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Abstract

Previous genome-wide scans of positive natural selection in humans have identified a number of non-neutrally evolving
genes that play important roles in skin pigmentation, metabolism, or immune function. Recent studies have also shown that
a genome-wide pattern of local adaptation can be detected by identifying correlations between patterns of allele
frequencies and environmental variables. Despite these observations, the degree to which natural selection is primarily
driven by adaptation to local environments, and the role of pathogens or other ecological factors as selective agents, is still
under debate. To address this issue, we correlated the spatial allele frequency distribution of a large sample of SNPs from 55
distinct human populations to a set of environmental factors that describe local geographical features such as climate, diet
regimes, and pathogen loads. In concordance with previous studies, we detected a significant enrichment of genic SNPs,
and particularly non-synonymous SNPs associated with local adaptation. Furthermore, we show that the diversity of the
local pathogenic environment is the predominant driver of local adaptation, and that climate, at least as measured here,
only plays a relatively minor role. While background demography by far makes the strongest contribution in explaining the
genetic variance among populations, we detected about 100 genes which show an unexpectedly strong correlation
between allele frequencies and pathogenic environment, after correcting for demography. Conversely, for diet regimes and
climatic conditions, no genes show a similar correlation between the environmental factor and allele frequencies. This result
is validated using low-coverage sequencing data for multiple populations. Among the loci targeted by pathogen-driven
selection, we found an enrichment of genes associated to autoimmune diseases, such as celiac disease, type 1 diabetes, and
multiples sclerosis, which lends credence to the hypothesis that some susceptibility alleles for autoimmune diseases may be
maintained in human population due to past selective processes.
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Introduction

Anatomically modern humans appeared in East Africa about

200 k years ago, spread out from sub-Saharan Africa approximately

100 k years ago, and subsequently colonized the rest of the world in

a series of migratory events [1]. During this period humans

encountered a wide range of different environmental conditions,

which may have induced a number of genetic adaptations.

Recent evidence suggests that the observed phenotypic diversity

among human population groups may to some extent be a product

of local adaptive processes (e.g. reviewed in [2]), driven by regional

variation in pathogen environment, diet, or climate [3]. For

example, both genome-wide scans and studies on candidate loci

identify genes under selection associated with skin pigmentation,

presumably due to the different needs for skin protection in regions

with different UV radiation intensity [4-8]. A number of genomic

scans for loci under selection have been conducted in humans,

using methods based on the distribution of SNP allele frequencies,

[8-10], haplotype structure [4,7,11,12], strength of population

subdivision [13-15] or a combination of multiple measures [16].

These scans all attempt to identify the signature of a recent

selective sweep (the effect of an advantageous mutation as it

increases in frequency in the population). Most of these methods

have reasonable power to detect a ‘hard sweep’, i.e. a sweep

caused by a single new advantageous mutation affected by strong

selection. However, they do not identify the underlying environ-

mental factors (if any) that induced the selection acting on the

target gene. Additionally, it has been recently suggested that most

selection in humans may not be caused by hard sweeps, but rather

by selection acting on standing variation in many genes (‘soft

sweeps’) [17,18]. Much evidence for selection may have been

missed by focusing strongly on hard sweeps.

A promising alternative strategy for elucidating signatures of

human local adaptation, especially when individual beneficial
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variants have a weak phenotypic effect, is to identify polymor-

phisms that strongly correlate in frequency with environmental

variables [19]. Indeed, heat adaptation in human populations has

been shown to correlate with latitude, precipitation and temper-

ature [20]. Based on this observation Young and colleagues

hypothesized that past adaptation to climate may be the main

cause for the current widespread susceptibility to hypertension

[20]. More recently, a scan for selection in candidate genes

involved in metabolic disorders, suggested increases levels of

positive selection in these disease pathways due to adaptation to

local climatic conditions [21]. Similarly, signatures of adaptations

to local dietary specializations have been observed [22].

Infectious diseases are one of the most important causes of

mortality in human populations. Polymorphisms associated with

response to infectious diseases are, therefore, likely targets of

selection. Human genetic adaptation may to a large extent be

driven by response to microbial, viral or parasite presence. Indeed,

numerous studies have identified immune- and defense-related

genes targeted by positive selection in the human genome [23-37]

(reviewed in [38]).

By correlating population allele frequencies with local pathogen

diversity, several studies have argued that pathogen-driven

selection have been an important force in local adaptation in the

MHC class I loci [39], blood group antigen genes [25], and

interleukin genes and their receptors [27]. Also, genome-wide

scans of adaptation to pathogens identified gene networks

correlated with specific pathogen species such as viruses [40],

protozoa [41] and helminthes (parasitic worms) [42].

Despite these observations, there is still great uncertainty about

the relative importance of the role of pathogens and other ecological

factors as selective agents in local adaptive process. Similarly, the

degree to which adaptation to infectious agents or to other

environmental factors has shaped the distribution of complex-

disease alleles in humans is still under debate [24,27,38,43-45].

The objective of this study is to identify signatures of human

genetic adaptation to local environments, separating the contribu-

tions of different environmental factors such as climate, subsistence,

and pathogenic environment. We show that the latter factor is the

strongest driver of local adaptation, and identify specific pathways in

the immune system, and specific disease susceptibility alleles,

affected by selection related to the local pathogenic environment.

Results

Enrichment of genic SNPs for high values of prediction
accuracy

We first identify possible signatures of human genetic

adaptation to local environments via a statistical framework based

on exploring correlations between population allele frequencies

and environmental variables. Our major goal is to determine the

relative contributions of different environmental predictors in

driving local adaptation.

Its is often assumed that natural selection is more likely to act on

genic rather than non-genic polymorphisms because the former

are more likely to be of functional significance. In line with this

assumption, previous studies have found a significant enrichment

of genic polymorphisms among SNPs with high levels of

population genetic differentiation [14,46].

We verified these observations by correlating population allele

frequencies of nearly 500k SNPs genotyped in 55 distinct human

populations to a set of 14 environmental variables describing each

geographic location (Table S1, Table S2, Table S3). By applying a

Projection to Latent Structure multiple regression with an

Uninformative Variable Elimination algorithm (UVE-PLS) we

computed the prediction accuracy Q2 for each SNP, and used this

as a measure of how well the environmental variables predict

distributions of allele frequencies. Q2 serves here as a measure of

genetic differentiation among populations, but instead of using

geographic distances, or implicitly assuming an equal weight of all

populations, population genetic differentiation is measured relative

to the defined environmental variables. A high Q2 value indicates

that populations which are very different in terms of environmen-

tal variables also are very different in terms of allele frequencies.

