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Abstract

SLC18B1 is a sister gene to the vesicular monoamine and acetylcholine transporters, and

the only known polyamine transporter, with unknown physiological role. We reveal that

Slc18b1 knock out mice has significantly reduced polyamine content in the brain providing

the first evidence that Slc18b1 is functionally required for regulating polyamine levels. We

found that this mouse has impaired short and long term memory in novel object recognition,

radial arm maze and self-administration paradigms. We also show that Slc18b1 KO mice

have altered expression of genes involved in Long Term Potentiation, plasticity, calcium sig-

nalling and synaptic functions and that expression of components of GABA and glutamate

signalling are changed. We further observe a partial resistance to diazepam, manifested as

significantly lowered reduction in locomotion after diazepam treatment. We suggest that

removal of Slc18b1 leads to reduction of polyamine contents in neurons, resulting in

reduced GABA signalling due to long-term reduction in glutamatergic signalling.

Author summary

A fundamental function of the nervous system is its ability to modulate and change the

connections between nerve cells, and this forms the basis for memory and learning. This is

most well studied for synapses that are using the neurotransmitter glutamate, and a central

part of this is referred to Long Term Potentiation. This process is dependent on a specific
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glutamate receptor called the NMDA receptor, and the function of this receptor can be

controlled by various mechanisms. Here, we show that polyamines can regulate this recep-

tor and that lack of polyamines result in impaired learning and memory. Polyamines are

small peptides made by many different cells in the body, including cells in the brain, and

by removing a gene coding for a transporter important for the release of polyamines in

nerve cells of mice, we show that polyamines are important for proper function of the glu-

tamate system. We also show the deletion of this gene result in fundamentally rearranged

GABA and glutamate systems, resulting in the mice having a much higher tolerance for the

sedative drug benzodiazepines. Polyamines and targets for these molecules could be impor-

tant points of intervention for future drugs aiming at modulating the glutamatergic system.

Introduction

Polyamines (PAs) are endogenous compounds and the most common PAs produced by mam-

malian cells are spermidine (Spd), spermine (Spm) and putrescine [1]. The polyamines are

present in all living cells and are essential for normal cell function, cellular growth and differ-

entiation [2]. Spd and Spm are produced by mammalian neurons from arginine and methio-

nine via the rate limiting enzyme ornithine decarboxylase (ODC) [3], which is essential for

embryonic development [4]. They are stored in synaptic vesicles and co-released with neuro-

transmitters upon depolarization and have been shown to act as neuromodulators. At low

concentrations extracellular polyamines potentiate [5] the NMDA receptor and at high con-

centrations they act as blockers on the same receptor [6], by occupying specific binding sites.

The potentiation of the NMDA receptor has been shown to, at the physiological level, result in

enhanced memory performance [7] and plasticity [8]. The polyamines can also potentiate the

kinate receptor and block the AMPA receptor upon binding to their specific sites [9].

The mechanism of storage and transport for PAs was for a long time a mystery and most of

the details regarding this are still unknown. Recently it was suggested that the solute carrier

(SLC) SLC18B1 was able to transport polyamines in vitro using synthetic liposomes. It was

suggested that SLC18B1 codes for a vesicular transporter and hence named vesicular poly-

amine transporter (VPAT)[10]. These data were however obtained only from in vitro experi-

ments in synthetic liposomes and although the study clearly suggested that SLC18B1 have

transport ability for polyamines, it did not show if this transport is also relevant in vivo nor did

it show any physiological relevance of this transport.

The SLC18 family contains four members in total, two vesicular monoamine transporters

VMAT 1 (SLC18A1) and 2 (SLC18A2) and the vesicular acetylcholine transporter (VACHT,

SLC18A3). SLC18A2 is found in all neurons which signal through any of the mono amines or

through serotonin in the PNS and CNS, and is the only protein capable of transporting these

transmitters into synaptic vesicles for further release and is hence crucial for all monoaminer-

gic signalling. VMAT1 is found in neuroendocrine cells and has the same function as VMAT2

has in neurons [11]. Similarly, VACHT is responsible for transporting acetylcholine into syn-

aptic vesicles [11], and is necessary for cholinergic signalling in adults [12]. We have previously

shown that SLC18B1 is a phylogenetically distant member of the SLC18 family with wide-

spread expression in the brain [13].

In this paper we present the first transgenic mice where SLC18B1 has been removed. We

show that removal of SLC18B1 results in markedly lower concentrations of polyamines in the

brain. We performed thorough behavioural characterization of the KO mouse and found clear

evidence for effects on memory while many other behavioural functions remained intact.

VPAT is important for memory functions
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Expression and proteomics data suggest influence on genes and proteins related to Long Term

Potentiation (LTP) and plasticity, calcium signalling and synaptic functions delineating plausi-

ble mechanisms for the behavioural effects.

Results

1. Generation and verification of the Slc18b1 knockout

SLC18B1 is a member of the SLC18 family, which is most closely related to the SLC17 family

[14]. SLC18B1 has been shown to transport spermidine and other polyamines [10] while the

other members of the SLC18 family are vesicular monoamine (SLC18A1 and SLC18A2) and

vesicular acetylcholine transporters (SLC18A3) (Fig 1A). We generated a Slc18b1 transgenic

allele by replacing part of the Slc18b1 gene with a targeting construct by homologous recombi-

nation in ES cells (Fig 1B). Successfully targeting produced a modified allele with a loxP site

preceding exon 3, 4 and 5, coding for the putative transmembrane regions 2, 3 and 4 (Fig 1C)

and a neomycin selection cassette flanked by Frt sites, followed by a second loxP site. We con-

firmed the correct targeting event in the ES cells and in the animals by a PCR strategy (Fig

1D). The neo cassette was removed by crossing Slc18b1f/+ mice to Deleter-FlpE mice [15] and

the flipped Slc18b1f/f were viable and fertile and subsequently crossed to PGK-Cre mice [16] to

delete the targeted region and generate null mutant mice, S lc18b1f/f;PGK-Cre (cKO), the geno-

type of these mice were verified using a PCR assay (Fig 1D). We performed western blot on

homogenate from brain tissue from both control (ctrl) and cKO mice to detect the SLC18B1

protein. We could detect the SLC18B1 protein in the ctrl homogenate but the band was

completely absent in the cKO homogenate (Fig 1E). This shows that deletion of the targeted

region results in the complete absence of SLC18B1 protein product in null mutant mice.

2. Polyamine levels in neurons

Next we investigated the levels of polyamines of ctrl and cKO mice (Fig 1F). Brain homogenate

were analysed for polyamine content using a enzymatically based polyamine quantification

kit. We found that polyamine levels were significantly lower (P = 0.011) in cKO compared to

ctrl mice in a Mann Whitney U test. This shows that Slc18b1 is functionally relevant in regulat-

ing total polyamine levels in the brain.

3. Primary behavioural analysis of the KO mouse

3a. Motor functions: We further analysed the cKO and ctrl mice in several behavioural para-

digms. In the elevated plus maze (Fig 2A), we found no difference between the genotypes in

the preference of open or closed arms, nor in the preference for the centre square (Fig 2A). We

also found no difference in rearing and number of head dips measured in the elevated plus

maze (Fig 2B). We interpret these data as that there is no anxiety phenotype in the transgenic

line. We further tested their motor function in the rotarod setup (Fig 2C) and also here we

found no difference between the two lines. To investigate if there was a growth phenotype we

fed mice high caloric food and monitored their weight gain over 13 weeks. We found that the

cKO did not gain significantly more weight at the end of this period (Fig 2D) although there

was a trend pointing towards cKO being heavier. We further examined 42 different metabo-

lites in brain homogenates from cKO and ctrl mice using NMR (Fig 2E) and found no signifi-

cantly differences between cKO and ctrl group. Taken together this data suggest that there is

neither a growth phenotype, nor any major metabolic phenotype. Also, we found no pheno-

type regarding basal behaviour from deletion of the Slc18b1 gene.

VPAT is important for memory functions
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Fig 1. Gene targeting of the Slc18b1 locus results in specific loss of SLC18B1 protein expression. A) Phylogenetic tree

showing the phylogenetic relationship of the proteins within the SLC18 family. SLC18A7 (vGluT1) is used as outgroup.

The figure includes schematic images of the main substrates of transport for each transporter. B) The gene targeting

strategy shows exons 3, 4 and 5 in the Slc18b1 locus flanked by 5’and 3’ loxP site followed by neo cassette flanked by frt

sites resulting in recombinant allele (f). The locations of the PCR primers used in the screening are labelled P1, P2 and P3.

The flipped allele is produced by crossing the heterozygous floxed mice with the deleter; Del-FlpE mice. The flipped mice

are further crossed with PGK-cre mice to generate Slc18b1 null mutant mice. C) A schematic view of the Slc18b1

transporter with 12 transmembrane domains. The targeted region corresponds to the transmembrane domain 2, 3 and 4,

and loops 2, 3 and 4. D) The PCR screen of the flipped and the null mutant mice with wild type mice and heterozygous

mice using the primers illustrated in A. E) Western blot to detect the Slc18b1 protein in ctrl and knock out brain

homogenate. The 48KD band in the ctrl mice corresponds to the Slc18b1 protein and β- actin was used as loading control.

