle instead could present a remedy for this limitation:
The successful targeting to tumors and effectiveness of EVs
loaded with oncolytic virus or chemotherapeutic agents was
demonstrated in a mouse model of lung cancer [198] and
human BM-MSC-derived EVs resulted in a therapeutic ef-
fect in a graft-versus-host disease model [199].

In addition, MSCs might exert an adverse effect on tumor
progression, which could diminish the intended benefit of
these therapies. The multitude of possible applications of
MSC:s in cellular therapy stress the need to further investi-
gate the role of MSC-NB crosstalk to ensure their safe use in
the clinical setting.

Therapy targeting MSC-NB crosstalk

In addition to the aforementioned approaches that exploit
the beneficiary functions of MSCs, there are other endeavors
that try to directly target MSCs and the TME they sustain to
ablate their tumor-supportive effect, especially their therapy-
protective functions. Therapy resistance of tumor cells in BM
remains a major obstacle for curing NB [13,17]. Treatment
should, therefore, aim to address EMDR effectively and in-
crease chemotherapy efficiency, for example, by mobilizing
NBCs from their protective environment in the BM niche.
Secondly, targeting the BM more specifically would aid in
reducing the chemotherapeutic load for patients. Strategies
for achieving the latter have extensively been reviewed by
Mu et al. [200]. The following section summarizes existing
knowledge about intriguing new ways of targeting NB cells
and MSCs and their interaction with the TME to overcome
chemoresistance and eliminate MRD.

Targeting NB-MSC interactions in the TME. The CXCR4/
CXCL12 axis is an interesting candidate for targeting the
BM TME because of its important role in NB metastasis and
progression and the contribution of MSCs to this signaling
axis, as mentioned earlier in this review. The feasibility is
supported by two studies that show reduced primary NB
growth in vivo, one using virally delivered and the other
systemically injected CXCR4 antagonists [201,202]. In ad-
dition, an inhibitory effect on NB proliferation and metas-
tasis, partly due to reduced CXCR4 expression, is observed
upon use of isatin, an endogenous indole found in plants and
humans [203]. Finally, enhanced CXCR4 expression was
found in cisplatin-resistant tumors, and inhibition of CXCR4
expression on NB cells with the VEGFR-inhibitor vande-
tanib restored cisplatin sensitivity in mice [204].

Directly eliminating BM-MSCs is another approach to
abolish their tumor-supportive effects. One of the
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established targets on MSCs is the transmembrane receptor
CD105 (also targeting monocyte and endothelial cells), to
which antibody-dependent cellular cytotoxicity by anti-
CD105 antibodies can be directed. An in vivo study in mice
showed that resistance to anti-GD2 immunotherapy of NB
conferred by MSCs and/or monocytes can be overcome by
eliminating these cells with anti-CD105 antibodies [182].
Another approach targeting the BM niche and reducing the
burden of osteolytic lesions in metastatic NB is to interfere
with RANK/RANKL signaling. Endogenously, the RANKL
decoy receptor osteoprotegerin (OPG) inhibits osteoclast ac-
tivation [140,166]. A phase III clinical trial for treatment of
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osteolytic lesions in MM patients, showed the efficacy and
safety of RANKL inhibitor denosumab, which mimics the
endogenous OPG effects [205]. Its application in NB has not
been investigated yet, but could prove beneficial to prevent
osteolysis and the concomitant effects on tumor progression
and to provide supportive care for bone disease in NB.
Mobilizing NB cells out of the protective BM niche. ~Although
not directly MSC related, the mobilization of sequestered NB
cells out of the protective environment of the BM niche is a
valuable approach for improving therapy success. Tumor cells
thereby lose their (indirect) contact with MSCs and other cells
in the TME and become more accessible for tumor-targeting
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FIG. 3. Open questions regarding NB-MSC interactions. (A) Metastasis is dependent on the cell’s capacity to migrate to
distant sites. Whether MSCs are a source of TGF- and MMP-9 or activate Notch signaling in NB cells, all of which are
known to be involved in EMT and invasion in NB [93,100,102], remains to be elucidated in NB. Furthermore, the PI3K/
AKT pathway and STAT3 signaling have been implicated to contribute to EMT [94,95]. (B) Additional signaling between
NB cells and MSCs through cytokines, chemokines, and growth factors (purple) might contribute to tumor proliferation and
-survival. CCLS5 [69], MMPs [98], and Notch signaling [213] have been described to contribute to cancer cell motility,
invasion, and differentiation into CAFs. MSC-derived IFNa, in contrast, was suggested to inhibit proliferation of cancer
cells [212]. Furthermore, the cargo of exosomes derived from metastatic NB cells (red) and the signaling it induces in MSCs
is an interesting field of research [123]. (C) To prevent EMDR and induction of dormancy through MSCs, the signaling
components from MSCs contributing to these processes need to be studied in detail. It has been described that MSCs induce
expression of SIPR1 in NB cells, which protected NB cells from drug-induced apoptosis through the JAK-STAT?3 signaling
pathway [179]. In breast cancer, miRNA-loaded exosomes promoted quiescence in tumor cells [175,176]. CAF, cancer-
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Color images are available online.
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drugs. Since mobilization could introduce the risk of new
metastases, this should be done with great caution and ac-
companied by a consecutive chemotherapy course. Never-
theless, there are some studies that support this idea, for
example, by targeting CXCR4 or adhesion molecules such as
integrins.