We examined the relative abundance of genic versus intergenic

SNPs in the upper tail of the distribution of Q2 values, as in the

study by Coop et al. [46]. Significance and confidence intervals

were determined using the Moving Block Bootstrap (MBB)

estimates (see Materials and Methods). Notably, we found an

enrichment of genic SNPs compared to non-genic SNPs for high

values of prediction accuracy (Figure 1A, Figure S1A), suggesting

the action of natural selection in driving the differential allele

frequency distribution among human populations. Indeed, for the

highest examined bin of Q2 (75-87.5%) the median value for the

re-sampled distribution of the enrichment statistic (see Materials

and Methods) was equal to 1.065, which was found to be

significantly larger than 1 (p,0.05).

Genic and non-genic SNPs differ in a number of different ways,

most importantly in their average allele frequencies and level of

linkage disequilibrium. We therefore examined directly if the

observed excess could be explained by a difference in the

distribution of allele frequencies, levels of population differentia-

tion (measured as FST) or recombination rates (and therefore

linkage disequilibrium) between genic and non-genic SNPs, by

directly comparing non-genic and genic SNPs with similar minor

allele frequency (MAF), FST and recombination rates. We observed

an enrichment of genic SNPs for the highest bins of prediction

accuracy in almost every classes of equal MAF, FST, or

recombination rate in which we divided our sample of SNPs

(Table S4). This suggests that the enrichment of genic SNPs for

high values of prediction accuracy is not affected by these

confounding factors.

We also observed an even stronger excess of non-synonymous

vs. non-genic SNPs at increasing values of prediction accuracy

(Figure 1B, Figure S1B). The median value of the re-sampled

distribution for the highest interval of prediction accuracy (62.5-

75%) was 1.123 which is significantly greater than 1 (p,0.05).

Author Summary

Adaptation to local environments is one of the most
important factors shaping human genetic variation among
different geographically distributed populations. Here we
develop a statistical framework aimed at identifying
signals of genetic adaptation. We correlate the spatial
distribution of allele frequencies of a large sample of SNPs,
genotyped in more than 50 populations distributed
worldwide, to a set of environmental factors, describing
local geographical features such as climate conditions, diet
regimes, and pathogens load. Our results show an excess
of putative functional variants for high levels of population
differentiation, measured by the degree to which genetic
variation correlates with a set of environmental variables.
We demonstrate that selection on pathogens is the
primary driver of local adaptation and affects the
distribution of genetic variation at a large number of
genes. Among the selected genes, we also identify an
excess of genes associated with autoimmune diseases,
such as celiac disease, type 1 diabetes, and multiples
sclerosis.

Genetic Local Adaptation in the Human Genome
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There was a similar enrichment of non-synonymous vs. synony-

mous SNPs for high values of Q2 (the median value of re-sampled

distribution was 1.031), but this value was not significantly

different from 1, possibly due to the small number of SNPs and

linkage between non-synonymous and synonymous SNPs.

We next tested whether different environmental variables

differed in their contribution to allele frequency differences among

populations. Using the same statistical framework, we repeated the

multiple regression analysis separately using only climate,

subsistence strategies or pathogen predictors for each SNP. The

results show that there is a greater abundance of genic compared

to inter-genic SNPs for high levels of Q2 for each of the three

variables (median values at last Q2 bin are equal to 1.091, 1.027

and 1.034 for pathogens, subsistence or climate variables, respec-

tively) (Figure 2). Genic enrichment at the highest bin of prediction

accuracy (62.5-75%), computed by modeling the relationship

between allele frequencies and environments including only

pathogens predictors, is the highest among the examined factors

and it is significantly greater than 1 (the lower bound of the 95%

confidence interval is equal to 1.002), while the enrichment for the

two other predictor classes were not significantly larger than 1.

Temperature and precipitation rate ranges have been shown to

influence the biological diversity and distribution of pathogen

species [47]. Nevertheless, when considering annual temperature

range and annual precipitation range rather than mean levels as

climate variables, we still did not observe an enrichment of genic

SNPs for high values of prediction accuracy (median value at last

Q2 bin is 0.974).

Quantifying the amount of selection due to adaptation
to local environments

Our next goal was to identify the relative fraction of loci for

which population genetic variation is significantly correlated with

specific environmental factors, and to use these results to further

elucidate the role played by different environmental variables in

shaping human variation.

An unusually high correlation between allele frequencies and

environmental variables may help identify loci involved in local

human adaptation. However, these correlations are strongly

affected by the non-independence of allele frequencies between

closely related populations [48]. One method for circumventing

this problem would be to estimate parameters of an explicit

demographic model that describes the distribution of allele

frequencies among populations. Unfortunately, in our case this is

not computationally feasible because of the large number of

populations. Instead, we assessed the relationship between the

population genetic distances of each gene with at least one

genotyped SNP, and a distance matrix of environmental variables

via partial Mantel correlations [49], while statistically correcting

for the genome-wide allele frequencies differences (Figure S2) (see

Materials and Methods for further details).

As expected, most of the genetic distance variance is explained

by population demography. On average, the overall population

genetic distance explains more than 95% of genetic variation for

most of genes. However, the average improvement of explained

variance I(R2), a measure of the relative importance of each

environmental variable in explaining the distribution of allele

frequencies for a particular gene (see Materials and Methods), is

about 1.5% for pathogen or subsistence factors, and about 0.5%

for climate (Table S5). We observed a non-negligible fraction of

genes (outliers in the distribution) showing highly elevated values

of I(R2), with some values as high as 15% (Figure 3A, Table S5).

Again, such extreme values are more common for pathogens and

subsistence factors than for climate, using either temperature or

precipitation rate mean levels (Figure 3A) or range levels (Figure

S3A).

Other environmental variables, or other quantifications of the

environment, could potentially provide different results. These

analyses may not have captured the main factors affecting fitness

when quantifying the environment. Nevertheless, when testing

each variable individually and assigning the maximum I(R2) within

each environmental category, we still more frequently observed

high values for pathogens and subsistence factors than for climate,

using either temperature or precipitation rate mean levels or range

levels (Figure 3B, Figure S3B). We used a permutation procedure

described in the Materials and Methods section to determine

statistical significance of the I(R2) values.