F) Measurement of total polyamine content in brain of cKO and ctrl mice. cKO has significantly (P = 0.011) lower total

polyamine content in brain compared to ctrl.

https://doi.org/10.1371/journal.pgen.1008455.g001
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3b. Memory functions: The KO animals were subsequently subjected to two behavioural

paradigms for memory performance. The first test was the eight arm radial maze, a spatial

working-memory task considered to be largely dependent on hippocampal function [17]. The

test was performed for six subsequent days in order to see how the time to consume the pellets

as well as the number of errors performed decreased with each day of testing (Fig 3C–3F). On

the first trial day, both genotypes took a similar amount of time to complete the task (ctrl

mean = 604.8±72.45 s, cKO mean = 561.33±105.5 s, Mann Whitney U test p>0.05). With each

Fig 2. The cKO mice are not hyperactive and do not displays an anxiety like phenotype. A) Elevated plus maze analysis on

adult male cKO mice and ctrl littermates. The cKO mice spent the same amount of time in the in the four arms as compared to

ctrl mice. B) The entries in the closed and open arm are not significantly altered in the cKO mice as well as rearing and head dips

(cKO male mice, n = 11; ctrl male mice, n = 9). C) No significantly difference in motor performance were observed between cKO

mice and ctrl in a rotarod apparatus for three trail/day over three consecutive days (n = 10/genotype) D) No significantly changes

in bodyweight over a period of 13 weeks when cKO and ctrl mice where given a high-fat/high-sugar diet available ad libitum

(n = 12/genotype) E) Levels of 42 different metabolites in NMR but there were no significantly differences between cKO and ctrl

group.

https://doi.org/10.1371/journal.pgen.1008455.g002
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Fig 3. Impaired memory function in cKO mice compared to ctrl. A-B) Radial arm maze was used to evaluate

memory for a 6 day trail. The cKO mice took significantly longer time to complete the task of retaining four pellets (A)

as well as made over all more visits in all arms of the maze B). The reference memory (C) and the working memory (D)

are significantly worse in the cKO mice as compared to ctrl mice (n = 10/genotype). Significant main genotype effect

observed by two way Anova analysis are illustrated by #p<0.05, ##p<0.01 and ###p<0.001; differences by Bonferroni

post hoc test are shown by �p<0.05, ��p<0.01 and ���p<0.001 E-H) Recognition memory function was assessed in a

three day protocol consisting of a habitation day (day one), test for short term memory (day 2) and long-term memory

(day 3) (n = 5/genotype). On day 2 (short-term memory), the cKO mice displayed a significantly less preference for the

novel object (Mann Whitney U-test p<0.05) (E), and the cKO mice spent a significantly lower time with the novel

object (Mann Whitney U-test p<0.05) (F). On day 3 (long-term memory), the ctrl mice displayed a significantly strong

object preference for the novel object (G) (Mann Whitney U-test p<0.05) and the cKO mice spent significantly shorter

time with the novel object (Mann Whitney U-test p<0.05) (H). Data represent mean ±SEM.

https://doi.org/10.1371/journal.pgen.1008455.g003
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subsequent day of testing, ctrl mice took less time to complete the task while the cKO mice did

not improve, showing a significantly impaired learning ability (two way repeated measure

ANOVA, Genotype F(1,18) = 34.55, p<0,0001; Bonferroni posttest day 2, p<0,001; Bonferroni

posttest day 3, p<0,01, Bonferroni posttest day 4, p<0,001) (Fig 3C). The cKO mice made sig-

nificantly more visits to all eight arms compared to ctrl mice (two way repeated measure

ANOVA, Genotype F(1,18) = 7.46, p = 0,037; Bonferroni posttest day 2, p<0,001; Bonferroni

posttest day 3, p<0,05) (Fig 3D). We investigated the working memory error (WME), which

was defined as re-entry in to a previously baited (now empty) arm, the cKO mice performed

significantly more WMEs, (two way repeated measure ANOVA, Genotype F(1,18) = 8.93,

p = 0.0065; Bonferroni posttest day 3, p<0,05) (Fig 3F). We also analysed spatial memory in

reference memory error (RME), defined as entries in to a never baited arm. The cKO per-

formed significantly more RMEs (two way repeated measure ANOVA, Genotype F(1,18) =

9.48, p = 0,037; Bonferroni posttest day 2, p<0,001; Bonferroni posttest day 4, p<0,05) (Fig

3E). These results suggest that the cKO mice have impairments in spatial working-memory

and/or hippocampal function. We also tested recognition memory using the novel object rec-

ognition setup. On day 1 (habituation day), each mouse was habituated to an arena with iden-

tical objects placed at each end for 10 minutes. On day 2 (short-term memory), the ctrl mice

displayed a significantly stronger preference for the novel object (Mann Whitney U-test

p<0.05) (Fig 3G), and the cKO mice spent a significantly less time with the novel object

(Mann Whitney U-test p<0.05) (Fig 3H). These data suggest that the KO mice have deficits in

short-term recognition memory and/or hippocampal function. On day 3 (long-term memory),

the ctrl mice once again displayed a significantly strong object preference for the novel object

(Fig 3I) (Mann Whitney U-test p<0.05) and the cKO mice spent significantly shorter time

with the novel object (Mann Whitney U-test p<0.05) (Fig 3J). In addition to deficits in short-

term memory, these data also suggest that the cKO mice have deficits in long-term memory.

3c. Operant self administration: Further, we used operand chambers to study voluntary

consumption of a rewarding substance. The mice were analysed for self-administration of

sucrose in the operand setting (Fig 4A). To determine whether acquisition of an operand task

in the cKO mice were impaired, mice were first trained to nosepoke on a Fixed Ratio 1(FR1)

schedule for sucrose pellets during mild food restriction. The number of nose pokes during

the FR1 schedule was not significantly different between cKO and ctrl mice (Mann Whitney

U-test p>0.05). However, the ctrl mice nose poked significantly more during FR2 (Mann

Whitney U-test p = 0.037) and FR3 (Mann Whitney U-test p = 0.0397) schedule. There were

no difference in number of nose pokes in the inactive apparatus; this shows that the cKO mice

had learnt the goal-directed response (Fig 4C). The cKO mice did more receptacles entries in

all trainings schedules, but significantly more entries on the FR2 schedule (Mann Whitney U-

test p = 0.0371) (Fig 4D). The cKO mice did not self-administrate more sucrose pellets during

the FR5 schedule (Fig 4E), nor did they enter the food receptacle in a different fashion com-

pared to ctrl mice (Fig 4F). After the ctrl and cKO mice had established a biased response in

the active nosepoke apparatus, the reinforcement schedule was changed to progressive ratio

(PR) to further determine the reinforcing effects of sucrose (Fig 4G). The PR paradigm has

been described as a measure for the motivational aspect of consumption as compared to the

FR5 schedule which is used to measure consumption rate [18]. There was no significant effect

of genotype on the active nose poke hole. The average breakpoint (the number of nose pokes

made to obtain the last reinforcement of the session) was not significantly different between

ctrl (11.79±0.65) and cKO mice (12.79±0.77) (Mann Whitney U test p>0.05). Inactive

responses were low during all reinforce/ schedule conditions and did not differ between the

two genotypes (Fig 4C, 4E–4J).

VPAT is important for memory functions
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Fig 4. The cKO mice make more entries in the food receptacle during reinstatement. A) The mice (cKO male mice, n = 7;

ctrl male mice, n = 8) were analysed for self-administration of sucrose in the operand setting with two feeders, one of which

delivers pellets upon head entry (active aperture) and the other did not (inactive apparatus). When a mouse made a head entry

at the active feeder, a sugar reward was delivered, and simultunasly, light and sound cues were presented to confirm the chooise;

a head entry in the inactive feeder neither produced a reward nor a light or cue. B) Mice were trained to nosepoke on a fixed

ratio 1(FR1) schedule for sucrose pellets during mild food restriction for three days with a max of 30 sucrose pellets, the cKO

mice nose poke equally number as the ctrl mice. On the FR2 and FR3 schedule the cKO mice nose pokes significantly lower

number as compared to ctrl (Mann Whitney U-test p = 0.037 and p = 0.0397). C) There were a clear decrease of nose pokes in

the inactive apparatus for both cKO and ctrl mice during the FR1-FR3 schedule. D) The cKO mice made more receptacle

entries overall during the FR1-FR3 schedule but significantly more on the FR2 schedule (Mann Whitney U-test p = 0.0371). E)

VPAT is important for memory functions
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3d. Feeding and growth: Since self-administration of sucrose pellets during mild food

restriction could indicate a generalized increased in consumption responding to any food or

reward (hunger driven feeding), we allowed the mice free access to rodent chow in their home

cage to investigate sucrose reward-driven feeding. No significant differences were observed

between the groups during FR5 and PR schedule in the reward-driven feeding. Lastly the mice

were subjected to an extinction -reinstatement phase. There was no significant difference

between cKO mice and ctrl mice in the number of nosepokes during the extinction phase. The

reinstatement was one single session five days after the final extinction day, where the mice

were on a schedule in which responding at the active nose poke apparatus produced both light

and sound, but no pellet delivery. The cKO mice did not differ in the number of nose pokes,

but they entered the food receptacle significantly more times as compared to ctrl mice (two

way repeated measure ANOVA, Genotype F(1,12) = 5.57, p = 0,0345). Analysis of operant

sugar consumption behaviour thus demonstrates that the cKO mice displayed normal reward-

related learning, motivation, and ability for task-switching and their consummator of sugar

eatables was not changed. However the cKO mice ability to learn the task in reinstatement was

significantly impaired indicating that the cKO mice had an impaired memory function.

4. Expression arrays

Next, we performed expression micro arrays on cKO and ctrl mice to investigate differences in

global gene expression in the adult brain. Expression data for 28794 transcripts were obtained

for each genotype. In a PCA analysis we saw no clustering in three components that were

dependant on experimental conditions and we saw no clustering based on genotype (Fig 5A).

