
Article
Decoding the diversity of k
iller immunoglobulin-like
receptors by deep sequencing and a high-resolution
imputation method
Graphical abstract
NK cell

19q13.4

Deep targeted KIR sequencing

KIR alleles

Target cell

HLA class I

Activation or
        inhibition

0

1
2

Copy number estimation

Variant genotyping
T
T

T

T
T

T

T

C

C

C

C

C
C

C

Genotype = Allele1 + Allele2
#CHR   POS    Sample_A     KIR2DL3*002  KIR2DL3*003

KIR allele assignment algorithm

Haplotype structure in Japanese

ab
se

nc
e 

   
  

ab
se

nc
e 

   
  

Functional insights by comprehensive PheWAS

TargetReference 

+

WGSKIR allele

n = 170K

SNP array
~

PheWAS

Diseases
Quantitative traits

KIR
Imputation
Highlights
d Deep sequencing of killer cell immunoglobulin-like receptor

genes in 1,173 individuals

d Novel computational algorithm to determine the highest-

resolution KIR alleles

d Construction of KIR reference panel for accurate and

biobank-scale imputation

d Comprehensive PheWAS on clinical phenotypes and KIR

alleles
Sakaue et al., 2022, Cell Genomics 2, 100101
March 9, 2022 ª 2022 The Author(s).
https://doi.org/10.1016/j.xgen.2022.100101
Authors

Saori Sakaue, Kazuyoshi Hosomichi,

Jun Hirata, ..., Kazuhiko Yamamoto,

Ituro Inoue, Yukinori Okada

Correspondence
ssakaue@broadinstitute.org (S.S.),
yokada@sg.med.osaka-u.ac.jp (Y.O.)

In brief

Sakaue et al. generated the largest deep

sequencing dataset of the killer cell

immunoglobulin-like receptor (KIR)

genes, a complex region interacting with

HLA to regulate human innate immunity.

The novel bioinformatics pipeline

determined 118 KIR alleles in 13 genes

and enabled biobank-scale imputation of

KIR alleles, followed by comprehensive

PheWAS.
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SUMMARY
The killer cell immunoglobulin-like receptor (KIR) recognizes human leukocyte antigen (HLA) class I mole-
cules and modulates the function of natural killer cells. Despite its role in immunity, the complex genomic
structure has limited a deep understanding of the KIR genomic landscape. Here we conduct deep
sequencing of 16 KIR genes in 1,173 individuals. We devise a bioinformatics pipeline incorporating copy
number estimation and insertion or deletion (indel) calling for high-resolution KIR genotyping. We define
118 alleles in 13 genes and demonstrate a linkage disequilibrium structure within and across KIR centromeric
and telomeric regions. We construct a KIR imputation reference panel (nreference = 689, imputation accuracy =
99.7%), apply it to biobank genotype (ntotal = 169,907), and perform phenome-wide association studies of 85
traits. We observe a dearth of genome-wide significant associations, even in immune traits implicated pre-
viously to be associated with KIR (the smallest p = 1.5 3 10�4). Our pipeline presents a broadly applicable
framework to evaluate innate immunity in large-scale datasets.
INTRODUCTION

An overwhelming amount of genomics data produced over

the past decade has largely decoded how genetic variations

between individuals can lead to phenotypic variations be-

tween individuals.1 Although high-throughput genotyping and
This is an open access article under the CC BY-N
sequencing technology with scalable computational methods

has driven this achievement, we still lack comprehensive under-

standing of specific genome regions. One example is the major

histocompatibility complex (MHC) region, which is characterized

by high-level polymorphism and a population-specific complex

linkage disequilibrium (LD) structure. Motivated by its pleiotropic
Cell Genomics 2, 100101, March 9, 2022 ª 2022 The Author(s). 1
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http://crossmark.crossref.org/dialog/?doi=10.1016/j.xgen.2022.100101&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Toshiyuki Matsui,18 Satoshi Motoya,19 Yasuo Suzuki,20 Hidetoshi Inoko,21 Atsushi Tajima,6 Takayuki Morisaki,22

Koichi Matsuda,23 Yoichiro Kamatani,5,24 Kazuhiko Yamamoto,25 Ituro Inoue,7 and Yukinori Okada1,26,27,28,29,32,*
20Department of Internal Medicine, Faculty of Medicine, Toho University, Chiba 274-8510, Japan
21GenoDive Pharma Inc., Atsugi 243-0018, Japan
22Division of Molecular Pathology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
23Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo

108-8639, Japan
24Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier

Sciences, The University of Tokyo, Tokyo 108-8639, Japan
25Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
26Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita 565-0871, Japan
27Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University,

Suita 565-0871, Japan
28Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
29Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita 565-0871, Japan
30Singapore Eye Research Institute, Singapore 169856, Singapore
31Duke-NUS Medical School, Singapore 169857, Singapore
32Lead contact

*Correspondence: ssakaue@broadinstitute.org (S.S.), yokada@sg.med.osaka-u.ac.jp (Y.O.)

https://doi.org/10.1016/j.xgen.2022.100101

Article
ll

OPEN ACCESS
associations with complex human traits, construction of a popu-

lation-specific human leukocyte antigen (HLA) reference panel

from next-generation sequencing (NGS) data and development

of HLA imputation methods have successfully contributed to

fine mapping of numerous disease-associated loci.2,3

Thekiller cell immunoglobulin-like receptor (KIR) locus, located

in 19q13.4 andexpressedmainly on the natural killer (NK) cell sur-

face, is another example of a complex locus characterized by

high allelic diversity and complex genomic structure. In partic-

ular, the KIR region is comprised of a combination of KIR genes,

copy number variations, large deletions/duplications, and single-

nucleotide variants (SNVs) within each KIR gene. As many as

1,110 KIR alleles have been registered to date.4 Importantly,

this diversity is expected to be closely related to the function of

KIR genes, which is to recognize specific HLA class I molecules

and regulate the activity of NK cells. When variations are located

in specific positions of specific KIR alleles, they can change the

affinity between thoseKIRs and interactingHLAclass Imolecules

presenting self- or pathogen-derived antigens, changing the

inhibitory or activating cytotoxic signaling initiated by NK cells.

Variation in the function of NK cells has been reported to cause

associations of KIR alleles with immune-related (e.g., psoria-

sis),5,6 infectious (e.g., hepatitis C virus),7 and reproductive

(e.g., preeclampsia) diseases.8 Furthermore, KIR alleles and their

combinationwithHLAalleles are critically associatedwith clinical

outcomes in allogenic hematopoietic stem cell transplantation or

treatment outcomes in cancer immunotherapy.9,10 However, the

statistical significance of these associations has been relatively

weak, possibly because the associations have tended to be re-

ported using the ‘‘candidate-allele approach,’’ focused only on

KIR allelic diversity, as opposed to a genome-wide approach.

This has been partly due to a lack of large sample size for deriving

robust associations. Amethodology to determine KIR alleles at a

population scale is thus warranted.

The challenge of elucidating the genomic and phenotypic

landscape of the KIR region is linked to its complex structure,

which makes it difficult to accurately define the individual

composition of the KIR haplotype and alleles, even with NGS
2 Cell Genomics 2, 100101, March 9, 2022
data. The complexity stems from (1) a large number of SNVs

and insertions or deletions (indels) within each KIR gene, (2)

the tandem duplications of KIR genes, and (3) the structural ar-

rangements consisting of exponential combinations of KIR

gene content and alleles.11,12 Thus, it is difficult to unambigu-

ously map short reads from conventional NGS technology

(i.e., �150 bp) to the KIR region. Carefully designed target

sequencing with relatively longer read lengths and deep

coverage and a computational pipeline to disentangle the indi-

vidual structures and alleles of the KIR region are warranted,

which would contribute to the clinically applicable quality of

KIR typing. Given that such a customized sequencing technol-

ogy is not scalable to hundreds of thousands of individuals, a

methodology to impute KIR alleles from the SNVs genotyped

from other platforms (e.g., SNP microarray or whole-genome

sequencing [WGS]) is needed. Other studies have begun to

address these limitations,13,14 but there remains a need to un-

derstand and interpret KIR alleles in biobank-scale data and

explore the comprehensive landscape of associations between

KIR alleles and human complex traits. Although target individuals

from the current KIR data have been biased toward Europeans,

the extreme diversity of the HLA and KIR region suggests popu-

lation-specific frequencies of these alleles. Deeper insights into

the genomic maps of non-Europeans at these critical loci have

the potential to provide new information regarding population-

specific selection pressure and prevent ongoing disparities in

genomics-informed health initiatives.15

We conducted deep target sequencing of 16 KIR genes using

a capture method with a read length of more than 300 bp in

1,173 individuals of Japanese ancestry (Figure 1A). We devel-

oped a custom bioinformatics pipeline focused on analysis of

KIR loci. We incorporated SNV calling, indel calling, and copy

number estimation using a machine learning framework, which

enabled accurate determination of KIR gene content, copy

numbers, and alleles at high resolution (Figure 1B). We used

this catalog to (1) elucidate the frequency distribution, haplo-

type, and LD structure of the KIR region in the Japanese

population and (2) construct a reference panel that can
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Figure 1. Overview of this study
(A) Customized deep target sequencing of KIR genes was performed for 1,173 individuals.