Examining the distribution of p-values, which assesses the strength

of the evidence against a model in which the environmental variables

do not affect allele frequencies, we observed a strikingly larger

number of loci with allele frequencies significantly associated with

Figure 1. Enrichment of SNPs for different values of prediction
accuracy. Enrichment of genic (red line, panel A) or non-synonymous
(red line, panel B) vs. intergenic SNPs (blue line, both panel) for different
values of prediction accuracy. Peach region denotes 90th confidence
interval computed with 1,000 bootstrap resamplings on overlapping
blocks of 40 contiguous SNPs.
doi:10.1371/journal.pgen.1002355.g001

Genetic Local Adaptation in the Human Genome
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the pathogen distance matrix (Table S5). Indeed, 103 genes show a

significant I(R2) value when considering the pathogen distance

matrix (corrected p-value ,0.05) while no genes were detected when

considering the subsistence distance matrix or the climate distance

matrix, using either temperature or precipitation rate mean levels or

range levels. Again, when testing each variable individually, we

observed a larger number of genes significantly correlated (corrected

p-value ,0.05) with at least one pathogen variable (229), rather than

one subsistence (10) or one climate variable (9).

We also applied the Bayenv software (see Materials and

Methods) to our data set and compared the results to the ones

obtained using the Mantel test procedure. In general, the results

are very consistent (Table S6) and the two statistics (improvement

of explained variance and ranked Bayes factors) are highly

correlated when testing each environmental category separately

(all Spearman’s rank correlation coefficients being positive,

ranging from 0.1 to 0.3, with p-values lower than 1e-5). More

importantly, among 2120 genes having at least one SNP correlated

with pathogens using Bayenv, 419 are highly correlated using our

method (showing an uncorrected p-value lower than 5e-03) and

this overlap is significantly greater than expected by chance (x2 test

p-value ,0.01).

When applying the Bayenv software to our data set, the

number of genes having at least one SNP showing an extreme

Bayes Factor value for at least one climate variable is slightly

higher than the number obtained using pathogen variables (Table

S6). This apparent contradictory result may be due to the fact

that Bayenv tests each variable at each SNP for each locus.

Therefore, for each environmental category it uses the maximum

of as many different values as there are typed SNPs multiplied by

the number of variables within each environmental class. Indeed,

genes correlated with subsistence strategies or climate conditions

(ranked Bayes Factor .0.995) show a significantly greater

number of tested values for each locus than genes correlated

with pathogens (one-side Wilcoxon rank sum test p-values of

3.62e-05 and 3.27e-06, respectively), while no difference is

observed when comparing subsistence and climate variables

(two-side Wilcoxon rank sum test p-value = 0.62). This suggest

that the discrepancy between the results using our method and

the results using Bayenv is caused by the larger number of tests

carried out for subsistence and climate factors in the Bayenv

analysis (Table S6).

A correlation between the strength of ascertainment bias and a

bias in pathogen reporting may potentially affect our results and

lead to an inflation in the importance of pathogen-driven selection.

To investigate this possibility, we validated our finding using low-

coverage new-generation sequencing data from 1000 Genomes

Project [50]. Specifically, we correlated genetic variation of more

than 1,500 genes located on chromosome 1 from 9 distinct human

populations with our set of environmental variables, controlling for

demographic effects (see Materials and Methods). Again, we

observed a fraction of genes showing highly elevated values of I(R2)

and such extreme values were more common for pathogens factors

than for subsistence or climate predictors (Figure S4). Assessing

statistical significance, we again observed a larger number of loci

with allele frequencies highly correlated (uncorrected p-value

,0.05) with the pathogen distance matrix (109), while only 0 and

11 genes were detected when considering the subsistence distance

matrix or the climate distance matrix, respectively. Among the 109

genes correlated with pathogens using sequencing data, 53

exhibited a previous p-value, computed using genotype data,

lower than 0.05 and this overlap was statistically significant (x2 test

p-value = 1.24e-07). The latter result suggests that, despite the

different number of populations and the difference in the genetic

data analyzed, the results are qualitative concordant suggesting

that a correlation between ascertainment bias and pathogen

reporting cannot explain our results.

It is possible that different groups of pathogens have differed in

their impact on human local adaptation. To test this hypothesis,

we recomputed the partial Mantel correlations for each gene using

different environmental matrices relating to different aspects of

pathogen diversity by removing one pathogen group (viruses,

bacteria, protozoa and helminthes) in the calculation of the

environmental distances. By comparing the distribution of I(R2) for

Figure 2. Enrichment of SNPs for different values of prediction accuracy computed on distinct models. Enrichment of genic (red line)
versus intergenic SNPs (blue line) for different values of prediction accuracy computed on models comprising only pathogen diversity (panel A),
subsistence strategies (panel B) and climate conditions (panel C) separately. Peach region denotes 90th confidence interval computed with 1,000
bootstrap resamplings on blocks of contiguous SNPs.
doi:10.1371/journal.pgen.1002355.g002

Genetic Local Adaptation in the Human Genome
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the model with all pathogen species (I(R2)FULL) to the ones missing

one of the pathogen groups (e.g. virus diversity, I(R2)w/o VIRUS) it is

possible to evaluate the impact of the missing pathogen group on

the relationship between genetic variation and pathogen diversity.

The reduction in I(R2) when not considering a particular pathogen

group provides a measure of the relative impact of this particular

group in explaining local adaptation. QQ plots showing the

difference between including all pathogens and dropping one of

them are illustrated in Figure 4. Clearly, removing helminth

diversity from the model leads to a drastic decrease in the

distribution of I(R2) (Figure 4). Conversely removing virus diversity

from the pathogen distance matrix results in an apparent increase

in I(R2), presumably because the matrix then is more strongly

dominated by the helminth distances.

Figure 3. Frequencies of genes. Frequencies of genes displaying different values of improvement of explained variance with three distinct
models, comprising only pathogen diversity, subsistence strategies and climate conditions, separately (A); and when testing each variable separately
and taking the maximum value within each environmental category (B).
doi:10.1371/journal.pgen.1002355.g003
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Biological significance of signals of human adaptation to
pathogens

The above results demonstrate that pathogens diversity is a

major factor in human adaptation to local environments. We

further examined the genes whose genetic variation is correlated

with the pathogen diversity matrix using analysis of Gene

Ontology (GO), by testing whether certain ontology terms are

enriched for SNPs correlated with pathogen diversity.

By investigating statistically enriched terms in our set of

pathogen-associated SNPs, we found an over representation of

shared GO terms relating to regulation of immune system, defense

and inflammatory response (Table 1, Table S7). In addition to

these more general ontology categories, we found enrichment in

categories related to mechanisms involving a direct response to

external agents or host-pathogen interaction (e.g. response to

wounding, JAK-STAT cascade, antigen binding, oxidoreductase

activity, endosome).