We therefore preformed a PCA analysis based the 500 transcripts with lowest P-value, adjusted

for multiple comparisons using the false discovery rate method [19, 20], for differential expres-

sion. Here we saw a clear clustering based on genotype in two PCA components, which

together explained 98.5% of the variation in the data, (Fig 5B). This suggests that there are rele-

vant differences between the lines considering the most differentially expressed genes. We sub-

sequently performed a Gene Set Enrichment Analysis (GSEA) [21, 22] for a number of gene

sets involved in GABAergic and glutamatergic signalling (Fig 5C). We saw differential expres-

sion among these genes that can be explained by altered excitatory and / or inhibitory signal-

ling, see the Discussion section. We used KEGG [22] to perform pathway analysis on the same

500 hundred most change transcripts as used for two component PCA analysis and found sig-

nificant enrichments in 13 different pathways (Fig 5D) in the cKO mice compared to ctrl

mice. Most of these pathways are involved in neuronal signalling, the immune system and hor-

mone biosynthesis.

5. Proteomics

Next, we performed proteomics analysis using mass spectrometry on the other hemisphere of

the brains used for expression microarrays. For this we analysed the hydrophobic membrane

The number of nose pokes in the active and inactive hole was not significantly altered in the cKO mice as well as the number of

receptacle entries (F). G)The progressive ratio(PR) was performed over a three day period and showed no alteration in the cKO

mice. H) During a 7 day trail on FR5 paradigm the genotypes performed equally, both on active and inactive nose poke hole I)

During PR, no difference was seen in head entries in the active or inactive nose poke hole. J-L) Cognitive ability testing. During

reinstatement (K-L), the mice were presented to the original task after an extinction period (J). J) For six consecutive days, the

active feeder delivered no light, sound or pellet (extinction). For both groups, the amount of head entries strongly decreases.

K-L) during the reinstatement the active feeder delivered both light and sound cues, but no sugar pellets. The numbers of nose

pokes are not different in the cKO mice (K) but the cKO mice make significantly more receptacle entries as compared to ctrl

two way repeated measure ANOVA, Genotype F(1,12) = 5.57, p = 0,0345 (L). Data represent mean ±SEM.

https://doi.org/10.1371/journal.pgen.1008455.g004
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Fig 5. Clear differences in global gene expression in the adult brain in the cKO mice compared to ctrl mice. A) PCA

plot in three dimensions showing expression values, including all 28794 genes from the Affymetrix microarray, for 5 cKO

and 5 ctrl mice. B) PCA plot in two dimensions including the 500 genes with most significant differential expression

between the two lines. The two vectors plotted explained 98.5% of the variation in the dataset. C) Gene Set Enrichment

Analysis of the cKO and ctrl mice arrays. Each black vertical line represents one gene, and the position on the red to blue

scale bar represents the average expression of the gene. Therefore, any line positioned to the left of the midline indicates

an up regulation in the cKO animals compared to the ctrl and any line positioned to the right of the midline indicates

down regulation in the knockout. D) KEGG pathway analysis on the 500 most changed transcript in the cKO adult mice
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protein fraction separately from the water soluble proteins to increase the number of detected

proteins. We found that 9 and 25 (a total of 34) proteins were significantly changed between

cKO and ctrl mice in the respective fractions. Out of these 34 proteins, transcripts for 22 were

also changed in the expression microarray in the same direction. We applied KEGG pathway

analysis on the 34 changed proteins [23] and identified 14 pathways which were statistically

significant enriched using the entire genome as reference set (Table 1, Fig 5E). Similar to what

was seen for the RNA expression analysis, pathways involved in neuronal signalling and specif-

ically LTP, the immune system and biosynthesis were identified as significantly enriched.

6. Follow up behavioural testing

Following the findings from the transcriptomics and proteomics study, we investigated if these

molecular changes in the brain did also affect the behaviour of the animals by performing a

series of behavioural experiments to specifically target GABA and glutamatergic signalling and

LTP. We investigated their locomotor behaviour in automated locoboxes over 60 min. When

we administered i.p. 10 ml/kg saline to cKO and ctrl mice there were no differences in locomo-

tion between genotypes (Fig 6A). However, we found that when injected with i.p. 2 ml/kg diaz-

epam, a benzodiazepine functioning as a positive allosteric modulator for GABA, the cKO

showed a significant (Mann Whitney t-test p = 0.003) lower reduction in total activity com-

pared to ctrl mice (Fig 6A). This is interesting, as it shows that the cKO mice have a partial

resistance to the effect of benzodiazepines. We subsequently did a similar experiment with

amphetamine, although here each animal where subjected to the test under the influence of

first saline and then, after a washout period, under influence of amphetamine at different

doses in a scramble fashion. The locomotion data for each animal was then normalized against

its own saline measurements. Here we found that the cKO mice were more sensitive to

the effect of amphetamine than ctrl mice (two way repeated measure ANOVA, Genotype

F(1,22) = 14.1, p = 0,0011; Bonferroni posttest 4 mg/kg, p<0,001) (Fig 6B).

brain, and 13 pathways are significantly altered. E) Mass spectrometry on the same brains as the expression array. The

hydrophobic membrane protein and the water soluble protein fraction showed that 9 and 25 proteins (total 34 proteins),

in respectively fraction, were significantly changed between cKO and ctrl mice. The KEGG pathway analysis was

performed on the 34 changed proteins and 14 pathways were identified as significantly changed between cKO and ctrl

mice.

https://doi.org/10.1371/journal.pgen.1008455.g005

Table 1. Significantly differentially expressed proteins from table one and their associated KEGG pathways.

KEGG pathway Proteins

Phagasome Tuba4a, Tuba1a, Tubb5, Atp6v1c1, Atp6v1b2, Tubb2b

Gap junction Tuba4a, Tuba1a, Tubb5, Tubb2b

Gastric acid secretion Atp1a3, Ezr, Camk2a

Long-term potentiation Ppp3cb, Camk2a, Rap1a

Collecting duct acid secretion Atp6v1c1, Atp6v1b2

Leukocyte transendothelial migration Ezr, Rhoa, Rap1a

Regulation of actin cytoskeleton Ezr, Rhoa, Pak1, Pip4k2a

Vasopressin-regulated water reabsorption Vamp2, Aqp4

T cell receptor signaling pathway Ppp3cb, Rhoa, Pak1

Axon guidance Ppp3cb, Rhoa, Pak1

Neurotrophin signaling pathway Rhoa, Camk2a, Rap1a

https://doi.org/10.1371/journal.pgen.1008455.t001
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7. Analysis of genetic variants in the human SLC18B1 gene

Six independent variants were nominally associated with memory scores. The strongest signal

was identified at rs11962883 (praw = 0.016), which was in LD with rs10484629 (r2 = 0.97, D’ =

0.99). TMT A. TMT A scores were significantly associated with two variants (rs531880979,

praw = 0.030, and rs548918202, praw = 0.037). The former one is located within 3’ UTR of the

SLC18B1 gene. TMT B. Six variants had been associated with TMT B scores. Two of the identi-

fied SNPs were in perfect LD (r2 = 1, D’ = 1) and had the strongest nominal associations with

TMT B scores (praw = 0.002). TMT B-A. For the score difference between TMT B and TMT A,

nine variants were identified to be significantly associated with these scores. The strongest

association was found at rs75011399 (praw = 3.4e-05, padj. = 0.0087). Another variant,

rs537022445, was also significantly associated with TMT B-A after the Bonferroni correction

(praw = 0.00017, padj. = 0.044). This SNP was found in perfect LD with rs543000211 (r2 = 1,

D’ = 1). More information about significantly associated hits with cognitive functions can be

found in Table 2.

Discussion

The SLC18B1 gene is coding for a solute carrier that is most similar to vesicular transporters

transporting monoamines and acetylcholine. Recently it has been suggested, through in vitro
experiments on synthetic liposomes, that this transporter transports polyamines [10] and thus

being the only known transporter in mammals with the ability to transport polyamines. Our

results show a significant (P = 0.011) reduction in polyamine content in the brain of cKO mice

(Fig 1F) as compared to ctrl mice. This could suggest that Slc18b1 is also expressed in the

plasma membrane of neurons and have a role in supplying the neurons with polyamines. It is

also possible that reduced levels of polyamines observed in the cKO compared to ctrl mice

could be a secondary effect of removal of the vesicular expression of Slc18b1 altering the

homeostasis of polyamines in the brain. Our data thus confirm and strengthens previously

Fig 6. Increased sensitivity to amphetamine and decreased sensitivity diazepam cKO mice. A) Measurements of

total activity over a period of 60 minutes in an automated activity chamber. There is no difference between cKO and

ctrl mice (left set of bars) when injected i.p with 10 ml/kg saline, while there is a clear significant difference (Mann-

Whitney U-test �p = 0.003) between cKO and ctrl mice treated with 2 ml/kg diazepam (cKO male mice, n = 16; ctrl

male mice, n = 9). B) Mice were injected with 10 ml/kg saline and after a wash out period the mice were subjected to

four doses of amphetamine in a scrambled fashion. The locomotion data for each animal was then normalized against

its own saline measurements. The cKO mice displayed an increased sensitivity for amphetamine on all doses as

compared to ctrl mice (n = 10/genotype).

https://doi.org/10.1371/journal.pgen.1008455.g006
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published data that Slc18b1 is indeed able to mediate transport of polyamines and most impor-

tantly we here show that this is also its physiological role in vivo.

Thorough behavioural characterization of the cKO mouse revealed no major phenotype on

basic behavioural such as anxiety, depression or locomotion. However, we found a strong phe-

notype with robust effects on both short and long term memory. In the radial arm maze,

where the cKO mice perform significantly worse, displaying impaired learning ability

(p<0.0001) as well as impaired working memory (p<0.0065) compared to controls. Also, the

cKO mice made more reference memory errors by having significantly more visits into never

baited arms (p = 0.037). Moreover, the novel object recognition displayed that the cKO mice

had both poorer short-term memory (P< 0.05) as well as long-term memory (P<0.05) by

spending less time with the novel object on both testing days. Our results regarding the mem-

ory phenotype resembles those of knockout studies of several proteins in the LTP pathway.