(B) An integrative bioinformatics pipeline was devised to determine (i) the KIR gene content, (ii) copy number, and (iii) alleles. The coverage of aligned reads was

used to determine the KIR gene content and copy number by kernel density estimation. The estimated copy number was used for ploidy-aware calling of SNVs

and indels in the KIR region. Together with the public KIR allele database, the combination of SNVs and indels in the KIR region was used to determine the KIR

alleles.

(C) With these KIR allele data and WGS data from 689 individuals, we implemented an in silico KIR imputation method. We imputed the KIR alleles in a large

Japanese cohort (n = 169,907) to perform a PheWAS of the KIR alleles for 85 diverse complex traits.
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be used for KIR imputation by integrating with the WGS data

(nreference = 689). With this reference panel, we implemented a

KIR imputation method and applied it to biobank-scale geno-

type data of individuals of Japanese ancestry (ntotal = 169,907;

Figure 1C). Finally, we performed a phenome-wide association

study (PheWAS) of KIR alleles of 85 diverse complex traits to

illustrate the comprehensive genomic and phenotypic land-

scape of the KIR region.
RESULTS

Deep target sequencing of KIR genes with a capture
method
For 1,173 individuals of Japanese ancestry, we performed

customized deep target KIR sequencing with a capture method

(STARMethods). We sequenced all 16 KIR genes including pseu-

dogenes in the region:4 KIR3DL3, KIR2DS2, KIR2DL2, KIR2DL3,
Cell Genomics 2, 100101, March 9, 2022 3
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KIR2DL5A/B, KIR2DS3/5, KIR2DP1, KIR2DL1, KIR3DP1,

KIR2DL4, KIR3DL1, KIR3DS1, KIR2DS1, KIR2DS4, KIR3DL2,

and KIR3DX1. Of them, KIR3DL3, KIR3DP1, KIR2DL4, and

KIR3DL2 are framework genes, which, in principle, are observed

in every individual. The target KIR regions were designed to

uniquely define each of the KIR genes despite their structural ho-

mology (Tables S1 and S2). We sequenced with relatively longer

read lengths (350 bp and 250 bp for paired ends) and high depths

(an average depth of 140.6 for the framework genes). The

sequenced reads were mapped to the target contigs (STAR

Methods). The relatively longer readdesign resulted in significantly

better mapping quality and a larger fraction of uniquely mapped

reads compared with simulated reads with a conventional read

lengthof 150bp,whichwereobtainedby taking the first 150bases

of the original reads (paired t test, p < 13 10�323; Figure S1; STAR

Methods). We then estimated the gene content and copy number

of eachKIRgenebyquantifying the readdepth.Whendetermining

the gene content (i.e., whether an individual has the gene) and the

gene copy number (i.e., the number of gene copies), we took the

ratio of the reads mapped to the gene to those mapped to

KIR3DL3, which is one of the framework genes, and, in principle,

all individuals should have two copies. To systematically assign

the discrete number of gene copies to an individual, we performed

unsupervised hard clustering based on the kernel density estima-

tion of the read depth distribution within the study population

(STAR Methods). Excluding KIR3DL3, KIR3DP1, KIR2DL4,

KIR3DL2 (for which we assigned two copies to all individuals),

and a pseudo-gene of KIR3DX1, we defined a gene set and

copy number for the 11 KIR genes (Table S3). The variations in

gene copy number were heterogeneous, according to each KIR

gene in this Japanese cohort, and we confirmed that the range is

mostly consistent with a previous study conducted in a Norwe-

gian-German cohort.13

To validate the accuracy of the defined gene set, we genotyped

14 KIR genes by the polymerase chain reaction (PCR)-sequence-

specific oligonucleotide (SSO) in 100 individuals with various sets

of KIR genes to account for KIR diversity among the study popula-

tion (STARMethods). Using PCR-SSO, we determined gene con-

tent but could not determine the detailedKIR alleles.Weobserved

almost perfect concordance of the gene content between target

sequencing and PCR-SSO (mean concordance = 99.8%; Table

S4), supporting the validity of our target capture method. There

was no overrepresentation in the discordant results for a specific

gene or a specific sample. To evaluate the strategy of using

KIR3DL3 as a reference gene for copy number estimation, we

determined the gene content by using (1) the coverage of the

pseudo-gene of KIR3DX1, for which, in principle, all individuals

should have two copies, and (2) the median coverage of all four

framework genes as a reference. We confirmed that the gene

copy numbers determined based on KIR3DL3 and those based

on (1) or (2) were 99.9% and 99.3% concordant, respectively,

which supported the robustness of our method.

Haplotypes of the KIR region have been classified into two

large groups: group A haplotypes and group B haplotypes.

Group B haplotypes are currently characterized by the presence

of one or more of the following KIR genes within a haplotype:

KIR2DL5, KIR2DS1, KIR2DS2, KIR2DS3, KIR2DS5, and

KIR3DS1. Group A haplotypes are characterized by complete
4 Cell Genomics 2, 100101, March 9, 2022
absence of these six genes.16,17 By using the KIR gene content

data of the study population, we defined an individual haplotype

combination that was A/A, A/B, or B/B. The frequencies of these

haplotype combinationswere 53%, 44%, and 3.4% in this study,

respectively, which was consistent with the previous literature

regarding Japanese individuals (n = 173; 58%, 40%, and

1.2%, respectively).18 Compared with worldwide populations,

the prevalence of the group A haplotype in Japanese individuals

was greater than in Europeans.19

To validate our analytic pipeline, we applied the same

sequencing protocol and computational methods to samples of

24 Japanese individuals with the knownKIR gene content and al-

leles using the previously established PCR-SSP typingmethod18

and to 52 individuals of International Histocompatibility Working

Group (IHWG) cell lines with previously known KIR gene content,

copy numbers, and alleles.11 As for the gene content, our pipeline

showed 100% concordance with the Japanese samples (n = 24)

and a mean concordance of 95.9% with those from the IHWG

(n = 52; Table S5A). As for the gene copy numbers, we observed

a mean concordance of 97.9% with samples from the IHWG

(n = 52; Table S5B). Although we used a reference sequence of

GRCh37/hg19 and an alternative haplotype of GL000209 as

bait for the target capture method, this high concordance poten-

tially suggests applicability of our sequencing and bioinformatics

pipeline to diverse populations, with robustness to the variations

in KIR alleles and polymorphisms.

Ploidy-aware genotyping and determination of the KIR
alleles
To obtain high-resolution KIR alleles, accurate SNV and indel

genotyping of the KIR genes is essential. Motivated by the vali-

dation result of our pipeline in accurately determining the KIR

gene content and gene copy numbers, we performed ploidy-

aware (i.e., copy-number-defined) genotyping of the KIR genes.

For SNV calling, we used Genome Analysis Toolkit (GATK) with

an option of ploidy, which was set as the estimated gene copy

number of each KIR gene (STARMethods). A small number of in-

dels was critical for determining specific KIR alleles (e.g., a 22-bp

insertion at position 6,833 in KIR2DS4 and a 1-bp deletion at po-

sition 9,608 inKIR2DL4). Because such indel calling by GATK did

not have enough sensitivity, probably reflecting the highly poly-

morphic nature of this region, we used DeepVariant,20 which

directly uses per-sample mapped reads in the deep-learning

framework, to call indels (STAR Methods).

At the same time, we curated the nucleotide sequence data of

KIR alleles that have been registered in the Immuno Polymor-

phism Database (IPD)-KIR database to date. We made a list of

706 SNVs and two indels residing within coding sequences of

each KIR gene, which altogether discriminate a specific KIR

allele from the others. We took the intersection of variants that

were included in this list of variants and in a list of genotyped

SNVs and indels of our dataset and utilized them to determine

the KIR allele combination in our dataset. By obtaining all

possible genotypes from the KIR alleles and matching them

with the observed genotypes of these intersected variants, we

defined 118 KIR alleles spanning 13 KIR genes. We investigated

potentially novel allele combinations when the most probable

candidate combination(s) of KIR alleles had at least one
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Figure 2. Linkage disequilibrium (LD) anal-

ysis of the KIR region

(A) Pairwise LD based on KIR gene content, which

was measured as the r2 value of inter-gene copy

number correlations. Dotted lines in white indicate

the boundary between centromeric and telomeric

regions.

(B) Pairwise LD based on KIR alleles, which was

measured by the ε value of normalized entropy of

the haplotype frequency. A higher ε value repre-

sents stronger LD. A dotted line in white indicates a

boundary between the centromeric and telomeric

regions of KIR.
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mismatched genotype. There were a few patterns of ambiguity

(e.g., the difference between KIR3DL3*001 and KIR3DL3*009)

for which it was technically difficult to uniquely select one allele

over the other because of the paucity of variations within exons

among the different KIR alleles.

To validate the accuracy of our pipeline when defining the KIR

alleles, we again applied it to the Japanese dataset and IHWG

dataset, where we had the previously established KIR allelic in-

formation based on PCR-SSP and pyrosequencing, respec-

tively. We observed high concordance between the results

from our method and the previously established alleles (the

mean concordance was 98.6% and 94.6%, respectively; Table

S6), which was comparable with the NGS-based determination

of HLA alleles.2,21 We had a broader scope of KIR alleles than

the previously released NGS-based pipeline11 (i.e., genotyping

of KIR2DS1 and 2DS2), which is one of the advantages over

the previous method.