We further interrogated the KEGG PATHWAY database,

focusing our attention on hierarchical categories related to the

immune system or immune diseases. We identified 3 KEGG

pathways showing a significantly higher than expected number of

pathogen-associated genes as determined by a bootstrap procedure

(Table 2). Two of the identified KEGG pathways are related to

immune-related signaling processes (Leishmaniasis pathway and

Toll-like receptor signaling pathway), while the remaining one

involves allograft rejection.

It has previously been argued that SNPs associated with

susceptibility to complex diseases, or other important phenotypic

traits, are more likely to be targets of natural selection than

random genes [27,38]. To test this hypothesis, we extracted a

collection of more than 2,000 SNPs which have been associated

with specific phenotypic traits and/or diseases and typed in on our

panel from the GWAS database (www.genome.gov).

To elucidate the biological impact of the inferred local selection,

we compared -log10 of the I(R2) p-values in a set of 770 genes

containing at least one significant SNP from a GWAS study.

Genes were divided into three categories depending on whether

the SNPs were associated with an autoimmune disorder, another

disease, or a quantitative trait. We use the p-values as more

appropriate measures of the strength of the evidence rather than

the I(R2) themselves. Genes associated with autoimmune diseases

show a clear increase in the proportion of genes with low I(R2) p-

values (large -log10 values; Figure 5).

We then investigated which autoimmune diseases more often

have been targeted by natural selection. Similarly to our previous

Gene Ontology analysis, we identified celiac disease (susceptibil-

ity), ulcerative colitis (susceptibility), multiple sclerosis (susceptibil-

ity, severity or age of onset), and type 1 diabetes (susceptibility)

(Table 3), as the most common disease categories.

Discussion

In recent years, great efforts have been made to assess the role

played by natural selection during human evolution [2,3,17,19,

46,48]. Genome-wide scans for recent positive natural selection

identified a putative list of non-neutrally evolving genes involved in

specific biological pathways including metabolism, immune

function, and skin pigmentation [4,7-16]. These findings suggest

that selective pressures related to adaptation to local environmen-

tal conditions might have contributed in shaping human genetic

variation.

Here we developed a statistical framework for identifying signals

of adaptation to local environments. We correlated the spatial

allele frequency distribution of a large sample of SNPs, genotyped

in more than 50 populations distributed worldwide, to a set of

environmental factors, describing local geographical features such

as climate conditions, diet regimes (measured as subsistence

strategies) and pathogen loads.

Figure 4. Quantile-quantile (QQ) plot of distribution of
improvement of explained variance, I(R2), computed with a
model including all pathogen species and models not includ-
ing one pathogen group. The distribution under a model not
including helminthes is denoted by red, protozoa by blue, bacteria by
green, and viruses by pink circles.
doi:10.1371/journal.pgen.1002355.g004

Table 1. Gene ontology analysis results (Process domain) for
SNPs mapping on genes that correlate with pathogen
diversity.

Ontology term Number of hits p-value

Process

defense response 29 Hits At 22 Loci 3.10e-04

response to biotic stimulus 29 Hits At 22 Loci 2.30e-03

immune response 27 Hits At 21 Loci 4.90e-04

response to wounding 14 Hits At 11 Loci 2.73e-04

DNA replication and chromosome cycle 13 Hits At 10 Loci 4.60e-03

negative regulation of cell proliferation 11 Hits At 7 Loci 4.70e-03

inflammatory response 9 Hits At 7 Loci 4.33e-03

innate immune response 9 Hits At 7 Loci 4.92e-03

viral life cycle 6 Hits At 4 Loci 1.64e-04

pyrimidine nucleotide metabolism 6 Hits At 4 Loci 2.79e-04

cytosolic calcium ion concentration elevation 5 Hits At 3 Loci 8.94e-05

pyrimidine nucleotide biosynthesis 4 Hits At 3 Loci 6.94e-03

JAK-STAT cascade 4 Hits At 3 Loci 5.50e-03

viral genome replication 4 Hits At 3 Loci 1.77e-03

viral infectious cycle 4 Hits At 3 Loci 6.26e-03

doi:10.1371/journal.pgen.1002355.t001

Genetic Local Adaptation in the Human Genome
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Previous studies have shown that SNPs with an increased degree

of population genetic differentiation (measured using FST or other

statistics) are enriched for genic SNPs [14,46]. Our analyses

confirm these observations by finding a significant enrichment of

genic SNPs, in particular non-synonymous SNPs, vs. intergenic

SNPs for high values of the regression prediction accuracy, Q2

(Figure 1). Q2 provides a measure of genetic differentiation among

populations relative to the defined set of environmental variables.

Interestingly, the enrichment of non-synonymous SNPs is

quantitatively greater than the enrichment of genic variants, in

line with the hypothesis that a larger fraction of non-synonymous

SNPs has direct functional effects.

We can exclude the possibility that this enrichment is explained

by different distributions of recombination rates, allele frequencies

or FST between genic and intergenic SNPs, as the enrichment is

also apparent when stratifying according to MAF, recombination

rate or FST.

It is worth noting that the SNP data analyzed here suffer from

an ascertainment bias, owing to the protocols used for selecting

SNPs for the genotyping platforms. One of the main effects of the

ascertainment bias is a shift toward common variants with non-

negligible consequences on various statistics, such as measures of

population structure [51-54]. However, as previously mentioned,

the results hold up even when stratifying with respect to MAF and

FST, suggesting that ascertainment biases, which primarily affect

the data through the allele frequency, do not have a strong effect

on our results.

Overall these results strongly indicate that the enrichment of

genic and nonsynonymous variants among SNPs with a high value

of Q2 may truly reflect the action of natural selection.

Importantly, we find a quantitatively higher, and statistically

significant, enrichment of putative functional SNPs for high values

of Q2 for models comprising pathogens as predictors rather than

climate or diet (Figure 2), even we testing for additional climate

variables such as temperature and precipitation annual ranges.

Although all the environmental factors we have investigated

contribute to Q2, our results suggest that pathogens are a more

important driver of local adaptation than other factors explored in

this paper.

To further investigate this issue, we computed partial Mantel

correlation between the locus-specific population genetic distance

and three different matrices describing pathogen load, diet regimes

or climate conditions. In doing so, we used the average distance of

allele frequencies as a covariate to control for background

demographic processes. As expected, most (approx. 95%) of the

variance in allele frequencies among populations can be explained

by non-adaptive processes. Nonetheless, we were able to identify a

non-negligible contribution of selection. Several loci showed large

values (.15%) in the improvement of explained variance I(R2),

when adding a specific environmental matrix (pathogen, diet or

climate; see Materials and Methods; Figure 3, Figure S3, Table

S5).