For example, loss of function mutations of CamKII, a key molecule in the early phase of LTP

[24], results in impaired spatial memory in the Barnes maze, similar to the Slc18b1 KO mice

[25]. Also, CamKII heterozygote null mice show phenotype in memory similar to Slc8b1 KO

Table 2. Description of significant SNPs in genotype-cognition association analyses.

Cognitive test SNP Major/minor allele MAF Unadj. p-value��

Memory rs185882149 A/G 0.00025 0.043

rs78795600 A/G 0.027 0.017

rs189010729 A/T 0.013 0.047

rs533990845 T/C 0.00054 0.019

rs10484629� A/C 0.116 0.021

rs11962883� A/C 0.118 0.016

rs6910639 A/G 0.118 0.021

TMT A rs531880979 C/A 0.00031 0.030

rs548918202 T/C 0.00019 0.037

TMT B rs6917833 T/C 0.45 0.026

rs75011399 C/T 0.00026 0.0041

rs9399042 C/A 0.00066 0.022

rs551529344 T/G 0.00070 0.041

rs537022445� C/T 0.00013 0.0022

rs543000211� G/A 0.00013 0.0022

TMT B-A rs539782560 C/G 0.00057 0.0045

rs537869171 A/G 0.00030 0.030

rs78795600 A/G 0.033 0.035

rs75011399 C/T 0.027 3.40E-05

rs550261940 T/G 0.00026 0.0097

rs527282915 C/T 0.00028 0.026

rs555565026 A/G 0.32 0.0088

rs551529344 T/G 0.00015 0.0054

rs537022445� C/T 0.00057 0.00017

rs543000211� G/A 0.00070 0.00017

� SNPs in LD (r2>0.8, D’>0.8)

��Genotype-cognitive phenotype association analyses were performed, after adjusting for age, sex, education, assessment centre, genotyping batch, genotyping array and

10 principal components

Unadj.p-values that passed the Bonferroni correction are written in bold

Abbreviations: SNP, single nucleotide polymorphism; MAF, minor allele frequency; TMT, trail making test

https://doi.org/10.1371/journal.pgen.1008455.t002
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mice, although the magnitude of the effect presented is not as strong as the effect we present

here [26]. Interestingly, we see a significant reduction of CamKII in cKO compared to ctrl

mice at the protein level (Fig 5), supporting the notion of the involvement of Slc18b1 in the

LTP pathway. In addition, loss of function mutations or pharmacological inhibition of map

kinases acting downstream of CamKII such as MEK1 [27] and ERK1/2 [28] shows impaired

hippocampal function in the contextual fear conditioning paradigm. These results could be

considered similar to the results we obtain in the novel object recognition, since both para-

digms measure declarative memory at the hippocampal level [29].

We also assessed the voluntary consumption of high-sucrose food in an operant self-admin-

istration paradigm [30]. We could not detect any deficiencies in the reinforcing properties of

sugar as cKO and ctrl mice responded equally in the FR5 as well as in the PR paradigm. We

found however that the cKO mice performed worse during the training as well as the reinstate-

ment phase, indicating that they do not comprehend the task as fast as ctrl mice, again point-

ing toward impaired memory formation. The hippocampus is a region involved in processing

of declarative and contextual information [31] which is used during the SA paradigm. This

again points towards impaired memory functions and reduced LTP in the cKO mice, corrobo-

rating our data from the radial arm maze and novel object recognition paradigms.

In order to know more about the molecular characteristics of the knockout, we performed

both transcriptomic and proteomic analysis. We found no clustering by genotype based on all

transcripts with detected expression (28794 transcripts). However, when we used the 500 tran-

scripts with lowest P-value for differential expression, we found a clear clustering on based on

genotype. Interestingly, the follow up pathway analysis suggests effects on systems related to

memory and plasticity (“Huntington’s disease” and “Alzheimer’s diseases”), phosphorylation

(“oxidative phosphorylation”) and receptor ligand interactions (“Neuroactive ligand–receptor

interaction”). These pathways all have GABA and glutamate signalling as important compo-

nents, which prompted us to investigate in detail effects on these systems.

We used GSE (Gene Set Enrichment Analysis) on seven sets of genes; all related to GABA

or glutamate signalling and found interesting patterns. The NMDA and AMPA receptor sub-

units which represent the postsynaptic ionotropic glutamate receptors were downregulated. A

downregulation of these systems would result in a lowered postsynaptic response from gluta-

mate. The extrasynaptic ionotropic glutamate receptors of the kainite (GIRK) family had an

enrichment score with a trend (p = 0.06) towards significant upregulation in the cKO mice.

We also observe a pattern with the metabotropic glutamate receptors (mGluRs). These are G

protein-coupled receptors and are divided into three groups (I-III). Of these mGluR1 and

mGluR5 constitutes group I, being stimulatory receptors and both these are positively coupled

to calcium, and are mainly postsynaptic [32, 33]. We found that both group I receptors are

strongly downregulated in the knockout mice which would give a reduced response to gluta-

mate in the postsynaptic neuron, in line with the results found for NMDA and AMPA recep-

tors. Interestingly also mGlur7, a member of the group III mGluRs was also strongly

downregulated in the cKO mice. This is the main pre-synaptic receptor and is negatively cou-

pled to cAMP and a downregulation of this protein would result in a lowered negative feed-

back from glutamate and therefore more glutamate release, which is in line with the results

from the kainite receptors. Taken together, we see a marked downregulation of postsynaptic

glutamate receptors and an increase of expression in extrasynaptic and presynaptic glutamate

receptors. The remaining pathways, except “steroid hormone metabolism”, we identified were

related to immune function. This could be a direct effect of reduced release of spermidine and

other polyamines, because theseare known to reduce immune responses, in particular to regu-

late division and differentiation of immune cells [34]. Recently it was also showed that mast

cells have the capability to release the polyamines spermine and spermidine. Mast cells are
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secretory cells that play an important role in host defence [35]. However, how this relates to

immune function genes in the brain, the tissue used in our study, is unclear and has not been

investigated.

We also analysed differences in the global proteome using mass-spectrometry and identi-

fied 34 proteins that were significantly altered between cKO and ctrl mice. These pathways

corroborated well with those that were significantly altered at the transcriptome level. Apart

from the immune system related pathways, we identified effects on “Long Term Potentiation”,

“SNARE interactions in vesicular transport” and “calcium signalling”. Among those proteins

that were significantly changed (Table 3), we found altered levels of CamKII, which is a key

molecule in the LTP pathway [36] as well as synaptic proteins Vamp2, Slc6A17 and Rab14

Table 3. Fraction 1 indicates hydrophobic fraction and fraction 2 indicates hydrophilic fraction.

UniProt

Symbol

Protein name UniProt ID P-value

(Direction)

Fraction

2AbA Serine/threonine-protein phosphatase 2A 55 kDa

regulatory subunit B alpha isoform

Q6P1F6 0.042(+) 2

Aqp4 Aquaporin-4 P55088 0.022(-) 1

Atp1a3 Sodium/potassium-transporting ATPase subunit alpha-3 Q6PIC6 0.049(+) 2

Atp6v1b2 V-type proton ATPase subunit B P62814 0.012(-) 2

Atp6v1c1 Vacuolar proton pump subunit C 1 Q9Z1G3 0.042(-) 2

Camk2a Calcium/calmodulin-dependent protein kinase type II P11798 0.029(-) 1

Caza1 F-actin-capping protein subunit alpha-1 P47753 0.012(-) 2

Dhpr dihydropteridine reductase Q8BVI4 0.003 (+) 2

Dnm3 Dynamin-3 Q8BZ98 0.031(-) 2

Ef1a1 Elongation factor 1-alpha 1 P10126 0.046(+) 2

Ezr Ezrin P26040 0.031(+) 2

Gpil Glucose-6-phosphate isomerase P06745 0.031(+) 2

Ndus1 NADH-ubiquinone oxidoreductase 75 kDa subunit Q91VD9 0.034(-) 2

Ndrg1 Protein NDRG1 Q62433 0.018(-) 2

Nfasc Neurofascin Q810U3 0.021(+) 2

Nrcam Neuronal cell adhesion molecule Q810U4 0.032(-) 2

Pak1 Serine/threonine-protein kinase PAK 1 O88643 0.023(-) 2

Pip4k2a Phosphatidylinositol 5-phosphate 4-kinase alpha type-2 O70172 0.020(-) 2

Pp2b2 Serine/threonine-protein phosphatase 2B catalytic subunit beta isoform P48453 0.026(-) 2

Rab14 Ras-related protein Rab-14 Q91V41 0.012 (-) 1

Ran GTP-binding nuclear protein Ran P62827 0.028 (-) 2

Rap1a Ras-related protein Rap-1A P62835 0.0035(-) 1

Rhoa Transforming protein RhoA Q9QUI0 0.012(+) 1

Rs18 40S ribosomal protein S18 P62270 0.036(+) 1

Sept3 neuronal-specific septin-3 Q9Z1S5 0.008 (+) 2

Slc6a17 Sodium-dependent neurotransmitter transporter NTT4 Q8BJI1 0.038(+) 1

SSDH Succinate-semialdehyde dehydrogenase Q8BWF0 0.020(-) 2

Tcpq1 T-complex protein 1 subunit theta P42932 0.003(+) 2

Tuba1a tubulin alpha-1A chain P68369 0.009(+) 2

Tubb2b Tubulin beta-2B chain Q9CWF2 0.030(-) 2

Tuba4a tubulin alpha-4A chain P68368 0.004(+)/0.007(+) 1/2

Tubb5 tubulin beta-5 chain P99024 0.006(+) 2

Ube2v2 Ubiquitin-conjugating enzyme E2 variant 2 Q9D2M8 0.022(+) 2

Vamp2 Vesicle-associated membrane protein 2 P63044 0.004(-) 1

https://doi.org/10.1371/journal.pgen.1008455.t003
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[37–39]. We also found changes in several β-Tubulins, suggesting changes in neuronal struc-

ture and morphology [40].