In a breast cancer xenograft model, the CXCR4-specific
inhibitor AMD3100 [206] successfully mobilized dormant
tumor cells out of the perisinusoidal niche of the BM, as
demonstrated with real-time in vivo imaging [207]. Simi-
larly, AMD3100 diminished adhesion of MM cells to BM
stromal cells (identity not further clarified) in vitro and
promoted mobilization of tumor cells into the circulation
in vivo, subsequently sensitizing them to bortezomib [208].
However, AMD3100 presents a nonspecific way of targeting
tumor cells in the BM, as it is also used for mobilizing
HSPCs from the BM before stem cell transplantation [209].
All AMD3100-effects must, therefore, be considered during
its application, but it might be beneficial in sensitization of
NB cells to therapy and specific targeting of dormant NB
cells to lower the risk for relapse.

A more precise target for blocking NB cell adhesion
could be tumor-specific integrins, which regulate tumor
migration, invasion, and adhesion to the ECM, and whose
high expression is associated with increased metastasis
[210]. For instance, integrin subunits a3 1were previously
reported to be upregulated in NB cells exposed to condi-
tioned medium from BM-MSCs, concomitant with in-
creased invasiveness, which implies a functional role for NB
metastasis and attachment [100]. Furthermore, combined
inhibition of VB3 and aVPB5 integrins reduced NB cell
attachment to the culturing surface and thereby increased
the cytotoxic effects of an anti-GD2 antibody in vitro [211].
Overall, targeting adhesion by blocking integrins and/or
CXCR4 might pose an exciting new way to promote mo-
bilization of NB cells out of the BM and sensitize them to
treatment.

Open Questions and Outlook

Although an increasing body of evidence suggests a
tumor-supportive role of MSCs in various tumor types, more
in/ex vivo research is necessary in the context of NB to
confirm previous findings and extend our knowledge re-
garding the role of MSCs in EMT, chemoresistance, and
dormancy.

It remains unclear if and to what extent MSCs promote
EMT in NB cells, for example. Are they involved in the
Notch signaling that induces the switch between adrenergic
and mesenchymal NB cells? Could MSCs in the pediatric
BM be a source of TGF-f that evokes EMT characteristics
in NB cells (Fig. 3A)? What role do EVs and other pro- or
antitumorigenic components (such as CCL5 [69], MMPs
[98], IFNa [212], and Notch signaling [213]) play in NB
progression in the BM (Fig. 3B)? And by what mechanisms
do MSCs contribute to EMDR and dormancy in NB cells
(Fig. 3C)? These and more questions need to be answered to
find out how to harness the MSC-NB crosstalk to our ad-
vantage. The complexity of signaling and crosstalk in the
TME, which can differ depending on tumor localization and
experimental design as well as on the well-known NB het-
erogeneity, have to be considered when interpreting results.
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The fundamental knowledge of molecular mechanisms
is imperative for designing new treatment options that
target the tumor and its microenvironment in a more ef-
fective and specific way and thereby avoid unfavorable
side effects. Furthermore, the development of targeted drug
delivery to the BM is crucial for advancing the progress in
curing NB.
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