Genes with a statistically significant I(R2) are likely targets of

local selection because I(R2) measures the increase in explained

variance by an environmental factor when taking average

distances among populations into account. In particular, there is

a strikingly larger number of genes significantly correlated to the

distance matrix describing pathogen diversity compared to the

ones related to climate conditions or diet regimes. A total of 103

genes are significantly correlated in frequency with pathogen

predictors while none correlates with climate or subsistence

strategies. This predominant role of pathogen-driven selection in

the human genome is confirmed when testing each variable within

each environmental category separately (229, 10 and 9 genes

significantly correlated in frequency with at least one pathogen,

subsistence and climate variable, respectively).

Furthermore, we validated our results using low-coverage

sequencing data for a smaller set of SNPs and populations, ruling

Figure 5. Frequencies of genes for different values of
improvement of explained variance. Classes were defined as
quartiles of distribution of improvement of explained variance for genes
associated to a trait or a disease in GWASs. Bars are colored according
to the association to a quantitative trait, a disease or an autoimmune
disease.
doi:10.1371/journal.pgen.1002355.g005

Table 2. KEGG pathways enriched with genes which correlated with pathogen diversity.

KEGG Pathway Enrichment p value
Number of pathogen-associated
genes Pathogen-associated genes

Allograft rejection 0.0011 5 CD28, FAS, IFNG, IL10, IL4

Leishmaniasis 0.0075 13 C3, FCGR2A, FOS, IFNG, IFNGR2, IL10, IL1B,
IL4, JAK1, MAPK13, MYD88, NFKBIB, RELA

Toll-like receptor signaling pathway 0.046 9 CCL4, FOS, IL1B, IL6, MAP3K7IP1, MYD88,
RAC1, RELA, SPP1

doi:10.1371/journal.pgen.1002355.t002
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out the possibility that ascertainment bias coupled with a bias in

reporting pathogen diversity may lead to the observed prevalence of

pathogen-driven selection. We should add that other factors could

affect local adaptation than the factors examined here. The

quantitative measures used here may not be the ones that correlate

most closely with the components of the environment that affect

fitness. Other measures of local climate or subsistence, that include

variables not examined here might show a stronger effect on local

adaptation. However, among the quantitative measures of envi-

ronmental factors explored here, it is clear that pathogen load has

been the most important factor shaping human genetic diversity.

It is perhaps not surprising that selection related to pathogens

appears to be the most dominating driver of local adaptation,

given the number of studies reporting pathogen related selection in

humans, including selection on proteins used by pathogens to

infect cells (such as certain blood group antigens [25,55]),

pathogen receptors (such as the TLR family [30,31] and

glycosylated extracellular membrane proteins [56]) and selection

on genes product directly involved in immune/defense response to

pathogens (e.g. [26-28,33,57-62]).

Infectious diseases have represented, and still represent, one of

the major causes of death for human populations, especially in

developing countries [63,64]. Not surprisingly, genes responsible

for heritable variation in the response to pathogens are likely

targets of natural selection.

It may be more surprising that the pressure imposed by parasitic

worms (helminthes) on human genes has been stronger than the

one due to viral, protozoa or bacterial agents (Figure 4). Perhaps

this is due to the fact that helminthes evolve slower than

unicellular/viral agents and that they often have complex life

cycles which results in a relatively stable geographic distribution

[65]. Evolutionary changes in the helminthes, therefore, occur at a

similar time-scale to that of humans, allowing for a true co-

evolutionary interaction between humans and the pathogen.

Faster evolving species (e.g., viruses) may perhaps not exert the

same selective pressure for long enough time to induce a

sufficiently strong change in allele frequencies.

We identified signatures of pathogen-mediated selection in 103

distinct human genes. Overall, genes highly correlated with

pathogen diversity show a significant enrichment of immunity

related functions, according to Gene Ontology analysis (Table 1).

Again these findings strongly suggest that the candidate loci we

detected truly are targeted by natural selection due to adaptation

to pathogens.

Among 103 genes targeted by pathogen-driven selection, 23 are

directly related to immunity processes, according to ImmPort

database (www.immport.org). These genes encode signaling

molecules involved in the inflammatory response, such as IL6,

LRRC19, and PON2, cell surface proteins participating in immune

functions, such as ADAM17, ITGAL, and LAG3, and signal

transducers of the innate and adaptive immune response such as

MYD88 (Table S8). In particular, ADAM17 has been shown to be

involved in viral entry and to participate in intestinal inflammation

triggered by Toll-like receptors (TLRs). In addition to ADAM17,

we have identified 9 other genes with high I(R2) values when using

pathogen diversity as covariate that also participate in the Toll-like

receptor signaling pathway (Table 2). One of these genes, MYD88,

encodes a cytosolic adapter protein central for the transduction of

the immune response. This protein is implicated in sensing

retroviral infections by endosomes [66]. MYD88 is also implicated

in the immune response to Bacteroides fragilis [67], Plasmodium berghei

[68] and helminth infections [69]. Several of the 23 immunity-

related genes with high I(R2) values have previously been reported

to be related with pathogen infection, mainly to bacterial

infections and viral infections (Table S8).

Interestingly, the two enriched signaling pathways we identified

relate to two very different categories of immune response and

they function in the defense against different pathogen groups

(Table 2). Toll-like receptors (TLR) are molecules involved in the

innate immunity and account for the first-line defense against

viruses, bacteria, fungi and protozoa (reviewed in [70]), although

previous studies have demonstrated the TLR-mediated signaling

pathway is also important for resistance to helminthes in mice

(Schistosomal-derived lysophosphatidylcholine is involved in

eosinophil activation and recruitment through Toll-like receptor-

2-dependent mechanisms).

While different TLRs have previously been shown to be targets

of natural selection [30], our data indicate that pathogens have

also exerted a pressure on genes that impinge on the cellular

pathways associated with these receptors.

The second signaling pathway enriched with 13 genes targeted

by pathogen-driven selection genes is Leishmaniasis (Table 2).