In order to further investigate the role of GABA and glutamate signalling pathways, we per-

formed additional behavioural experiments. We injected the animals with diazepam, a positive

steric modulator of the GABAA receptor that enhances the affinity of endogenous GABA [41].

We find a remarkable difference in the total activity after administration of diazepam. The

cKO mice only reduced their activity with approximately 30% while the ctrl mice reduced

their activity approximately threefold. The reduced response to diazepam could be the result

of a reduced GABA signalling ability of the cKO line due to a long term reduction in glutamate

tonus. This would result in a lower effect of diazepam that needs GABA to be active. We also

administered the stimulatory drug amphetamine which is known to enhance glutamate levels

[42] and increases excitatory glutamatergic signalling [43]. Our results shows a higher increase

in total activity in the cKO mice compared to ctrl mice, which is also consistent with reduced

GABA activity, i.e. a less strong inhibition on the nervous system. The reduction of GABA

activity could be either at the receptor level, which is indicated by our micro array analysis

data, or at the amount of GABA itself. However, when we measure amount of GABA in total

brain of the knockouts, we see no differences between genotypes which is also true for gluta-

mate (Fig 2E and 2F). This suggests that the changes in the GABA system are at the receptor

level rather than at the transmitter level. It should however be noted that our measurements of

GABA and glutamate is in whole brain extract and there could still be differences regarding

the partition of the transmitters, for example amount of extracellular versus intracellular, or

the amount packed into synaptic vesicles.

The robust effects on memory that we see where the cKO mice perform significantly worse

than controls are in good agreement with the proteomics results on LTP. This could be a result

of reduced NMDA receptor signalling. The NMDA receptor is crucial for formation of LTP

and memory ([44] and polyamines, especially spermidine, has been shown to strengthen gluta-

matergic signalling through the NMDA receptor [45] in neuronal cultures and that this could

have an effect of LTP [36] and hence neuronal plasticity. We do show (Fig 1F) that cKO mice

have significantly lower polyamine content in neurons and we also show that NMDA receptor

transcripts are downregulated. Taken together our data show that cKO mice have reduced lev-

els of several molecules involved in LTP formation, including the NMDA receptor, CamKII

and spermidine and that lack of the polyamine transporter Slc18b1 results in these changes.

Our current data do not identify which of the polyamine species are changed, which is a limita-

tion of the present study, as we measure total polyamines (Fig 1F). It would be of interest to

perform a thorough analyse of the entire polyamine system, including synthesis enzymes, pre-

cursors and metabolites, to fully understand the impact on the polyamine system from

removal of Slc18b1. It would also be of high interest to understand in which subcellular com-

partments these changes have occurred. Our data do however show that there are effects on

levels of polyamines in total from removing the presumably mainly vesicularly expressed

Slc18b1, which is in itself an interesting finding. In addition, lower GABA levels have been

shown to affect memory functions [46, 47] and especially the GABAA is linked to memory for-

mation [46]. Our expression analysis shows downregulation of several GABA-A receptor sub-

units (Fig 5c) and our pharmacological treatment with diazepam (Fig 6A) also points towards

a reduced function in the GABA system. Most likely, the memory impairments in the cKO

mice are results of dysfunction in both the GABA and glutamate systems.

To conclude we show that targeted deletion of Slc18b1 generating null KO mice with

reduced polyamine content in neurons. Deletion of Slc18b1 also results in impaired memory

functions, profoundly altered expression of genes involved in LTP, plasticity, calcium signal-

ling and synaptic function. We discuss potential effects on the GABA and glutamate system
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based on the transcriptomics and proteomics data that are well corroborating that the mouse

has reduced response to the GABA enhancing drug diazepam.

Materials and methods

Ethics statement

All animal procedures followed Swedish (Animal Welfare act) regulation and European Com-

munities Council Directive (86/609/EEC) and were approved by the Uppsala Ethical commit-

tee for use of animal.

Transgenic mice

Generation of transgenic mice. We generated the transgenic SLC18B1 allele by replacing

part of the SLC18B1 gene with a targeting construct by homologous recombination in ES cells

(Fig 1A). Successfully targeted ES from SV/129 cells produced a recombinant allele with two

lox p sites floxing exon 3, 4 and 5 on either side followed by neomycin cassette enclosed within

the frt sites which were screened using a combined southern blotting and PCR strategy. Two

positive clones of ES cells were selected for injection into the blastocyst and further transferred

into foster mother of C57BL/6 to generate chimeric mice. These were bred with C57BL/6 mice

to generate heterozygous mice carrying one floxed allele, Slc18b1f/+. These mice were inter-

crossed to produce homozygous “floxed” mice Slc18b1f/f. Deleter-FlpE mice [15] was crossed

with Slc18b1f/f mice to remove the neomycin cassette and the “flipped” Slc18b1f/f mice were

viable and fertile. The “flipped” Slc18b1f/f mice were crossed to PGK-Cre [16] mice to generate

null mutants Slc18b1f/f;PGK-Cre conditional KO (cKO) mice.

Genotyping. Tail biopsies (1–2 mm) were incubated in 75 ul of Buffer I consisting of 25

mM NaOh and 200 uM ethylenediaminetetraacetic acid (EDTA) at 95˚C for 45 min and

placed on ice for 10 min before adding 75 ul of Buffer II consisting of Tris-HCl (40 mM), pH

8.0. Mice were genotyped for the presence of the floxed alles and the Cre recombinase, using

primers; P1: (ctg aga agc agg ctc agg tt), P2: (ggg tac cga gct cga att act) and P3 (tcc aac cac cca

agt agt gg). In addition, Neo and Deleter-FlpE specific PCRs were used to genotype Neo-

excised mice.

Verification of Slc18b1 loss through Western blotting. A ctrl male and a cKO male

mouse were sacrificed by cervical dislocation and the brains were dissected and divided into

smaller pieces. All chemicals were purchased from Sigma-Aldrich, USA unless otherwise

stated. 1 tablet protease inhibitor cocktail (Roche Diagnostics, Sweden) was dissolved in 50 ml

PBS (137 mM NaCl, 2.7 mM KCl and 10 mM Na2HPO4, pH 7.4) and 5 volumes of PBS/ inhib-

itor mix were added to the brains and the brains were homogenized in Dounce homogenizer

with 25 strokes. The proteins were centrifuged for 10 min at 17000rpm. The supernatants were

removed and the pellets were dissolved in 5 ml PBS/inhibitor and the membranes containing

membrane protiens were collected by centrifugation at 1000 x g for 5 minutes. The superna-

tants (S0) were removed and the pellets were dissolved in 1 ml homogenization buffer (50mM

Tris, 150mM NaCl, 4mM MgCl, 0.5mM EDTA, 2% Triton-X and 1 protease inhibitor cocktail

tablet /50 ml buffer). The dissolved pellets were centrifuged at 10000 x g for 10 min and the

supernatants (S1) were transferred and to a new Eppendorf tube. The pellets (P1) were dis-

solved in 200μl homogenization buffer. The supernatants (S1) were centrifuged at 15000g for

15 min and the supernatants (S2) were transferred to a new tube and the pellets (P2) were dis-

solved in 200μl homogenization buffer. The protein concentrations were measured with DC

protein assay kit (Bio-Rad, USA) following the manufactures protocol in 96 well BRANDplates

pureGrade™ (BRAND GMBH, Germany). 50μg of proteins from all fractions were diluted in

MQ water to a total volume of 15μl and 10μl of sample buffer (95% Lammeli’s sample buffer
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(Bio-Rad, USA), 5% 2-mercaptoethanol (Fluka, USA)) were added and the samples were incu-

bated at 95˚C for 5 minutes. 25μl of samples were loaded in wells together with 5μl Page ruler

Prestained ladder, 250μg (Fermentas, Sweden). Electrophoresis were performed at 150V for 30

minutes with gel Mini-protean TGX Precast Gels 4–15%, 10 well comb, 50 μl/well (Bio-Rad,

USA) with running buffer (0.025 M Trizma base, 0.192 M Glycine, 0.1% SDS. The proteins

were transferred to an immobilian Transfer Membrane (PVDF, 0.45 μm, Millipore, USA) in

transfer buffer (0.025M Trizma base, 0.192M Glycine, 20% methanol). The membrane was

blocked in blocking buffer (5% Blotting grade blocker Non-fat dry Milk (Bio-Rad, USA) in

TTBS (0.15M NaCl, 0.01M Trizma base, 0.05% Tween-20, pH = 8.0)) for 1 hour and incubated

in anti-SLC18B1 antibody (AV50202, Sigma-Aldrich, USA) diluted 1:1000 in blocking buffer

overnight at 4˚C. The membrane was washed 3�10 minutes in TTBS before and after incuba-

tion in goat-anti-rabbit horseradish peroxidase antibody (Invitrogen, USA) diluted 1:10000 in

blocking buffer for 1 hour. The membrane was incubated in developing mix 1:1 of luminol/

enhancer and peroxidase buffer solution (Immune- Star HRP, Bio-Rad, USA) for 3 minutes

and developed on Amersham Hyper film ECi, high performance chemiluminescence (GE

Healthcare, USA) for 10 minutes. The membrane was washed in TTBS 2�30 min before and

3 �10 min after incubation in anti-mouse β-actin (Sigma, A1978) diluted 1:5000 in blocking

buffer for 1hour. The membrane was incubated in goat- anti-mouse horseradish peroxidase

antibody (Invitrogen, USA) diluted 1:10000 in blocking buffer and washed 3�10 minutes in

TTBS and developed as earlier described for 5 minutes.