LD and haplotype structure of the KIR region in
Japanese individuals
Given the diversity and complex structure of the KIR region,

elucidation of population-specific LD and haplotype structures

would expand our understanding of this region. Historically,

the KIR region is subdivided into a centromeric region and a te-

lomeric region based on physical position. Between the centro-

meric and telomeric region exists a recombination hotspot,

where reciprocal recombination is likely to occur to form new

haplotypes by reassorting centromeric and telomeric gene con-

tent motifs.22 Although a strong LDwithin each of the regions has

been reported, the LD across these regions has not been well

described, especially for non-Europeans.23 By leveraging these

high-resolution KIR gene content and allelic data from 1,173

Japanese individuals, we assessed the LD across the entire

KIR region (Figure 2). The LD based on KIR gene content showed

a moderate inter-region LD (for example, between KIR2DL5

[centromeric] and KIR3DL1 [telomeric]), as well as a strong

intra-region LD (Figure 2A), which demonstrated the shared hap-

lotypes stretching across the two regions. To elucidate the LD

structure at a higher resolution, we calculated the allelic LD

metric ε
24, an entropy-based LD measurement index to quantify
a pairwise LD between KIR genes by

incorporating multiallelic information. We

again observed intra- and inter-region

LD across the KIR genes (Figure 2B), indi-
cating that the KIR LD pattern is not only composed of the pres-

ence or absence of each KIR gene but also of the allelic diversity

within and across the KIR genes.

To better understand the landscape of KIR diversity in the

Japanese population, we applied (1) a dimensionality reduction

method, t-distributed stochastic neighbor embedding

(t-SNE),25 and (2) a haplotype visualization method, Disentan-

gler,26,27 to the genotype and haplotype data of the KIR genes,

respectively. First, we applied a non-linear dimensionality reduc-

tion method, t-SNE, to the KIR gene content (Figure 3A) and

alleles (Figure 3B) to cluster the studypopulation basedonKIRdi-

versity. This unsupervised clustering identified a major cluster,

colored red in Figure 3A, that pointed to those who had two

copies of a group A haplotype (A/A). On the other hand, the indi-

viduals in the secondmajor cluster, colored blue in Figure 3A, had

at least one copy of a specific group B haplotype that was char-

acterized by (1) the presence of KIR3DS1 and KIR2DS1 and (2)

the absence ofKIR3DL1 andKIR2DS4. This structurewasmostly

preserved in the t-SNE application to the allelic data (Figure 3B).

The largebottomcluster below the dotted line in Figure 3Bmostly

consisted of A/A haplotype individuals classified as the red clus-

ter in Figure 3A but was more specifically characterized by

complete absence of KIR2DL4*00501, KIR3DS1*01301, and

KIR2DS1*00201. To elucidate the KIR haplotype configuration,

we used Disentangler, a graphics tool designed for visualizing

high-dimensional haplotype configurations across multiallelic

genetic markers such as HLA and KIR alleles. We observed the

long-range haplotypes that corresponded to the group A and

group B haplotypes (red and blue, respectively, in Figure 3C) in

the Japanese population.

These analyses supported the historically defined categoriza-

tion of the group A/B haplotype from the recently developed

dimensionality reduction method and might suggest a sub-clas-

sification strategy based on the high-resolution allelic data.

Construction of a biobank-scale KIR imputation method
by integrating high-resolution KIR alleles and WGS
genotype
A biobank-scale PheWAS of the KIR region will provide compre-

hensive insights into how the diversity of KIR alleles affects a
Cell Genomics 2, 100101, March 9, 2022 5
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Figure 3. The LD and haplotype structure of KIR region

(A) Unsupervised sample clustering by t-SNE based on KIR gene content. We

manually categorized the plots into three clusters (red, blue, and pink). A/A,

A/B, and B/B indicate the haplotype combination of the individuals in the

cluster.

(B) Unsupervised sample clustering by t-SNE based on the KIR alleles. We

annotated individuals with colors according to the clusters defined in (A). We

segregated the points into top and bottom clusters by a dotted line.

(C) Visualization of haplotype structures of the KIR genes by Disentangler. The

vertically stacked bars represent each of the KIR genes. A tile in a bar repre-

sents a KIR allele, and a segment connects two alleles on adjacent genes. Tiles

with dotted frames indicate that the haplotype did not have the KIR gene. The

height of each tile and the thickness of each segment correspond to the fre-

quencies of the KIR allele and haplotype, respectively. The pink tiles are

centromeric KIRs and the green tiles are telomeric KIRs. The representative

haplotypes are coloredmanually in red (group A haplotypes) and in blue (group

B haplotypes).

Article
ll

OPEN ACCESS
spectrum of human complex traits. To conduct PheWAS, an ac-

curate and scalable method to impute KIR alleles from the exist-

ing SNV data (genotyped by SNP microarray or WGS) is war-

ranted because it would be challenging to perform customized

deep sequencing of the KIR region in hundreds of thousands

of individuals. Given that the genotype data of current biobanks

have been generated on different genotyping or sequencing

platforms, it is also warranted to construct a KIR reference panel

that includes as many variants in the KIR region as possible to

encompass diverse potential scaffold variants. We integrated

WGS data for some of the individuals in the study cohort

(nreference = 689) with the high-resolution KIR gene copy number

and allele to construct a reference panel for KIR imputation,

which included 11 KIR gene copy numbers, 52 high-resolution

(7-digit maximum) KIR alleles, and 151,350 SNVs on chromo-

some 19 after quality control (STAR Methods). The tagging

SNPs in LD with KIR alleles are essential in an accurate imputa-
6 Cell Genomics 2, 100101, March 9, 2022
tion based on a hidden Markov model (HMM).28 We observed

that theR2 values of LD between KIR alleles and the best tagging

SNPs were always higher when including whole-genome-

sequenced variants than when limiting the variants to those

on the genotyping platforms (Figure S2). The higher R2 values

in WGS suggested an advantage of including whole-genome

variants in the reference panel. The imputation accuracy of

the constructed KIR reference panel was empirically evaluated

by simulating the SNPs on the genotyping array (Illumina

OmniExpressExome) as an imputation scaffold and performing

10-fold cross validation (STAR Methods).29 We observed a

high imputation accuracy for KIR gene copy numbers (mean

concordance = 99.7%; Table S7A) and KIR alleles (mean

concordance = 99.7%; Table S7B), which was comparable

with that for HLA alleles.2,30

We next sought to investigate the imputation accuracy of

the constructed KIR reference panel in other populations.

We genotyped IHWG samples (n = 39) using the Illumina

OmniExpressExome genotyping array. The principal-compo-

nent analysis with 1000 Genomes Project individuals suggested

that the IHWG samples are mostly of European ancestry. We

imputed KIR alleles using this genotype as a scaffold and the

KIR reference panel of Japanese (nreference = 689) and assessed

the accuracy of imputation by comparing the imputed alleles

with those from the previously defined KIR alleles based on

pyrosequencing. Although the imputation pipeline generally

worked, we observed a relatively low accuracy (mean concor-

dance = 88.9%; Table S8) compared with imputation in Japa-

nese individuals (Table S9; Figure S3), which underscores the

necessity of constructing a population-specific KIR reference

panel.

Last, we benchmarked our imputation pipeline by comparing

it with the previously published KIR imputation method of

KIR*IMP.13 KIR*IMP imputes KIR gene copy number and haplo-

types but cannot impute KIR alleles, and the reference panel was

constructed from individuals in the United Kingdom. We

observed that the imputation accuracy of KIR copy number

was comparable with or slightly better in our pipeline than in

KIR*IMP for the IHWG dataset (mean concordance = 90.1%

[ours] versus 85.3% [KIR*IMP]; Table S10A) and Japanese data-

set (mean concordance = 94.6% [ours] versus 93.9% [KIR*IMP];

Table S10B). We also had a larger scope of KIR genes whose

gene content can be imputed.

PheWAS in 170,000 individuals revealed no significant
association of the investigated KIR alleles with complex
human traits
The high-resolution KIR reference panel enabled us to conduct a

biobank-scale KIR allelic imputation, followed by comprehen-

sive PheWAS in the KIR region. We imputed the KIR alleles in

BioBank Japan genome-wide association study (GWAS) data

(n = 164,540)31–33 and case-control cohort GWAS data of inflam-

matory bowel disease (n = 5,367)34,35 and associated the

imputed KIR alleles with 85 human complex traits (40 diseases

and 45 quantitative traits; Table S11). When conducting KIR

imputation using these biobank-scale genotype data, we used

minmac3 software instead of beagle because of computational

scalability. We again confirmed the high imputation accuracy in
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this modified pipeline by splitting the cohort into two batches

evenly, with a smaller number of individuals in the reference

panel (n = 295; mean concordance = 93.9% for gene copy num-

ber and 96.1% for alleles; Table S9; STAR Methods). We

imputed 24 common KIR genes and alleles with an estimated

imputation accuracy ofR2 > 0.5. PheWAS revealed no significant

association of these alleles with these 85 traits after Bonferroni

correction of multiple testing (smallest p = 1.5 3 10�4 in

KIR3DL2*010 for serum total protein level; number of tests =

24 markers 3 85 traits = 2,040; significance threshold p =

0.05/2,040 = 2.5 3 10�5; Figure 4; Table S12). We could not

robustly replicate the previously reported associations of the

investigated KIR alleles with immune-related diseases (e.g., ul-

cerative colitis, Crohn’s disease,36 rheumatoid arthritis,37 type

1 diabetes,38 and HCV hepatitis;7 smallest p = 0.0063 in

KIR3DL2*001 for type 1 diabetes).