Leishmania are obligate intracellular parasites (protozoa) that

produce diseases in humans and mice. When associated with

malnutrition, Leishmania infection can produce extremely serious

symptoms, and a recent WHO survey indicates that epidemics of

visceral leishmaniasis can lead to massive deaths in affected areas

(http://www.who.int/leishmaniasis/). Thus, the parasite is likely

Table 3. Genes correlated with pathogen diversity which have been previously associated to susceptibility to autoimmune
diseases.

Disease Associated genes

Celiac disease TNFRSF9, CCR4, ETS1, CD28, SH2B3, REL, CIITA, LPP, SLC9A4

Ulcerative colitis IL10, IFNG, CIITA, FCGR2A, IL19, REL

Type 1 diabetes DLK1, SH2B3, CTSH, IL10, C16orf75

Multiple sclerosis (susceptibility, severity or age of onset) CBLB, RPL5, KCNB2, CENPC1, FUT8

Systemic lupus erythematosus ETS1, SOCS6

Rheumatoid arthritis REL, SH2B3

Vitiligo LPP, RERE

Crohn’s disease (or combined with sarcoidosis) FUT2

Behcet’s disease IL10

Ankylosing spondylitis ANTXR2

doi:10.1371/journal.pgen.1002355.t003
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to have exerted a strong selective pressure during human

evolutionary history.

Dendritic cells (DC), sentinels of the immune system, detect

Leishmania in vivo. It has been shown that MyD88-dependent

receptors are implicated in the direct recognition of Leishmania by

DC [71,72], pointing again to MyD88 as an important element in

host-pathogen recognition.

Genes related to immunity and inflammation regulation are

known to be common targets of natural selection [38]. In

particular, recent reports have suggested that a portion of

susceptibility alleles for autoimmune diseases might be maintained

in human population because they confer increased resistance

against infection [27,38,43]. The identification of several autoim-

mune disease-related genes as target of natural selection may be

consistent with the hygiene hypothesis [73]. This model states that

humans have adapted to a pathogen-rich environment that no

longer exists in industrialized societies. This change has reduced

the exposure of the immune system to antigens, causing an

overreacting immune response which favors the development of

chronic inflammatory conditions [73].

Indeed, our data indicate that SNPs with allele frequencies that

correlate highly with pathogen variables are enriched for GWAS

SNPs associated with autoimmune diseases (Figure 5). Specifically,

among our candidate genes we identified several loci that have

been associated with celiac disease, ulcerative colitis (UC), type 1

diabetes (T1D), Crohn’s disease (CD), and multiples sclerosis (MS)

(both susceptibility and disease severity) (Table 3). Signatures of

natural selection at risk alleles for celiac disease, UC and CD have

previously been described [27,38], although these variants were

located in genes different from the ones we describe herein.

Conversely, only a minority of genes involved in the susceptibility

to T1D and MS have been described as possible selection targets

[38], although a certain degree of overlap among genes involved in

MS pathogenesis and loci subjected to virus-driven selection has

previously been noticed [40]. Therefore, our data further support

the notion that natural selection has contributed to shaping the

pattern of genetic variability relating to this common disorder.

Hancock and colleagues recently performed a genome-wide

scan for selection signals by detecting SNPs strongly correlated in

frequency with climate [74]. They investigated genetic variation in a

similar set of populations, and a similar data set of genotyped SNPs

as this study. They retrieved a number of SNPs putatively subjected

to climate-mediated selection, while we found only weak signals for

genetic adaptation to climate conditions. There are several possible

reasons for this apparent discrepancy. First, Hancock and

colleagues’ and our method are intrinsically different both in the

analyzed elements (SNPs rather than genes, respectively) and in the

approach to detecting significant signals (extreme Bayes Factors

versus p-values, respectively). Most likely, our criterion for selecting

extreme genes is more conservative than the one used by Hancock

and colleagues. However, when applying their approach to our data

set, we retrieved a significant overlap of genes correlated with

different environmental factors (Table S5, Table S6). These

observations suggest that the two studies, although examining

different climate variables in a different sample of populations, lead

to concordant results. Second, they found evidence of selection for

SNPs located in immune-related genes or previously associated with

autoimmune diseases and inflammatory conditions. As stated by

authors themselves, it is likely that the selective pressure imposed on

these genes is related to pathogen resistance/susceptibility [74],

which is in agreement with our main results.

A major assumption in this study, is that the number of different

pathogen species (pathogen richness or diversity) transmitted in a

given geographic location is a good estimate of the pathogen-

driven selective pressure for populations living in that area [25,39].

Indeed, there is evidence that pathogen richness is a suitable and

more effective measure than standard epidemiological parameters

(like prevalence or mortality) for estimating the selective pressure

exerted by infection agents, and that it better captures the

signatures left by adaptation to specific pathogens throughout

recent human evolution [27,40,41]. It is worth noting that our

measure of pathogen evolutionary is noisy, discrete, possibly

affected by report biases and calculated on a country level.

More accurate worldwide epidemiological data, as well as more

detailed description of diet regimes for human population, are

required to obtain a clearer picture of the effect of genetic

adaptation to pathogen load or subsistence strategies, especially

when comparing with adaptation to climate.

However, any inadequacies of the statistics we use to measure

pathogenic environment will lead us to underestimate the role of

the pathogenic environment in human local adaptation. Perhaps

pathogen related selection plays an even stronger role in human

evolution than what has been evidenced in this study and in

previous studies.

Materials and Methods

Genetic variation data
We investigated the spatial distribution of allele frequencies

using genotype data for 55 distinct human populations, comprising

more than 1,500 individuals, by joining data from the Human

Genome Diversity Panel (HGDP-CEPH) [75,76] and from

HapMap Phase III [77], not considering admixed populations

(Table S1).

A total of more than 500k SNPs were analyzed after removing

those not covered in both panels and those located on sex

chromosomes (Table S2). We used the folded frequency spectrum

of genotyped SNPs to quantify allele frequencies.

Two categories of SNPs were considered: genic and intergenic.

SNPs were defined as genic if they were located in transcribed

regions or were no further than 500 bp upstream transcription start

sites. SNPs were defined as intergenic if they were located in a

region larger than 100 kbp containing no annotated gene,

according to USCS Genome Browser database of gene predictions

based on data from RefSeq, Genbank, CCDS and UniProt (http://

genome.ucsc.edu). In case of multiple isoforms, the longest

transcript was used. A total of 225,502 and 216,151 polymorphisms

were classified as genic and intergenic, respectively. A total of

14,804 genes containing at least one genotyped SNP was retrieved.