Measurements of total polyamine content in brain

Brains from 10 week old cKO and ctrl mice (n = 7 ctrl, n = 7 cKO) were collected and stored in

-80˚C until the run of the experiment.

The polyamine measurement was performed with the flourometric Total Polyamine Assay

Kit (Cat. nr: K475-100, BioVision Incorporated, CA, USA). Briefly, the brain was sagittal cut

along the middle and homogenized in Polyamine Assay Buffer in a Bullet blender (Next

advance, USA). A sample Clean-Up mix was used and sample spun in a 10kDa Spin Column

(BioVision Incorporated). Samples were run in triplicates with one background control per

sample. A standard curve was used to calculate the amount of polyamines in the samples.

Quantification of transmitters using NMR

Sample preparation for NMR. For targeted NMR-based metabolomics analysis, brain

samples were prepared and measured using methods previously described after slight modifi-

cation [48]. Frozen brain samples (100 mg) were homogenized (Ultraturax T25, IKA, Staufen,

Germany) in ice-cold methanol/chloroform (2:1, v/v, 3 mL) for 1 min and then sonicated in

an ice-cold water bath for 30 min. After addition of 1 mL of ice-cold water and 1 mL of ice-

cold chloroform, samples were centrifuged (1800g, 4 ˚C) for 35 min to achieve phase separa-

tion. The aqueous supernatant was collected, dried using an evacuated centrifuge (Savant,

SVC 100H, Techtum Instrument AB, Umeaå, Sweden), and re-dissolved in 520 μL of sodium

phosphate buffer (0.135 mol/L, pH 7.0). The residual proteins were then removed using Nano-

sep centrifugal filters (3 kDa, Pall Life Science, Port Washington, USA). The filtrate (390 μL)

was mixed with extra phosphate buffer (130 μL, 0.135 mol/L, pH 7.0), D2O (50 μL), and

sodium-3- (trimethylsilyl)-2,2,3,3-tetradeuteriopropionate solution (TSP-d4, 30 μL, 0.3 mmol/

L, Cambridge Isotope Laboratories, Andover, USA). For NMR analysis 580 μL of mixture was

added to 5 mm NMR tubes.

NMR analysis. The samples were analyzed by a 600 MHz Bruker NMR spectrometer

using zgesgp pulse sequence (Bruker Spectrospin Ltd., BioSpin, Karlsruhe, Germany) at 25 ˚C
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with 128 scans. 1H NMR spectra were recorded with 65 536 data points over a spectral width

of 17 942.58 Hz. The acquisition time was 1.8 s and the relaxation delay 4.0 s. All NMR spectra

were processed using Bruker TopSpin 3.1 software. The data were Fourier-transformed after

multiplication by a line broadening of 0.3 Hz and referenced to internal standard peak TSP-d4

at 0.0 ppm. For each spectrum, baseline and phase were corrected manually. Fourty-two

metabolites were identified according to the NMR Suite 6.1 library (ChenomX Inc., Edmon-

ton, AB, Canada), the Human Metabolome Database [49], and previous literature [50].

Concentrations of metabolites were calculated from the NMR spectra after accounting for

interfering signals using NMR Suite 6.1 profiler as previously described [50] and expressed

in μmol/g.

Microarray expression analysis

Affymetrix microarray procedure. 5 seven week old male cKO and 5 ctrl litter mates

were sacrificed by cervical dislocation and the brains were dissected. The region between

bregma 3 and -5 was used for analysis and was divided into two halves along the midline. One

half was used for the micro array analysis and the other half for proteomics analysis (see

below). The tissue was divided into smaller pieces (approximately 2mm3) and immersed in

RNAlater solution (Ambion, USA) for 2 hours at 4˚C and subsequently stored at -20˚C. Total

RNA was extracted using RNeasy mini kit (Qiagen, Netherlands), the RNA concentration was

measured with a NanoDrop ND-1000 spectrophotometer (NanoDrop Technologies, USA).

The Agilent 2100 Bioanalyzer system (Agilent Technologies, USA) was used for evaluation of

RNA quality. From each sample a total of 250 ng of RNA was used to generate amplified and

biotinylated sense-strand cDNA from the entire expressed RNA pool according to the Ambion

WT Expression Kit (P/N 4425209 Rev B 05/2009) and Affymetrix GeneChip WT Terminal

Labelling and Hybridization User Manual (Affymetrix, USA) (P/N 702808 Rev. 1). GeneChip

ST Arrays (GeneChip Mouse Gene 1.0 ST Array) were hybridized for 16 hours, rotated at 60

rpm, at 45˚C. According to the GeneChip Expression Wash, Stain and Scan Manual (Affyme-

trix, USA) (PN 702731 Rev 2) the arrays were then washed and stained using the Fluidics Sta-

tion 450 and finally scanned using the GeneChip Scanner 3000 7G.

Microarray data analysis. The raw data were normalized using the robust multi-array

average (RMA) method [51] using the Affymetrix Expression Console software. Thereafter

analysis of the gene expression data was carried out in the freely available statistical computing

language R (http://www.r-project.org) using packages available from the Bioconductor project

(www.bioconductor.org). An empirical Bayes moderated t-test [52] was applied by using the

‘limma’ package [53]to search for the differentially expressed genes between the cKO and the

ctrl samples. To control false discovery rate, the p-values were adjusted using the method of

[37]. To study if the mice cluster by genotype a three dimensional principal component analy-

sis (PCA) was performed in MATLAB (Mathworks, USA). Further a PCA plot in two dimen-

sions including the 500 genes with lowest P-value (FDR corrected) for differential expression

the two lines was performed.

Proteomics analysis

Brain tissue. Brain tissue from cKO and ctrl mice was dissected as describe in the micro

array analysis section, one half of the brain was used for microarray analysis and the other half

for proteomics analysis.

Chemicals and reagents. Acetonitrile (ACN), methanol (MeOH), acetic acid (HAc),

formic acid (FA), ammonium bicarbonate (NH4HCO3), tri-n-butylphosphate (TBP),

sodium chloride (NaCl) were obtained from Merck (Darmstadt, Germany). Acetone,

VPAT is important for memory functions

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008455 December 4, 2019 19 / 30

http://www.r-project.org
http://www.bioconductor.org
https://doi.org/10.1371/journal.pgen.1008455


ethylenediaminetetraacetic acid tetrasodium salt dihydrate (EDTA), protease inhibitor cock-

tail, phosphate buffered saline (PBS), Tris-HCl, diethylamide (DEA), trifluoroacetic acid

(TFA), n-octyl-β-D-glucopyranoside, triethyl ammonium bicarbonate (TEAB), and formalde-

hyde CH2O (37% (vol/vol)) were purchased from Sigma Aldrich (St. Louis, MO, USA). For

tryptic digestion, iodoacetamide (IAA), urea and dithiothreitol (DTT) were obtained from

Sigma Aldrich and trypsin (sequencing grade from bovine pancreas 1418475; Roche diagnos-

tic, Basel, Switzerland) were used. Formaldehyde (13CD2O) (20% (vol/vol), 99% 13C, 98% D)

and sodium cyanoborodeuteride (NaBD3CN) (96% D) were purchased from Isotec (Miamis-

burg, OH). Sodium cyanoborohydride (NaBH3CN) was obtained from Fluka (Buchs, Switzer-

land). Sucrose was purchased from Fisher Scientific Company (Göteborg, Sweden). Triton X-

114 was obtained from KEBO Lab (Stockholm, Sweden). Ultrapure water was prepared by

Milli-Q water purification system (Millipore, Bedford, MA, USA).

Cloud point extraction of proteins. Commercially available Triton X-114 was precon-

densated to obtain a homogenous Triton X-114 mixture [54]. Aliquots of 50 mg brain powder

were homogenized for 60 seconds in a blender (POLYTRON PT 1200, Kinematica) with 1 mL

of Triton lysis buffer (1% (v/v) Triton X-114, 10 mM Tris-HCl pH 7.4, 0.15 M NaCl, 1mM

EDTA). Protease Inhibitor Cocktail (10 μL) was added during the sample preparation to pre-

vent protein degradation. After homogenization, the sample was incubated for 1 hour at 4 ˚C

during mild agitation. The cell lysate was clarified by centrifugation for 30 min (10000 × g at 4

˚C) using a Sigma 2K15 ultracentrifuge (Sigma Laborcentrifugen GmbH, Osterode, Germany).

The clear supernatant was then transferred directly onto 100 μL of sucrose cushion buffer and

incubated at 37 ˚C for 5 minutes, which lead to the clouding of the solution. The sample was

centrifuged for 3 minutes (400 × g at 37 ˚C) to separate the two phases; aqueous on the top

and detergent at the bottom. The aqueous phase was transferred to a new tube and incubated

on ice. The detergent phase was mixed with 500 μL of cold PBS and phase separation was

repeated again. The second detergent depleted aqueous phase was then pooled with the first

and kept on ice. The detergent-rich fraction, containing hydrophobic membrane proteins, was

mixed with 1.5 mL of cold PBS. The pool of detergent-depleted aqueous phase was re-extracted

by adding of 50 μL of 11.4% Triton X-114 stock solution, incubated at 37 ˚C for 3 minutes and

centrifuged for 3 minutes (400 × g at 37 ˚C). This aqueous phase contained hydrophilic water-

soluble proteins.

Delipidation and protein precipitation. A delipidation protocol according to Mastro

et al. was used [55]. Aliquots (100 μL) of the detergent-depleted aqueous and detergent-rich

phases were mixed with 1.4 mL of ice-cold tri-n-butylphosphate: acetone: methanol mixture

(1:12:1) and incubated at 4 ˚C for 90 min. The precipitate was pelleted by centrifugation for 15

min (2800 × g at 4 ˚C) and then washed sequentially with 1 mL of acetone and 1 mL of metha-

nol, and finally air dried.