Considering the biological interplay between KIRs and HLA

class I molecules, we assessed the interactive effect (i.e., epis-

tasis) of a KIR allele and an HLA class I allele on these complex

traits. We performed interaction analyses between the imputed

KIR alleles and HLA class I alleles with a minor allele frequency

of less than 0.05. We did not detect any significant interactive ef-

fects across the 85 traits after Bonferroni correction of multiple

testing (smallest p = 3.4 3 10�5 in KIR3DL2*0073HLA-C*08:01

for serum potassium level; number of tests = 41,458; signifi-

cance threshold p = 0.05/41,458 = 1.23 10�6; quantile-quantile

(QQ) plot in Figure S4). We did not detect any evidence of epis-

tasis reflecting the interaction between KIR alleles and HLA al-

leles within the Japanese population.

DISCUSSION

We performed comprehensive target sequencing of KIR genes

to uncover the genomic landscape of this region. We determined

the highest-resolution KIR alleles in 1,173 individuals of Japa-

nese ancestry. The KIR copy number and allele typing showed

high concordance with previous studies in Japanese and Euro-

pean individuals, which suggests applicability of our pipeline to

other global populations to increase the diversity in reference

KIR alleles. The high-resolution map of KIR copy numbers and

alleles disentangled the complex LD and haplotype structures.

Strong LD was observed within the centromeric and telomeric

regions andmoderately spanned across the two regions beyond

a recombination hotspot. A recently developed dimensionality

reduction method elucidated the diversity of the KIR region.

Although the gene-content-level analysis supported the histori-

cally defined haplotype categorization (i.e., groups A and B),

the allele-level analysis suggested a classification strategy that

could further divide individuals into subclusters. Construction

of a reference panel of the high-resolution KIR alleles and the

whole-genome variants, followed by an imputation of the bio-

bank-scale GWAS data, showed the phenotypic associations

of KIR genes with diverse human complex traits. Unexpectedly,

the previously reported associations of KIR alleles with immune-

related traits were not replicated at robust significance within the

scope of our study, nor did we observe interactive effects be-

tween the KIR alleles and HLA alleles. However, we need to

continue the effort to increase the sample size and population di-
versity in KIR association studies to validate our exploratory an-

alyses. Given the high accuracy of our imputation method, appli-

cation to other phenotypes, such as allogenic transplantation

outcomes and treatment efficacy of cancer immunotherapy, is

also warranted to uncover the biology and clinical importance

of the KIR region.

We developed a new sequencing and bioinformatics pipeline

to elucidate the KIR diversity of biobank-scale individuals, which

provides a potential opportunity to be broadly applied in the clin-

ical field.

Limitations of the study
Our study has potential limitations. First, although the optimized

deep target sequencing technology and computational pipelines

enabled us to create the high-resolution KIR catalog, there re-

mains an upper limit when specifying the combination of KIR al-

leles without ambiguity. Although we implemented the function

to flag potentially novel KIR allele combinations, detailed charac-

terization of those alleles was beyond the scope of this study.

One of the reasons was because we only included known exon

variants in determining KIR alleles, considering the effect on

the function of KIRs. An additional inclusion of intronic variants

and novel variants would further fine-tune the KIR allele discov-

ery with much less ambiguity. Second, our KIR sequencing data

did not have phase information. We complemented this point

with the computational pipelines characterized by (1) a matching

algorithm with an exhaustive search for all possible combina-

tions of genotypes in determining KIR alleles and (2) a computa-

tional phasing algorithm in the haplotype-based analysis. These

pipelines enabled us to determine the high-resolution KIR alleles

in most cases and to construct an imputation panel with high ac-

curacy. Long-read sequencing technology that could address

phase in the entire KIR region is needed to validate the accuracy

of our results.

STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
B Lead contact

B Materials availability

B Data and code availability

d EXPERIMENTAL MODEL AND SUBJECT DETAILS

d METHOD DETAILS

B Deep-target sequencing of KIR genes

B The determination of KIR gene content and copy num-

ber

B Assessment and comparison of mapping quality

B The validation of KIR gene content by PCR-SSO

method in selected subjects

B The ploidy-aware genotype calling of KIR region

B The curation of nucleotide sequences of the KIR alleles

from IPD reference

B The determination of the KIR alleles

B Assessment of LD structure of the KIR region
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Figure 4. A heatmap of PheWAS results of KIR alleles

with 85 complex traits

Shown are the association results of KIR alleles (columns) with

85 complex traits (rows), demonstrated as �log10(P). The

values of �log10(P) are colored according to the color scale at

the top left. The traits are separated by dotted lines according

to the phenotypic category. The abbreviations for the trait

names are described in Table S11. Immune, immunological/

allergic diseases; Inf, infectious diseases; CVD/metab, cardio/

vascular/metabolic diseases; Malignancy, malignant dis-

eases; Misc, miscellaneous diseases; Anth, anthropometric

quantitative traits; BP, blood pressure-related quantitative

traits; Metabolic, metabolic quantitative traits; Liver, liver-

related quantitative traits; Other, other biochemical quantita-

tive traits; Kidney, kidney-related quantitative traits, Hemato-

logical, hematological quantitative traits.
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B Dimensionality reduction of samples based on KIR

genes and alleles

B Haplotype illustration of KIR region

B Whole-genome sequencing of selected individuals and

construction of the reference panel for the KIR imputa-

tion

B The benchmarking against KIR*IMP software

B The KIR imputation in biobank-scale individuals and

comprehensive PheWAS

d QUANTIFICATION AND STATISTICAL ANALYSIS

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

xgen.2022.100101.
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F.O. (2005). Distinct HLA-C/KIR genotype profile associates with guttate

psoriasis. J. Invest. Dermatol. 125, 721–730.

6. Ahn, R.S., Moslehi, H., Martin, M.P., Abad-Santos, M., Bowcock, A.M.,

Carrington, M., and Liao, W. (2016). Inhibitory KIR3DL1 alleles are associ-

ated with psoriasis. Br. J. Dermatol. 174, 449–451.

7. De Re, V., Caggiari, L., De Zorzi, M., Repetto, O., Zignego, A.L., Izzo, F.,

Tornesello, M.L., Buonaguro, F.M., Mangia, A., Sansonno, D., et al.

(2015). Genetic diversity of the KIR/HLA system and susceptibility to hep-

atitis C virus-related diseases. PLoS One 10, e0117420.

8. Hiby, S.E., Walker, J.J., O’Shaughnessy, K.M., Redman, C.W.G., Carring-

ton, M., Trowsdale, J., and Moffett, A. (2004). Combinations of maternal

KIR and fetal HLA-C genes influence the risk of preeclampsia and repro-

ductive success. J. Exp. Med. 200, 957–965.

9. Mancusi, A., Ruggeri, L., Urbani, E., Pierini, A., Massei, M.S., Carotti, A.,

Terenzi, A., Falzetti, F., Tosti, A., Topini, F., et al. (2015). Haploidentical he-

matopoietic transplantation from KIR ligand-mismatched donors with

activating KIRs reduces nonrelapse mortality. Blood 125, 3173–3182.

10. Trefny, M.P., Rothschild, S.I., Uhlenbrock, F., Rieder, D., Kasenda, B.,

Stanczak, M.A., Berner, F., Kashyap, A.S., Kaiser, M., Herzig, P., et al.

(2019). A variant of a killer cell immunoglobulin-like receptor is associated

with resistance to PD-1 blockade in lung cancer. Clin. Cancer Res. 25,

3026–3034.

11. Norman, P.J., Hollenbach, J.A., Nemat-Gorgani, N., Marin, W.M., Nor-

berg, S.J., Ashouri, E., Jayaraman, J.,Wroblewski, E.E., Trowsdale, J., Ra-

jalingam, R., et al. (2016). Defining KIR and HLA class I genotypes at high-

est resolution via high-throughput sequencing. Am. J. Hum. Genet. 99,

375–391.

12. Roe, D., and Kuang, R. (2020). Accurate and efficient KIR gene and haplo-

type inference from genome sequencing reads with novel K-mer signa-

tures. Front. Immunol. 11, 3102.

13. Vukcevic, D., Traherne, J.A., Næss, S., Ellinghaus, E., Kamatani, Y.,

Dilthey, A., Lathrop, M., Karlsen, T.H., Franke, A., Moffatt, M., et al.

(2015). Imputation of KIR types from SNP variation data. Am. J. Hum.

Genet. 97, 593–607.