Data from the 1000 Genomes Project [50] were retrieved from

the dedicated website (http://www.1000genomes.org/). Low-cov-

erage SNP genotypes for each one of the nearly 1,5 K analyzed

genes located on chromosome 1 were organized in a MySQL

database. Populations from countries not included in the HGDP-

CEPH panel were excluded. A total of 727 unrelated individuals

belonging to 9 distinct populations located in 8 different countries

were analyzed. A set of programs was developed to retrieve

genotypes from the database and to analyze them according to

selected populations. These programs were developed in C++ using

the GeCo++ [78] and the LibSequence [79] libraries.

Environmental variables
We defined a set of environmental variables for each country

from which SNP data were available. Previous studies examining

signatures of adaptation to local climates, selected specific variables

to represent the physiological effects of different climates on humans

[21]. Similarly, adaptation to diet has been investigated by

examining correlations between genetic variation and different
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subsistence strategies among populations [22]. Finally, previous

studies have suggested that pathogen diversity (i.e. the number of

the different pathogen species transmitted in a given geographic

location) is a reasonable proxy for the selective effects exerted by

pathogens in an area [25,39]. Based on these previous studies, we

chose a total of 14 environmental variables as proxies for local

environmental conditions (Table S3), including climatic and

geographic factors (distance from the sea, mean annual tempera-

ture, mean annual precipitation rate, mean annual relative

humidity, mean annual short wave radiation flux), subsistence

strategies (relative amount of human activity spent in agriculture,

animal husbandry, fishing, hunting, gathering) and pathogen

diversity (number of different species of viruses, bacteria, protozoa,

helminthes). Additionally, we used annual temperature range and

annual precipitation rate rather than annual mean levels as

supplemental climatic factors.

We obtained climatic data from the NCEP/NCAR Reanalysis

Project database (http://www.esrl.noaa.gov/psd/data/reanalysis/

reanalysis.shtml) by averaging annual values across the last 50

years. Subsistence strategy data were collected from Murdock’s

Ethnographic Atlas (1967): for each population we retrieved the

percentage of activity spent in each of the examined subsistence

activities. For three populations we could not assess an

unambiguous set of subsistence values. The number of different

pathogen species (pathogen richness) was retrieved from the

Gideon database (http://www.gideononline.com/), as in refer-

ences [25,27,40-42]. Cases of transmission due to tourism and

immigration were not included; thus, only species that are

transmitted within the countries were included. However, species

that recently have been eradicated, for example, as a result of

vaccination campaigns, were recorded as present in the country.

Multiple regression analyses
We applied a Projection to Latent Structures (PLS, also known

as Partial Least Squares) multiple regression [80] to model the

relationship between population allele frequencies of each SNP

and a matrix describing environmental factors. This algorithm can

handle highly correlated predictors and can effectively separate the

weight of each predictor in the multiple correlation even in case of

strong collinearity among variables (which is likely to be the case

for environmental factors) [80,81]. For the model including all the

environmental factors we applied an Uninformative Variable

Elimination algorithm [82] before the regression. In this way we

could greatly increase prediction accuracy by not considering

predictors with very low regression coefficients.

For each SNP we assessed the relationship between population

allele frequencies matrix (F) of dimensions 55x1 and environmental

predictors matrix (M) of 55x14 dimensions. F describes minor allele

frequency at each population for the examined SNP, whereas M

describes all the 14 environmental variables for each population.

For each regression we computed the cross-validated prediction

accuracy (Q2), estimated by a leave-one-out procedure, as:

Q2~1{
PRESS

SS

where PRESS is the Predictive Residual Sum of Squares calculated

from the models obtained on the reduced data of the leave-one-out

procedure, and SS is the Sum of Squares of F corrected for the

mean. Formally, PRESS is the sum of squares of the differences

between observed and predicted responses:

PRESS~
1

N

XN

i~1
(Fi{F̂Fi)

2

and thus is a measure of the predictive ability of the model, whereas

SS is computed as:

SS~
1

N{1

XN

i~1
(Fi{�FF )2

where N is the number of observations (55 populations in our case),

F̂Fi is the predicted response at the ith population and �FF is the mean

value for the response matrix (see [80,83,84] for further mathemat-

ical aspects of PLS regressions and model parameters estimation).

Q2 provides a measure of how well a model predicts the

observed data using a cross-validation procedure, based on a

partitioning of the sample into complementary subsets of

observations. Iteratively each of the partitions are treated as a

training set and the level of fit of the model is computed by using

the remaining partition as a validation set. In our case, Q2

measures how well a model with environmental variables as

covariates predict the observed distribution of allele frequencies

among populations. We use it as a measure of population

subdivision along the axes defined by the environmental variables.

If populations which differ strongly in terms of environmental

variables also differ strongly in terms of allele frequencies, Q2 will

be large. If allele frequencies do not covary with the environmental

variables, Q2 will be small.

Enrichment of genic SNPs
We divided the distribution of Q2 values into bins, and for each

bin we calculated the relative enrichment of genic, non-

synonymous and intergenic SNPs, as previously proposed [46].

Enrichment is here defined as the proportion of genic/non-

synonymous (or intergenic) SNPs in the bin divided by the total

proportion of genic/non-synonymous (or intergenic) SNPs. We

applied a Moving Block Bootstrap (MBB) re-sampling procedure

to correct for the non independence among loci taking into

account the possibility of an increased level of linkage disequilib-

rium (LD) near the positively selected site [85,86]. The MBB

method consists of drawing blocks of fixed length uniformly at

random and with replacement and joining them to form a new

sequence. Standard deviations are estimated from the distribution

of bootstrap values. Critical values used in hypotheses testing were

obtained directly from the quantiles of the distribution. We

performed this procedure 1,000 times for each chromosome

separately by creating (n+b-1) overlapping blocks (where n equals

to number of polymorphic sites and b equals to block size) and

drawing n/b blocks. Block sizes were set to 40 and 100 contiguous

SNPs corresponding to segments of approx. 200 k bp and 500 k

bp on average, respectively. Bins with less than 100 SNPs were

merged with the immediately lower bin. The results were

qualitatively similar using 40 and 100 SNPs, and only the results

for 40 SNPs are discussed in the main text. The results for 100

SNPs are also provided in Figures S1, S2, S3, S4.

FST, a measure of population genetic difference, was estimated

as previously proposed [87]. Recombination rates were obtained

from the UCSC Genome Browser (table ‘recombRate’) as

estimates computed in 1 M bp intervals based on the deCODE

maps [88].