Protein quantification. The total protein content of delipidated proteins was determined

using the DC Protein Assay Kit (BioRad Laboratories, Hercules, CA, USA), which is based on

the modified Lowry method with bovine serum albumin as standard [56]. The protein pellets

were dissolved in 100 μL of 6% SDS. The DC assay was carried out according to the manufac-

turer’s instructions using 96-well microtiter plate reader model 680 (BioRad Laboratories).

On-filter tryptic digestion of proteins. The delipidated samples were redissolved in

100 μL of 50:50 ACN: 8M urea + 1% n-octyl-β-D-glucopyranoside. Aliquots corresponding to

20 μg of proteins were taken for digestion. An on-filter digestion protocol was used for tryptic

digestion of the samples [57] using 3 kDa filters (Pall Life Sciences, Ann Arbor, MI, USA).

Centrifugation was carried out at a centrifugal force of 14,000xg throughout the protocol. The

samples were first redissolved in 100 μL of 50:50 ACN: 8M urea + 1% n-octyl-β-D-glucopyra-

noside. A volume of 10 μL of 45 mM aqueous DTT was added to all samples and the mixtures
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were incubated at 50 ˚C for 15 min to reduce the disulfide bridges. The samples were cooled

down to room temperature and 10 μL of 100 mM aqueous IAA was added and the mixtures

were incubated for an additional 15 min at room temperature in darkness to carabamido-

methylate the cysteines. The samples were transferred to spin filters that had been pre-washed

with 250 μL of 50% ACN for 15 min and then 500 μL of water for 20 min followed by centri-

fuged for 10 min to remove the added salts, detergents and other interfering substances. An

additional volume of 100 μL of 2% ACN in 100 mM TEAB was added and the filters were spun

for 10 min followed by 100 μL of 50:50 ACN: 100 mM TEAB and 100 μL of 100 mM TEAB,

and centrifugation for another 10 min. Finally, a volume of 100 μL of 50 mM TEAB was added

together with trypsin to yield a final trypsin/protein concentration of 2.5% (w/w). The tryptic

digestion was performed at 37 C overnight in darkness. Samples were subsequently centri-

fuged for 20 min to collect the tryptic peptides in the filtrate while retaining undigested pro-

teins and trypsin in the retentate. An additional volume of 100 μL of 50% ACN, 1% HAc was

added and the filters were spun for 10 min and pooled with the first tryptic peptide filtrate.

The collected filtrates were vacuum centrifuged to dryness using a Speedvac system ISS110

(Thermo Scientific, Waltham, MA, USA).

Stable-isotope dimethyl labeling. The peptides resulting from the on-filter tryptic diges-

tion of cKO and ctrl samples were isotopically labeled using reductive dimethylation according

to [58] with light and heavy label, respectively. The peptide mixture was dissolved in 100 μL of

100 mM TEAB. For the light and heavy labeling, 4 μL of CH2O (4%, v/v) and 13CD2O (4%,

v/v) were added into the sample solution, respectively. The mixture was briefly vortexed and,

then, 4 μL of freshly prepared 0.6 M NaBH3CN and 0.6 M NaBD3CN were added subse-

quently. The resultant mixture was incubated for 1 h at room temperature while mixing. Then,

16 μL of ammonia (1% in water) and 8 μL of formic acid were added to consume the excess

labeling reagents and acidify for the subsequent solid phase extraction (SPE). Then two differ-

entially labeled samples were pooled in a 1:1 ratio and the labeled peptide mixture was desalted

by the SPE column.

Sample desalting. The labeled peptide mixtures were desalted on a Isolute C18(EC) (1

mL, 50 mg capacity, Biotage, Uppsla, Sweden) SPE column using the following schedule: The

column was first wetted in 500 μL of 100% ACN and equilibrated with 5×500 μL 1% HAc. The

tryptic peptides were adsorbed to the media using 5 repeated cycles of sample loading. The col-

umn was washed using 5×1 mL of 1% HAc and finally the peptides were eluted in 250 μL 50%

ACN, 1% HAc. After desalting, the eluate was vacuum centrifuged to dryness.

NanoLC-MS/MS for protein identification. The protein nanoLC-MS/MS experiments

were performed using a 7 T hybrid LTQ FT mass spectrometer (ThermoFisher Scientific, Bre-

men, Germany) fitted with a nano-electrospray ionization (ESI) ion source. On-line nanoLC

separations were performed using a Agilent 1100 nanoflow system (Agilent Technologies,

Waldbronn, Germany). The peptide separations were performed on in-house packed 15-cm

fused silica emitters (75-μm inner diameter, 375-μm outer diameter). The emitters were

packed with a methanol slurry of reversed-phase, fully end-capped Reprosil-Pur C18-AQ 3 μm

resin (Dr. Maisch GmbH, Ammerbuch-Entringen, Germany) using a PC77 pressure injection

cell (Next Advance, Averill Park, NY, USA). The injection volumes were 5 μL and corre-

sponded to 2 μg of proteins. The separations were performed at a flow of 200 nL/min with

mobile phases A (water with 0.5% acetic acid) and B (89.5% acetonitrile, 10% water, and 0.5%

acetic acid). A 100-min gradient from 2% B to 50% B followed by a washing step with 98% B

for 5 min was used. Mass spectrometric analyses were performed using unattended data-

dependent acquisition mode, in which the mass spectrometer automatically switches between

acquiring a high resolution survey mass spectrum in the FTMS (resolving power 50 000

FWHM) and consecutive low-resolution, collision-induced dissociation fragmentation of up
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to five of the most abundant ions in the ion trap. Acquired data (.RAW-files) were converted

to the .mgf format using an in-house written program (C++) and subjected to protein identifi-

cation using MASCOT search engine (version 2.2.2, Matrix Science, UK) against the SwissProt

database version 51.6. The search parameters were set to Taxonomy: Mus musculus, Enzyme:

Trypsin, Fixed modifications: Carbamidomethyl (C), Dimethyl (K, N-term), Dimethyl

(D6
13C2K, D6

13C2N-term); Variable modifications: Oxidation (M) and Deamidated (NQ),

Peptide tolerance: 10 ppm, MS/MS tolerance: 0.7 Da and maximum 2 missed cleavage sites.

Quantification. For data evaluation, the software MSQuant v2.05b5 was customized for

duplex dimethylation and used for extraction and integration of ion chromatograms of all

identified peptides. Low intensity peaks (S/N�10) were excluded and the peak areas were

automatically integrated. All peaks were visually inspected and corrected if needed. The

MSQuant output was further used for calculation of median proteins ratios.

KEGG analysis. Significantly changed proteins were used in the KEGG pathway mapping

tools (http://www.genome.jp/kegg/mapper.html) to identify pathways significantly enriched

for proteins with significant difference between cKO and ctrl. The default settings for the mul-

tiple search object options were used.

Behavioural analysis and animals

Animals. Mice were housed in constant temperature (21 ±1˚C) and humidity (50–60%)

with 2–8 mice per cage unless otherwise stated. All behavioural experiments took place during

the light phase, between 09.00 and 17.00. Food (R3, Lactamin/Lantmännen/Sweden) and

water was provided ad libitum unless otherwise stated. All behavioural test were conducted on

adult male mice (>8 weeks). Control mice were litter mates control. All mice were maintained

on the same genetic background, a combination of C57BlL6 and Sv129. The observer was

blind to the genotype of the mice throughout the experimental periods.

Elevated plus maze. The elevated plus maze measure anxiety-like behaviour and consists

of two open arms and two closed arm (40 cm high walls) situated 51 cm above the floor [59].

The mice (cKO male mice, n = 11; ctrl male mice, n = 9) was placed in the centre of the maze

and the activity was videotaped for 10 min under dimmed lights, 4 lux in the closed arms and

10 lux in open arms. The latency, frequency, duration, head dips and rearing were scored. The

observer scored the plus maze using the AniTracker Software (Fredriksson)Data was analysed

using a non-parametric Mann-Whitney U test by the Prism Software (Graph pad). Values in

graphs were expressed as mean ±SEM.

Rotarod. To assess the acquisition of motor skilled behaviour a rotarod machine with

automatic timers and falling sensors were used (IITC Rotarod, Life Science) [60]. The mice

(cKO male mice, n = 10; ctrl male mice, n = 10) were placed on textured drums (2, 8 cm in

diameter) to avoid slipping. The rod was accelerating with the speed of 4 rpm to 40 rpm for

two minutes. The mice went through three trials per day for three days. The mean for each day

were analysed using a non-parametric Mann-Whitney U test by the Prism Software (Graph

pad). Values in graph were expressed as mean ±SEM.

Long term food intake. 12 cKO and 12 ctrl male mice were single housed in standard

macrolon type III cages and kept under standard conditions with a 12/12h light/dark cycle

(lights on at 0600) and tap water and high-fat/high-sugar diet (Brogaarden, Denmark) avail-

able ad libitum.

The animals entered the study at the age of 8 weeks and were kept on the high-fat/high-

sugar diet for 13 weeks. Food intake and bodyweight were measured weekly. Data was ana-

lysed using a two- way ANOVA by the Prism Software (Graph pad). Values in graph were

expressed as mean ±SEM.
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Radial arm maze. Short term spatial memory was examined in a eight arm radial maze

[61] (cKO male mice, n = 9; ctrl male mice, n = 11). The arm was 10 cm wide and 50 cm long

with a central platform. At the distal end of each arm a recessed food plate was fixed at 1.5 cm

above the maze floor. The same four arms were baited each time with a small piece of rein-

forcement pellet (5TUL, TestDiet; 50%kcal from sucrose). To increase motivation to find a

reward, the mice were slightly food restricted by starving them overnight one night prior to

the day of maze performance. The mice were placed in the centre of the maze to search for

food. The mice were removed from the maze after they consumed all four pellets. Short- term

spatial memory was analysed during a six day acquisition phase. Re-entry in to a previously

baited (now empty arm) was defined as working memory error (WME). Entries in to never

baited arms were defined as spatial reference memory error (RME). Data was analysed using a

two- way ANOVA by the Prism Software (Graph pad). Values in graph were expressed as

mean ±SEM.