14. Ovsyannikova, I.G., Schaid, D.J., Larrabee, B.R., Haralambieva, I.H., Ken-

nedy, R.B., and Poland, G.A. (2017). A large population-based association

study between HLA and KIR genotypes and measles vaccine antibody re-

sponses. PLoS One 12, e0171261.

15. Martin, A.R., Kanai, M., Kamatani, Y., Okada, Y., Neale, B.M., and Daly,

M.J. (2019). Clinical use of current polygenic risk scores may exacerbate

health disparities. Nat. Genet. 51, 584–591.

16. Uhrberg, M., Valiante, N.M., Shum, B.P., Shilling, H.G., Lienert-Weiden-

bach, K., Corliss, B., Tyan, D., Lanier, L.L., and Parham, P. (1997). Human

diversity in killer cell inhibitory receptor genes. Immunity 7, 753–763.

17. Hsu, K.C., Chida, S., Geraghty, D.E., and Dupont, B. (2002). The killer cell

immunoglobulin-like receptor (KIR) genomic region: gene-order, haplo-

types and allelic polymorphism. Immunol. Rev. 190, 40–52.

18. Yawata, M., Yawata, N., Draghi, M., Little, A.-M., Partheniou, F., and Par-

ham, P. (2006). Roles for HLA and KIR polymorphisms in natural killer cell

repertoire selection and modulation of effector function. J. Exp. Med. 203,

633–645.
Cell Genomics 2, 100101, March 9, 2022 9

https://doi.org/10.1016/j.xgen.2022.100101
https://doi.org/10.1016/j.xgen.2022.100101
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref1
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref1
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref1
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref1
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref2
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref2
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref2
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref2
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref3
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref3
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref3
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref3
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref4
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref4
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref4
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref5
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref5
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref5
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref6
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref6
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref6
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref7
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref7
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref7
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref7
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref8
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref8
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref8
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref8
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref9
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref9
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref9
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref9
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref10
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref10
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref10
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref10
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref10
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref11
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref11
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref11
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref11
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref11
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref12
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref12
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref12
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref13
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref13
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref13
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref13
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref14
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref14
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref14
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref14
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref15
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref15
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref15
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref16
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref16
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref16
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref17
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref17
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref17
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref18
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref18
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref18
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref18


Article
ll

OPEN ACCESS
19. Norman, P.J., Stephens, H.A.F., Verity, D.H., Chandanayingyong, D., and

Vaughan, R.W. (2001). Distribution of natural killer cell immunoglobulin-like

receptor sequences in three ethnic groups. Immunogenetics 52, 195–205.

20. Poplin, R., Chang, P.C., Alexander, D., Schwartz, S., Colthurst, T., Ku, A.,

Newburger, D., Dijamco, J., Nguyen, N., Afshar, P.T., et al. (2018). A uni-

versal snp and small-indel variant caller using deep neural networks.

Nat. Biotechnol. 36, 983.

21. Wang, Y.-Y., Mimori, T., Khor, S.-S., Gervais, O., Kawai, Y., Hitomi, Y., To-

kunaga, K., and Nagasaki, M. (2019). HLA-VBSeq v2: improved HLA call-

ing accuracy with full-length Japanese class-I panel. Hum. Genome Var. 6.

https://doi.org/10.1038/s41439-019-0061-y.

22. Parham, P. (2005). MHC class I molecules and KIRS in human history,

health and survival. Nat. Rev. Immunol. 5, 201–214.

23. Vierra-Green, C., Roe, D., Jayaraman, J., Trowsdale, J., Traherne, J.,

Kuang, R., Spellman, S., and Maiers, M. (2016). Estimating KIR haplotype

frequencies on a cohort of 10,000 individuals: a comprehensive study on

population variations, typing resolutions, and reference haplotypes. PLoS

One 11, e0163973.

24. Okada, Y. (2018). eLD: entropy-based linkage disequilibrium index be-

tween multiallelic sites. Hum. Genome Var. 5, 29.

25. Van Der Maaten, L. (2014). Accelerating t-SNE using tree-based algo-

rithms. J. Machine Learn. Res., 3221–3245. Volume 15.

26. Kumasaka, N., Nakamura, Y., and Kamatani, N. (2010). The textile plot: a

new Linkage disequilibrium display ofmultiple-Single Nucleotide Polymor-

phism genotype data. PLoS One 5, e10207.

27. Okada, Y., Momozawa, Y., Ashikawa, K., Kanai, M., Matsuda, K., Kama-

tani, Y., Takahashi, A., and Kubo, M. (2015). Construction of a popula-

tion-specific HLA imputation reference panel and its application to Graves’

disease risk in Japanese. Nat. Genet. 47, 798–802.

28. Browning, B.L., and Browning, S.R. (2016). Genotype imputation with mil-

lions of reference samples. Am. J. Hum. Genet. 98, 116–126.

29. Hirata, J., Hirota, T., Ozeki, T., Kanai, M., Sudo, T., Tanaka, T., Hizawa, N.,

Nakagawa, H., Sato, S., Mushiroda, T., et al. (2018). Variants at HLA-A,

HLA-C, and HLA-DQB1 confer risk of psoriasis vulgaris in Japanese.

J. Invest. Dermatol. 138, 542–548.

30. Raychaudhuri, S., Sandor, C., Stahl, E.A., Freudenberg, J., Lee, H.S., Jia,

X., Alfredsson, L., Padyukov, L., Klareskog, L., Worthington, J., et al.

(2012). Five amino acids in three HLA proteins explain most of the associ-

ation between MHC and seropositive rheumatoid arthritis. Nat. Genet. 44,

291–296.

31. Kanai, M., Akiyama, M., Takahashi, A., Matoba, N., Momozawa, Y., Ikeda,

M., Iwata, N., Ikegawa, S., Hirata, M., Matsuda, K., et al. (2018). Genetic

analysis of quantitative traits in the Japanese population links cell types

to complex human diseases. Nat. Genet. 50, 390–400.

32. Ishigaki, K., Akiyama, M., Kanai, M., Takahashi, A., Kawakami, E., Sugish-

ita, H., Sakaue, S., Matoba, N., Low, S.K., Okada, Y., et al. (2020). Large-

scale genome-wide association study in a Japanese population identifies

novel susceptibility loci across different diseases. Nat. Genet. 52,

669–679.

33. Sakaue, S., Kanai, M., Karjalainen, J., Akiyama, M., Kurki, M., Matoba, N.,

Takahashi, A., Hirata, M., Kubo, M., Matsuda, K., et al. (2020). Trans-bio-

bank analysis with 676,000 individuals elucidates the association of poly-

genic risk scores of complex traits with human lifespan. Nat. Med. 26,

542–548.

34. Gupta, A., Juyal, G., Sood, A., Midha, V., Yamazaki, K., Vich Vila, A., Esaki,

M., Matsui, T., Takahashi, A., Kubo, M., et al. (2016). A cross-ethnic survey

of CFB and SLC44A4, Indian ulcerative colitis GWAS hits, underscores

their potential role in disease susceptibility. Eur. J. Hum. Genet. 25,

111–122.

35. Han, B., Akiyama, M., Kim, K.K., Oh, H., Choi, H., Lee, C.H., Jung, S., Lee,

H.S., Kim, E.E., Cook, S., et al. (2018). Amino acid position 37 of HLA-

DRb1 affects susceptibility to Crohn’s disease in Asians. Hum.Mol. Genet.

27, 3901–3910.
10 Cell Genomics 2, 100101, March 9, 2022
36. Saito, H., Hirayama, A., Umemura, T., Joshita, S., Mukawa, K., Suga, T.,

Tanaka, E., and Ota, M. (2018). Association between KIR-HLA combina-

tion and ulcerative colitis and Crohn’s disease in a Japanese population.

PLoS One 13, e0195778.

37. Aghaei, H., Mostafaei, S., Aslani, S., Jamshidi, A., and Mahmoudi, M.

(2019). Association study between KIR polymorphisms and rheumatoid

arthritis disease: an updated meta-analysis. BMC Med. Genet. 20, 24.

38. Van der Slik, A.R., Koeleman, B.P.C., Verduijn, W., Bruining, G.J., Roep,

B.O., and Giphart, M.J. (2003). KIR in type 1 diabetes: disparate distribu-

tion of activating and inhibitory natural killer cell receptors in patients

versus HLA-matched control subjects. Diabetes 52, 2639–2642.

39. Nagai, A., Hirata, M., Kamatani, Y., Muto, K., Matsuda, K., Kiyohara, Y., Ni-

nomiya, T., Tamakoshi, A., Yamagata, Z., Mushiroda, T., et al. (2017).

Overview of the BioBank Japan project: study design and profile.

J. Epidemiol. 27, S2–S8.

40. Li, H., and Durbin, R. (2009). Fast and accurate short read alignment with

Burrows-Wheeler transform. Bioinformatics 25, 1754–1760.

41. Van der Auwera, G., O’Connor, B., and Safari, anO.M.C. (2020). Genomics

in the Cloud (O’Reilly Media, Inc.).

42. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. (1990).

Basic local alignment search tool. J. Mol. Biol. 215, 403–410.

43. Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M.A.R.,

Bender, D., Maller, J., Sklar, P., de Bakker, P.I.W., Daly, M.J., et al.

(2007). PLINK: a tool set for whole-genome association and population-

based linkage analyses. Am. J. Hum. Genet. 81, 559–575.

44. Okada, Y., Yamazaki, K., Umeno, J., Takahashi, A., Kumasaka, N., Ashi-

kawa, K., Aoi, T., Takazoe, M., Matsui, T., Hirano, A., et al. (2011). HLA-

Cw (*)1202-B (*)5201-DRB1 (*)1502 haplotype increases risk for ulcerative

colitis but reduces risk for Crohn’s disease. Gastroenterology 141, 864–

871.e1-5.

45. Browning, S.R., and Browning, B.L. (2007). Rapid and accurate haplotype

phasing and missing-data inference for whole-genome association

studies by use of localized haplotype clustering. Am. J. Hum. Genet. 81,

1084–1097.

46. Das, S., Forer, L., Schönherr, S., Sidore, C., Locke, A.E., Kwong, A.,

Vrieze, S.I., Chew, E.Y., Levy, S., McGue,M., et al. (2016). Next-generation

genotype imputation service and methods. Nat. Genet. 48, 1284–1287.

47. Hirata, M., Kamatani, Y., Nagai, A., Kiyohara, Y., Ninomiya, T., Tamakoshi,

A., Yamagata, Z., Kubo, M., Muto, K., Mushiroda, T., et al. (2017). Cross-

sectional analysis of BioBank Japan clinical data: a large cohort of 200,000

patients with 47 common diseases. J. Epidemiol. 27, S9–S21.

48. Akiyama, M., Ishigaki, K., Sakaue, S., Momozawa, Y., Horikoshi, M., Hir-

ata, M., Matsuda, K., Ikegawa, S., Takahashi, A., Kanai, M., et al. (2019).

Characterizing rare and low-frequency height-associated variants in the

Japanese population. Nat. Commun. 10, 4393.

49. Kumaran, M., Subramanian, U., and Devarajan, B. (2019). Performance

assessment of variant calling pipelines using human whole exome

sequencing and simulated data. BMC Bioinformatics 20, 342.

50. van der Maaten, L., and Hinton, G. (2008). Visualizing data using t-SNE

Laurens. J. Mach. Learn. Res. 9, 2579–2605.

51. Okada, Y., Momozawa, Y., Sakaue, S., Kanai, M., Ishigaki, K., Akiyama,

M., Kishikawa, T., Arai, Y., Sasaki, T., Kosaki, K., et al. (2018). Deep

whole-genome sequencing reveals recent selection signatures linked to

evolution and disease risk of Japanese. Nat. Commun. 9, 1631.

52. Delaneau, O., Zagury, J.F., and Marchini, J. (2013). Improved whole-chro-

mosome phasing for disease and population genetic studies. Nat.

Methods 10, 5–6.

53. Sakaue, S., Kanai, M., Tanigawa, Y., Karjalainen, J., Kurki, M., Koshiba, S.,

Narita, A., Konuma, T., Yamamoto, K., Akiyama, M., et al. (2021). A cross-

population atlas of genetic associations for 220 human phenotypes. Nat.

Genet. 53, 1415–1424.

http://refhub.elsevier.com/S2666-979X(22)00018-0/sref19
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref19
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref19
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref20
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref20
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref20
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref20
https://doi.org/10.1038/s41439-019-0061-y
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref22
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref22
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref23
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref23
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref23
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref23
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref23
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref24
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref24
https://dl.acm.org/toc/jmlr/2014/15/1
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref26
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref26
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref26
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref27
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref27
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref27
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref27
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref28
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref28
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref29
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref29
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref29
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref29
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref30
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref30
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref30
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref30
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref30
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref31
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref31
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref31
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref31
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref32
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref32
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref32
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref32
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref32
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref33
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref33
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref33
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref33
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref33
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref34
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref34
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref34
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref34
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref34
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref35
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref35
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref35
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref35
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref36
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref36
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref36
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref36
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref37
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref37
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref37
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref38
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref38
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref38
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref38
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref39
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref39
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref39
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref39
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref40
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref40
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref41
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref41
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref42
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref42
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref43
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref43
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref43
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref43
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref44
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref44
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref44
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref44
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref44
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref45
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref45
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref45
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref45
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref46
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref46
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref46
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref47
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref47
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref47
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref47
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref48
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref48
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref48
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref48
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref49
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref49
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref49
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref50
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref50
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref51
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref51
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref51
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref51
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref52
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref52
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref52
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref53
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref53
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref53
http://refhub.elsevier.com/S2666-979X(22)00018-0/sref53


Article
ll

OPEN ACCESS
STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

The genotype data of BioBank Japan used

in this study

Nagai et al. 201739 Japanese Genotype-phenotype Archive (JGA) with

accession code JGAS000114/JGAD000123 and

JGAS000114/JGAD000220 which can be accessed

through application at https://humandbs.

biosciencedbc.jp/en/hum0014-latest

Deposited data

Individual-level KIR alleles and KIR imputation

reference panel used in this study

This paper the National Bioscience Database Center (NBDC)

Human Database (https://humandbs.biosciencedbc.

jp/en/) with the accession code hum0114

Human reference genome NCBI build 37,

GRCh37

Genome Reference Consortium http://www.ncbi.nlm.nih.gov/projects/genome/

assembly/grc/human/

IPD-KIR The KIR Nomenclature committee https://www.ebi.ac.uk/ipd/kir/

Experimental models: Cell lines

A cell line used for genotyping and constructing

KIR reference in the Japanese population

the Japan Biological Informatics

Consortium (JBIC)

https://bioresource.nibiohn.go.jp/psc/index.html

ECACC HLA typed collection The International Histocompatibility

Working Group (IHWG)

https://www.phe-culturecollections.org.uk/products/

celllines/hlatyped/search.jsp

Software and algorithms

KIR genotyping algorithm This paper https://github.com/saorisakaue/KIR_project

https://doi.org/10.5281/zenodo.5908796

BWA Li et al. 200940 http://bio-bwa.sourceforge.net

KernelDensity module scikit-learn of python https://scikit-learn.org/stable/modules/generated/

sklearn.neighbors.KernelDensity.html

GATK Van der Auwera & O’Connor. 202041 https://software.broadinstitute.org/gatk/

DeepVariant Poplin et al. 201820 https://github.com/google/deepvariant

blast Altschul et al. 199042 https://blast.ncbi.nlm.nih.gov/Blast.cgi

plink Purcell et al. 200743 https://www.cog-genomics.org/plink/

eLD software Okada 201824 http://www.sg.med.osaka-u.ac.jp/tools.html

multicoreTSNE python package https://github.com/DmitryUlyanov/Multicore-TSNE

Disentangler software Okada et al. 201144 http://kumasakanatsuhiko.jp/projects/disentangler/

Beagle Browning and Browning. 200745 https://faculty.washington.edu/browning/beagle/

beagle.html

Minimac3 Das et al. 201646 https://genome.sph.umich.edu/wiki/Minimac3
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Yukinori

Okada (yokada@sg.med.osaka-u.ac.jp).

Materials availability
This study did not generate new unique reagents.

Data and code availability
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publication. Accession numbers are listed in the key resources table. The genomic DNA we used for KIR sequencing were ob-

tained from a cell line established by the Japan Biological Informatics Consortium (JBIC), and can be purchased at https://

bioresource.nibiohn.go.jp/psc/index.html. The International Histocompatibility Working Group (IHWG) cell lines were obtained

from ECACC HLA typed collection (https://www.phe-culturecollections.org.uk/products/celllines/hlatyped/search.jsp). The

genotype data of BBJ used in this study are available from the Japanese Genotype-phenotype Archive (JGA) through applica-

tion at https://humandbs.biosciencedbc.jp/en/hum0014-latest. Accession numbers are listed in the key resources table. Other

web resources used in this study are listed in the key resources table.

d An original code used for determining ploidy (gene copy number) and allele genotype of KIR is available at https://github.com/

saorisakaue/KIR_project with reference data curated from IPD-KIR allele database, both of which are publicly available (https://

doi.org/10.5281/zenodo.5908796).

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

To determine the high-resolution KIR gene content, copy number, and alleles in the Japanese population, we enrolled 1,173 individ-

uals of Japanese ancestry, whose genomic DNA were obtained from Epstein-Barr virus transformed B-lymphoblast cell lines of un-

related Japanese individuals established by the Japan Biological Informatics Consortium (JBIC).29 Mean age of participants at

recruitment was 47.4 years old, and 46.8% were female. Of them, 689 individuals for whom we conducted the whole-genome

sequencing were enrolled in construction of the KIR imputation reference panel. In the PheWAS, 164,540 individuals were enrolled

from BioBank Japan (BBJ) project, which is a hospital-based biobank that collaboratively collected DNA and serum samples from 12

medical institutions in Japan and recruited approximately 200,000 participants, mainly of Japanese ancestry, with the diagnosis of at

least one of 47 diseases.39,47 Mean age of participants at recruitment was 63.0 years old, and 46.3% were female. Individuals who

were identified as of non-Japanese origin either by self-reporting or by principal component analysis (PCA) were excluded, as

described elsewhere.48 All the BBJ participants provided written informed consent as approved by the ethical committee of RIKEN

Yokohama Institute and the Institute of Medical Science, the University of Tokyo. The sample information of the inflammatory bowel

disease cohort of Japanese was extensively described elsewhere.34,35 This study was approved by the ethical committee of Osaka

University Graduate School of Medicine.

METHOD DETAILS

Deep-target sequencing of KIR genes
We conducted a customized target sequencing of all KIR genes and pseudogenes in the region4 (i.e., KIR3DL3, KIR2DS2, KIR2DL2,

KIR2DL3, KIR2DL5A/B, KIR2DS3/5, KIR2DP1, KIR2DL1, KIR3DP1, KIR2DL4, KIR3DL1, KIR3DS1, KIR2DS1, KIR2DS4, KIR3DL2,

and KIR3DX1). The target sequence was extracted from the human reference genome of GRCh37/hg19 (which covers KIR3DX1,

KIR3DL3, KIR2DL3, KIR2DP1, KIR2DL1, KIR3DP1, KIR2DL4, KIR3DL1, KIR2DS4, KIR3DL2) and alternative haplotype of

GL000209 (which covers KIR2DL2, KIR2DL4, KIR3DS1, KIR2DL5A, KIR2DL5B, KIR2DS5, KIR2DS3, KIR2DS1, KIR2DS2; Table

S1). A sequence capture method was performed by hybridization between DNA of an adapter-ligated library (KAPA Hyper Prep

Kit, Roche, CA, USA) and a biotinylated DNA probe (SeqCap EZ choice kit, Roche, CA, USA), which was designed based on the

target sequences of 16 KIR genes to uniquely discriminate each of the KIR genes, despite their structural homology. We described

the exact target region design in Table S2 and Figure S5, and a total length of all target regions summed up to 182,016 bp. Paired-end

sequence reads (350 bp read1 and 250 bp read2 in length) were obtained by using the MiSeq sequencer (illumina, CA, USA).

The determination of KIR gene content and copy number
The sequenced reads were first mapped to the target genome sequence from the reference KIR sequences on human genome

(GRCh37/hg19) and alternative haplotype of GL000209 (Table S1) using BWA (version 0.7.13)40 with default settings. We estimated

the gene content and copy number of each KIR gene by quantifying the read depth, which was obtained by DiagnoseTargets module

of GATK software (version3.6)41. We calculated a weighted average of read depth per gene, which was adjusted for the length of

target regions within each KIR gene. To determine the gene content (i.e., the status whether an individual has the gene or not)

and the gene copy number (i.e., the number of gene copies), we took the ratio of the reads mapped to the gene to those mapped

to KIR3DL3, which is one of the framework genes and all individuals should have two copies in principle. For each of the 11 KIR genes

other than the four frame work genes and a pseudo-gene of KIR3DX1, we collected this ratio across all samples, and computed a

Gaussian kernel density estimate of the read depth distribution within the study population by KernelDensity module in python.

To assign a discrete number of the gene copy number to an individual (e.g., 0,1,2,3,4), we performed unsupervised hard clustering

by separating the kernel density- based distribution at the points of local minimum. The example of copy number assignment is

shown in Figure S6. To assign the gene contents to an individual, we defined that an individual had the gene if the copy number

of the gene equaled to or was more than one, and that the individual did not have the gene if the copy number of the gene was

zero. We also performed the same analysis by using (i) the coverage of pseudogene of KIR3DX1which also in principle all individuals
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have two copies, and (ii) the median coverage of all four framework genes as a reference for deriving the ratio, instead of KIR3DL3 for

validation. We described the mean coverage of all four framework genes in Figure S7.

Assessment and comparison of mapping quality
To quantify the advantage of using relatively longer reads in KIR typing, we assessed and compared the mapping quality and the

uniquely mapped rate between our strategy (i.e., 350/250 bp paired end) and conventional short reads (i.e., 150 bp paired end).

To specifically compare the effect of read length while excluding the effects from sequences themselves, we obtained simulated

short read sequences using the original read data. We used seqkit software to make a shortened fastq file with 150bp as the original

fastq file by using ‘‘subset’’ function with ‘‘-r 1:150’’ option, thereby obtaining the first 150 bases of the original reads. Then, the ob-

tained fastq files with shortened reads were mapped onto the reference using BWA software with the same settings as original pro-

tocol. For the mapping quality, we assessed the two datasets by CollectAlignmentSummaryMetrics function of Picard software

(version 2.18.16). We collected the number of high-quality paired reads aligned to the reference sequence with a mapping quality

of Q20 or higher over the total number of all-mapped paired reads. For the uniquely mapped rate, we counted the number of uniquely

mapped reads using samtools (version 1.9). We then performed paired t-test of this metric (i.e., the fraction of high-quality reads and

the fraction of uniquely mapped reads per individual) for statistical comparison.

The validation of KIR gene content by PCR-SSO method in selected subjects
We empirically confirmed the accuracy of the assigned KIR gene contents by evaluating the concordance with the PCR-SSOmethod

for 14 KIR genes (GenoDive Pharma. Inc.). We selected 100 individuals from the cohort (n = 1,173) to maximize the diversity of KIR

gene content combinations based on the results from our NGS-based pipeline, and performed the KIR typing by the PCR-SSO

method in these individuals. Then, we investigated whether the gene content defined by our NGS-based pipeline was concordant

with that by the PCR-SSO method for each of the 14 genes.

The ploidy-aware genotype calling of KIR region
To determine the KIR alleles at a high resolution, we next sought to identify the SNVs and indels in each of the KIR genes. Since we

did not aim to determine the KIR alleles for the pseudogenes (i.e., KIR2DP1, KIR3DP1, and KIR3DX1), we performed genotyping of

SNVs and indels in 13 KIR genes. For SNVs, we used HaplotypeCaller module of the GATK software with an option of ‘-ploidy’,

which specified the gene copy number of each of the KIR genes. Since the individual ploidy could differ depending on the KIR

genes, we conducted genotyping separately for each of the KIR genes. The output gVCFs were merged by GenotypeGVCFs mod-

ule of the GATK software. For indels, it was technically difficult to perform the indel refinement in the KIR region by GATK, which

resulted in few indels confidently called by the software. Since a 22bp insertion in KIR2DS4 and a 1 bp deletion in KIR2DL4

were critical in determining the alleles of these genes, we used DeepVariant software20 to complementarily call these indels.

DeepVariant can detect SNPs and indels from a pileup image of the reference and read data around each candidate variant

by using the deep learning model (the Inception), which achieved the high accuracy in the benchmarking for both SNPs and in-

dels.49 We incorporated the results of the two indels from DeepVariant into a variant list for determining KIR alleles, together with

SNV results from GATK.

The curation of nucleotide sequences of the KIR alleles from IPD reference
We collected the nucleotide sequence data of each of the KIR alleles that were registered to date at the IPD-KIR website. Since a

complete genomic sequence data is not always available for all the KIR alleles, we curated the nucleotide sequence data, which

is a fasta-based nucleotide coding sequences (CDS) of 887 KIR alleles. To obtain a list of the variants that discriminate each of

the KIR alleles from the others, we ran the blast software42 to compare the CDS of one standard KIR allele (usually defined by the

smallest allele nomenclature) with that of the investigated KIR allele for each of the 13 KIR genes. We thus extracted a list of 706

SNVs and 2 indels with the information of whether each KIR allele sequence has the variant or not. We finally converted the positional

information of these variants from CDS-based to target sequence-based position.

The determination of the KIR alleles
We integrated a list of the genotyped variants from GATK and DeepVariant in our cohort with a list of the key variants in determining

KIR alleles. We extracted the variants that are genotyped in our cohort and at the same time in the list of the key variants. Using these

variants, we first made exhaustive patterns of all the possible genotypes from all the combinations of the KIR alleles at all the possible

copy numbers of that gene. We then matched them with the observed genotype, together with the observed copy number of the

gene. If there is no combination(s) of alleles which exactly matches with the observed genotype, we flagged them as potentially novel

allele combinations, and also output the closest candidate combination of KIR alleles with a score quantifying the number of mis-

matches. We thus assigned the possible KIR allele combination(s) to each KIR gene in an individual. We finally merged the alleles

into the lower digit when they are ambiguous at the higher digit (e.g., as we could not uniquely define one allele from

KIR2DL3*0020101, KIR2DL3*0020102, or KIR2DL3*0020103, these three were merged into KIR2DL3*00201).
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Assessment of LD structure of the KIR region
To evaluate the LD structure of the KIR region, we first assessed the LD pattern based on the KIR gene copy number.We note that the

analyses here were not the haplotype-based but genotype-based. We re-coded the gene copy information of study individuals as a

plink bed/bim/fam format, and calculated r2 value of LD by plink software.43 Next, we assessed pairwise LD based on the KIR alleles

measured as the ε value, which utilizes differences of the normalized entropy of the haplotype frequency distributions between LD

and the null hypothesis of linkage equilibrium (LE), using the eLD software.24 A higher ε value represents stronger LD.