Novel-object recognition test. The experimental arena consists of a round arena (Ø40

cm) with 40 cm high wall. The mice went through a three day protocol (n = 5/genotype). The

first day the mice were subjected to a habituation session, mice were individually placed in the

arena with two identical objects and were allowed to explore for 10 min. On day two one of the

familiar objects were replaced with a novel object, which they were allowed to investigate and

scored for 10 min investigating short-term memory. Long term memory was investigated on

day three when one familiar object and one novel object was presented for the mice and they

were allowed to interact freely with for 10 min. All trails were videotaped and scored with the

automated software Ethovision XT 11.0 (Noldus, Netherlands). Exploration of an object was

defined as touching, sniffing, climbing, or sitting on the object. Objects were always placed in

the same location; but the location of the novel object relative to the familiar object was ran-

domized for each test across mice. A total of 10 male cKO mice and 10 ctrl littermates were

included in this study. Discrimination index between the novel and familiar objects were cal-

culated as time spent with the familiar object subtracted from time spent with a novel object

divided by the total amount of exploration with the novel and familiar object.

Diazepam challenge. Locomotor activity was measured by using an automated device

consisting of a plastic cage (55x55x22) inside a ventilated and illuminated (10 lux) cabinet

(Locobox, Kungsbacka Regerteknik AB, Sweden). Photo beams situated inside the box tracked

the movement of the mice. On day one the mice (cKO male mice, n = 16; ctrl male mice,

n = 9) were intraperitoneal (i.p.) injected with 10 ml/kg saline and were allowed to explore the

cage for 60 min. 24 h later the mice were injected i.p. with 2 mg/kg Diazepam and put back in

the same plastic cage for 60 min. The total activity was scored and data was analysed using a

two- way ANOVA using the Prism Software (Graph Pad, USA). Values in the graph were

expressed as mean ±SEM.

Amphetamine challenge. The same automated boxes were used as in the diazepam chal-

lenge. The first day the mice (n = 10/genotype) were allowed to explore the box for 60 min and

thereafter returned to their home cage. 24 h later they were returned to the cage and the mice

were injected with 10 ml/kg saline i.p. and put in the box for 60 min of monitoring. Thereafter

the mice were subjected to amphetamine in four different doses i.p. injections 0,5 ml/kg, 1 ml/

kg, 2 ml/kg and 4 ml/kg in ramdomized order, with a three day wash out period between each

dose. Total activity was normalized against the saline values for each animal. Data was analysed

using a two- way ANOVA with the Prism Software (Graph pad, USA). Values in the graph

were expressed as mean ±SEM.

Operand self-administration. The mice (cKO male mice, n = 7; ctrl male mice, n = 8)

were 7–8 weeks old and weighed 25.8±0.6 g at the start of the study. The mice were kept in

standard Macrolon III cages in housing cabinets controlled for temperature (21–22 ˚C) and
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humidity (45–50%). A 12 h light/dark cycle was employed with lights on at 6 AM. Autoclaved

rodent chow (R3, Lactamin/Lantmännen, Linköping, Sweden) was provided ad libitum unless

otherwise stated. During the food restriction (initial training and first part of the operant

study), 2.75 g (±10%) of rodent chow was provided each day at 6 PM.

For the initial training food-restricted mice were trained to nose poke for food pellets

(5TUL, TestDiet; 50% kcal from sucrose) in operant chambers (MedAssociates). Behaviour

was recorded via the MED-PC computer interface and MED-PC version 4 software control

system. The chamber was equipped with a food receptacle for pellet deliveries with a nose

poke response device on either side. The left nose poke hole was active throughout the study

and responding at this manipulandum resulted, according to different schedules (see below),

to the delivery of a food pellet coupled with the illumination of a stimulus light inside the nose

poke hole and a stimulus sound (short burst of clicks). On the first day of training, both nose

poke holes were active on a fixed-ratio-1 (FR1) schedule and behaviour was further shaped

towards the food receptacle by the delivery of a free pellet every 2 min accompanied by the

stimulus sound. During the initial training no more than 30 food pellets could be obtained in

one session. The fixed ratio was gradually increased to FR5 (one day each of FR2 and FR3).

After six days of testing on the FR5 schedule, the mice were introduced to a progressive

ratio schedule (PR) for three days, whereby the response requirement for each reward in a ses-

sion increased according to the formula 5e(reinforcement number × 0.2) − 5, rounded to the nearest

integer [62]. After data were collected at the PR during food restriction, all mice were returned

to ad-libitum home cage access to rodent chow. Next we wished to determine the animal’s pro-

pensity to self-administer sucrose pellets in a non-food restricted state and mice were evalu-

ated at the FR5 schedule for 7 days and PR schedule for six days. Finally, we employed an

extinction-reinstatement procedure whereby animals were first exposed to the operant cham-

ber for six sessions during which responding at both nose poke apertures were without pro-

grammed consequence (extinction), thereafter the mice were returned to their home cage for

five days. Thereafter the animals were tested on a single session with access to the operant

chambers on a schedule in which responding at the active nose poke aperture produced the

presentation of the stimulus light as well as the stimulus sound, but no pellet delivery (rein-

statement). Data was analysed using a two- way ANOVA or Mann Whitney U test using the

Prism Software (Graph pad). Values in the graphs were expressed as mean ±SEM. Outliers

were removed using Grubbs outlier test.

Analysis of human SNPs

Participants. UK Biobank project includes 502 549 participants that were recruited

between 2006 and 2010. Baseline data of these participants were gathered at 1 of 22 assessment

centers across England, Scotland and Wales. Self-reported questionnaires and physical mea-

surements on cognitive functions, lifestyle, environmental and genetic data were available. For

this study, 115 807 individuals (60 865 females, 54 942 males) aged 40–73 (mean 56.91 years,

s.d. = 7.93) were analyzed, having genomic data at 72 355 667 imputed variants. More details

about imputation could be found at the following URL (http://biobank.ctsu.ox.ac.uk/crystal/

refer.cgi?id=157020). The present analysis was conducted under UK Biobank data application

number 2348.

Cognitive tests. Memory was measured with the ‘pairs matching’ task on a touchscreen

computer (#20132). Participants had to correctly match 12 ‘cards’ from a randomly arranged

grid (see details at [63]). The investigated memory scores included the total number of errors

made during this task, independent on the needed time. Prior analysis, they were log+1 trans-

formed. In total, 35 715 participants that had memory scores were also genotyped.
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Trail making test A and trail making test B (TMT A and TMT B) were introduced later, at

followed-up time, between 2014 and 2015. For both tests, the total completing time (in sec-

onds) was registered. No outliers were excluded for TMT A score analysis. Individuals had

scored higher than 250 s for TMT B (n = 10) were excluded. The separate TMT A and TMT B

scores were log-transformed. The untransformed score difference TMT B-TMT A (TMT B-A)

was calculated in order to take into account the individual motor speed and visual search [64].

Participants with TMT B-A values <-50 and >150 were removed from further analysis. More

details about TMT A and B in the UK Biobank could be found at [65]. A total of 31 408 geno-

typed participants were included for TMT A, 31 392 participants for TMT B and 31 340 for

TMT B-A.

Genotyping and quality control. The first genotyping data release of UK Biobank

included 152 249 individuals, that were genotyped using the UK BiLEVE array (n = 49 922) or

the UK Biobak axiom array (n = 102 326). There is more than 95% overlap for these two arrays.

A total of 33 batches were used for genotyping analysis. Quality control (QC) steps were per-

formed at the Wellcome Trust Centre for Human Genetics and by Affymetrix (http://biobank.

ctsu.ox.ac.uk/crystal/refer.cgi?id=155580) before data releasing.

Additional QC steps were applied for participants in this study. Individuals were excluded

based on ethnicity (self-identified as ‘non-white British’ (#22006; n = 31 965)), QC failure in

UK BiLEVE (#22050 and #22051; n = 385), genetic relatedness factor (#22012; n = 8 779), and

gender mismatch (#22001; n = 0). A total of 115 807 participants were included in any further

analysis.

Selection and QC of SNPs. A total of 4 138 variants were associated with SLC18B1 gene

in the Single Nucleotide Polymorphism database (dbSNP). The imputed file for chromosome

six contained 832 variants. Based on Hardy-Weinberg equilibrium (p<1e-10) and minor allele

frequency (MAF>0.0001), 256 SNPs were included in further analysis. Out of these 256 vari-

ants, fourteen were within 3’ or 5’ untranslated gene regions and seven within the coding

region.

Statistical analyses. Hardy-Weinberg equilibrium (p<1e-10) and linkage disequilibrium

(LD) (r2>0.8, D’>0.8) were assessed with PLINK [66]. Cognitive phenotypes analyses were

adjusted for age, sex, education, assessment centre, genotyping batch, genotyping array and 10

principal components. Education was used as a binary variable indexing if the participant had

or not attained a college or university-degree [63]. Genotype-phenotype associations were per-

formed on the imputed file ‘chromosome 6’ using SNPTEST v.2.5.1 (https://mathgen.stats.ox.

ac.uk/genetics_software/snptest/snptest.html). For the genotype dosage scores (method

‘expected’), an additive model was assumed. The results were corrected for multiple testing,

using the Bonferroni correction. All two-tailed p-values <0.05 were considered significant.
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Frida A. Lindberg, Ashley Hutchinson, Anders Eriksson, Sahar Roshanbin, Diana M. Ciu-
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