Dimensionality reduction of samples based on KIR genes and alleles
We performed unsupervised clustering of the samples based on KIR gene contents and KIR alleles using a dimensionality reduction

method of t-SNE. t-SNE is a non-linear dimensionality reduction method which converts similarities between data points to joint

probabilities and minimizes the Kullback-Leibler divergence between the joint probabilities of the low-dimensional embedding

and the high-dimensional data.50 We first applied t-SNE to the KIR gene content data using multicoreTSNE package of python soft-

ware with default parameters. Wemanually categorized the plots into three clusters, which were colored in red, blue, and pink in Fig-

ure 3A. We next applied t-SNE to the KIR allele data. In Figure 3B, we annotated the individuals with colors according to the clusters

defined in Figure 3A.

Haplotype illustration of KIR region
We visualized the haplotype structures of the KIR genes by Disentangler software,44 which can visualize haplotype configurations

across multiallelic genetic markers for which typical triangular heat maps with LD indices do not work. Disentangler internally applies

a series of expectation-maximization algorithms to estimate the haplotype frequencies between adjacent markers, and it then uses

this information to determine the order of the alleles for each marker, such that the number of crossing lines between adjacent

markers is minimized. We used the re-formatted KIR alleles computationally phased by beagle software45 as an input for Disentan-

gler. We colored the representative haplotypes in red (group A haplotypes) and in blue (group B haplotypes) in Figure 3C.

Whole-genome sequencing of selected individuals and construction of the reference panel for the KIR imputation
To construct a KIR imputation reference panel which can be applied to diverse genotyping arrays, we conducted WGS in selected

samples whose KIR alleles are defined as described above (n = 689). In brief, we sequenced 295 samples using 2 3 150-bp paired-

end reads on the HiSeq X platformwith amean depth of 16.73 and 394 samples using 2 3 150-bp paired-end reads on the NovaSeq

platform with a mean depth of 16.13, and processed the sequenced reads according to the standardized best-practice method pro-

posed by GATK (ver.3.8-0). For QC, we additionally set exclusion filters for genotypes as follows: (1) DP <5, (2) GQ <20, or (3) DP >60

andGQ<95.We set these genotypes asmissing and excluded variants with call rates <90%before variant quality score recalibration

(VQSR). After performing VQSR, variants located in low-complexity regions (LCR), as defined by mdust software (‘‘hs37d5-

LCRs.20140224.bed’’), were excluded. We then extracted variants located on chromosome 19, and merged them with the KIR

gene content and allele data of the same 689 individuals, which we encoded as biallelic markers.

Imputation accuracy of the constructed reference panel was empirically evaluated by a cross validation approach. We randomly

split the panel into 10 datasets (n = 56-83 [mean = 68.9] for each dataset). KIR alleles from one of the datasets weremasked, and then

imputed using the remaining nine datasets as an imputation reference using beagle software, which uses an HMM-based haplotype

phasing and imputation algorithm. To evaluate the imputation accuracy in a realistic setting, we restricted the scaffold variants into

those on the Illumina OmniExpressExome BeadChip array which we used in the real data of BioBank Japan, instead of using all the

whole-genome-sequenced variants on chromosome 19. The concordances between the imputed and genotyped KIR allele dosages

were calculated separately for each KIR gene content and each allele.

To evaluate the imputation accuracy in other populations than Japanese, we genotyped part of the IHWG samples (n = 40) using

Illumina OmniExpressExome BeadChip. For sample QC, we excluded individuals with call rate < 98%. For variant QC, we removed (i)

duplicated variants based on call rate, (ii) multi-mapped variants (iii) variants with call rate < 98%, (iv) variants with Hardy–Weinberg

equilibrium P% 1 3 10�10, and (v) variants with allele frequency difference from 1000 genomes project > 40%. After QC, we had 39

samples and 639,236 variants in total, of which 13,890 were on chromosome 19. We performed the principal component analysis to

confirm the genetic ancestry of those samples (Figure S8). We phased 13,890 variants on chromosome 19 using shapeit2 software,

and imputed KIR alleles by using the full reference panel of Japanese (nreference = 689) and minimac3 software.46 Here, we usedmini-

mac3 software instead of beagle for imputation to enable the direct comparison with the imputation conducted in BioBank Japan,

which we will describe in the next section. The imputation accuracy was assessed by comparing the imputed allele dosages with

those from the previously-defined KIR alleles based on pyrosequencing.

The benchmarking against KIR*IMP software
To benchmark the imputation accuracy of our pipeline against the previously published imputation method, we performed the KIR

gene copy number imputation by using KIR*IMP software (http://imp.science.unimelb.edu.au/kir/documentation).13 We used

phased haplotypes of (a) SNP genotype data (OmniExpressExome BeadChip array) from IHWG dataset and (b) mock GWAS geno-

type on the Illumina OmniExpressExome BeadChip array constructed from WGS of part of Japanese individuals in KIR reference

panel. The haplotype phasing was performed using SHAPEIT2 software. We then uploaded the haplotypes to the software
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webserver, and obtained the result of imputed KIR gene copy numbers. The imputation accuracy was assessed by comparing the

imputed copy number with those inferred from the NGS-based pipeline.

The KIR imputation in biobank-scale individuals and comprehensive PheWAS
Using the constructed high-resolution imputation reference panel, we imputed the KIR gene contents and alleles in the large-scale

GWAS data of the BBJ individuals (n = 164,540)31,47,48 and inflammatory bowel disease (IBD) cohort (n = 5,367).34,35 The BBJ GWAS

data was genotyped by the Illumina HumanOmniExpressExome BeadChip or a combination of the Illumina HumanOmniExpress and

HumanExomeBeadChips.We had previously confirmed that the genotype from these SNP arrays and that from theWGSwere highly

concordant (R 99.97%).51 The IBD cohort samples were genotyped by the ImmunoChip. Detailed characteristics of the GWAS data

and theQCprocesswere described elsewhere.34,35,48While we used beagle software for KIR imputation in cross validation and in the

IBD cohort, beagle software is currently not scalable to be applied to biobank-scale GWAS data such as BioBank Japan due to huge

requirement of memory resources. Thus, we imputed the KIR genes and alleles using the standard genome-wide imputation soft-

wares (i.e., Eagle [version 2.3] for haplotype phasing and minimac3 [version 2.0.1] for imputation). After the imputation, we applied

post-imputation QC filtering of the variants (MAFR 1% and imputation score RsqR 0.5). We again sought to benchmark this impu-

tation strategy which used pre-phasing and minimac3 software instead of beagle, as well as in the meantime to perform bench-

marking by using relatively independent dataset rather than ten-fold cross-validation approach. To this end, we created the new

imputation reference panel using KIR alleles and WGS data of Hiseq X platform (n = 295), and on the other hand generated the

mock GWAS dataset by including the variants on the Illumina OmniExpressExome BeadChip array from the WGS data of NovaSeq

platform (n = 394).We then pre-phased themockGWASdata using shapeit2 software52 (here we did not use Eagle2 for phasing since

the sample size is small), and performed KIR imputation with this pre-phased genotype and the above mentioned reference panel

from Hiseq X platform. We finally assessed the accuracy of imputation by calculating the concordances between the imputed

and genotyped KIR allele dosages.

PheWAS was conducted to investigate the associations of the imputed KIR alleles with 85 human complex traits (23 diseases

and 25 quantitative traits for BioBank Japan and 2 diseases [ulcerative colitis and Crohn’s disease] for the IBD cohort; details in Table

S11). The diseases consisted of 4 major categories (immune/allergy [n = 7], cardiovascular and metabolic [n = 8], malignancy [n = 5],

and other diseases [n = 5]). The quantitative traits consisted of 9 major categories (anthropometric [n = 3], blood pressure [n = 4],

protein [n = 2], electrolyte [n = 4], metabolic [n = 6], liver-related [n = 6], other biochemical [n = 3], kidney-related [n = 4], hematological

[n = 13]). Definition of the diseases and the process of patient registration are described elsewhere.47,53 For the controls in disease

association studies, we used healthy participants in the IBD cohort, and used a mixed control group by excluding the subjects

affected with the disease under investigation in BioBank Japan as described previously.2 Detailed processes of outlier exclusion,

adjustment with clinical status, normalization methods of the quantitative traits are extensively described elsewhere.31,33 We eval-

uated the associations of the KIR alleles with the risk of the diseases using a logistic regression model, and with dosage effects

on the normalized values of the quantitative traits using a linear regressionmodel, using plink2 software.We assumed additive effects

of the allele dosages on phenotypes in the regression models. We included age, sex, and the top genotype 20 PCs as covariates in

the analysis of BioBank Japan, and included sex and the top genotype 20 PCs in the analysis of the IBD cohort to account for po-

tential population stratification.

QUANTIFICATION AND STATISTICAL ANALYSIS

All the statistical methods, softwares, and a custom code used in this study are listed in the corresponding sections in the method

details as well as the key resource table. The statistical significance was determined by properly accounting for multiple testing, by

Bonferroni correction. All P values are two-sided.
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