Partial correlations
Nearly 15,000 genes containing at least one genotyped SNP

were retrieved, according to UCSC Genome Browser database

(http://genome.ucsc.edu). For each retrieved gene we computed

population genetic distances, as proposed by Reynolds and

colleagues [89]. Distances between the environmental values in
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different locations were calculated as Euclidean distances, which

correspond to the square distances between the two vectors of

environmental variables. The latter have been scaled to unit

variance to ensure that the dissimilarity matrices are not to be

dominated by the variables with the largest variance. The

dissimilarity matrices were then obtained by averaging distances

over each variable within each environmental category (pathogen

diversity, subsistence strategies and climate conditions).

For each gene we assessed the relationship between the locus-

specific population genetic distances matrix (Y) and the distance

matrix for environmental variables (X) via partial Mantel

correlations [49]. Each row or column in X and Y correspond to

a population. Y contains locus specific population genetic distance

values and X contains environmental distances. Partial Mantel

correlations are a non-parametric statistical procedure for

quantifying association between two distance matrices, while

controlling for the effect of a third distance matrix. The latter

independent distance matrix, Z, is here the overall population

genetic distance among populations [89] computed over all loci.

As shown in Figure S2, the Z matrix reflects the general patterns of

human population structure.

Our procedure, therefore, accounts for the non-independence of

populations and controls, at least in part, for the correlations caused

by standard neutral demographic processes (Figure S2). For each

variable we calculated the improvement of explained variance [90],

here called I(R2), and used this as a measure of the relative

importance of each environmental variable in explained the

distribution of allele frequencies for a particular gene.

I(R2) is calculated as:

I(R2)~(R2{r2
YZ)|100

where R2 is the explained variance of the model, estimated as:

R2~1{(1{r2
YZ)|(1{r2

XY Zj )

rYZ is the correlation coefficient between Y and Z, while rXY/Z is the

partial correlation coefficient between X and Y given Z defined as:

rXY Zj ~
(rXY {rYZ|rXZ)

(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{r2

YZ

q
|

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{r2

XZ

q
)

Again rXY is the correlation coefficient between X and Y while rXZ

is the correlation coefficient between X and Z.

Statistical significance was assessed by permuting rows

(populations) for the dependent matrix (Y) and recalculating our

statistic for the permuted data. Rows were permuted only within

the same stratus (continent). P-values are then calculated as the

fraction of permuted values that are greater than the observed

value of the statistic. This imposes the need for a large number of

permutations when estimating small p-values which is computa-

tionally expensive and unfeasible for some problems. To reduce

computational time we computed approximate p-values using a

previously proposed asymptotic method [91]. Briefly, p-values

were computed by approximating the right tail of the distribution

of permuted statistics by a Generalized Pareto distribution.

Parameters of the Pareto distribution are fitted using either the

asymptotic maximum likelihood method or a ‘combined method’

previously proposed [92]. P-values were corrected for multiple

testing using a procedure which controls the false discovery rate

under dependence assumptions [93]. For partial correlations, we

considered only 52 populations to which we could unambiguously

assess all environmental variables (Table S3). We performed the

same procedure when using low-coverage new-generation

sequencing data from the 1000 Genomes project, with the Z

matrix, the overall population genetic distance among popula-

tions (see above), computed by averaging distance matrices over

all loci.

We also used the method by Coop and colleagues [94] to

calculate Bayes factors relating to the effect of an environmental

variable on the geographic distribution of allele frequencies. For

each SNP a Bayes factor is calculated, providing a measure of the

increase in fit of a model with a linear relationship between allele

frequencies and an ecological variable over a null model. A

Gaussian model is assumed with a covariance matrix of allele

frequencies among populations estimated from a sub-sample of

segregating sites. SNPs which are outliers in the empirical

distribution of Bayes factors may possibly be affected by local

selection in response to the environmental variable. The

covariance matrix was estimated on 1,000 random polymor-

phisms. SNPs were ranked according to their Bayes factor after

dividing them in 10 classes of similar minor allele frequency. A

significance threshold for ranked Bayes factors was set to 0.995.

Both algorithms use the empirical distribution of genome-wide

genetic distances between populations as a null model. A major

difference between the methods, in addition to the fact that one is

Bayesian and the other frequentist, is that the partial correlation

approach used here combines the information from all SNPs in a

region, or in a gene, whereas the approach by Coop et al. [94]

performs the analyses SNP by SNP. In addition, our method is

non-parametric and does not rely on assumptions of normality.

The degree to which either of these approaches are preferable

depends perhaps on the degree to which the parametric

assumptions are met by the data. Our objective here is not to

compare the two methods, which were developed in parallel.

However, we have included results based on the methods of Coop

et al. [94] to show that our conclusions are not dependent on the

specific choice of statistical method.

All computation were performed in the R environment using

the following packages: vegan, pls, gPdtest, VGAM. All data and

scripts used are available at http://bioinformatics.emedea.it.

Gene ontology and GWAS analyses
Gene ontology (GO) analyses were performed with GONOME

[95], an algorithm that identifies GO terms over-represented in a

set of genomic position (in our case SNPs) compared to that

expected in random positions. GONOME avoids biases toward

GO terms linked to larger genes or genes having more genotyped

SNPs and also can take into account non-independence between

linked sites by setting an appropriate cluster distance value (50 k

bp in our case).

Analyses of functional pathways were investigated querying the

KEGG database (www.genome.jp/kegg) in the following hierar-

chical categories: Immune system, Immune system diseases,

Neurodegenerative diseases, Infectious diseases. Enriched path-

ways were retrieved as having a significantly higher than expected

number of associated genes using 10,000 bootstrap samples. For

GO analyses we considered pathogen-associated genes to be those

having an uncorrected I(R2) p-value lower than 5e-3 in order to

increase the number of analyzed loci and thus statistical power.

Genome-wide association studies (GWAS) data were retrieved

from A Catalog of Published Genome-Wide Association Studies

[96] (www.genome.gov), updated on December 1st, 2010.
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Supporting Information

Figure S1 Enrichment of genic (red line, panel A) or non-

synonymous (red line, panel B) vs. intergenic SNPs (blue line, both

panel) for different values of prediction accuracy. Peach region

denotes 90th confidence interval computed with 1,000 bootstrap

resamplings on overlapping blocks of 100 contiguous SNPs.

(EPS)

Figure S2 UPGMA (Unweighted Pair Group Method with

Arithmetic Mean) clustering of populations according to the

overall population genetic distance matrix. Each node of the

dendogram represents a distinct population and is labeled

regarding its continental origin (AF: Africa, OC: Oceania, EA:

East Asia, CA: Central Asia, EU: Europe, AM: America).

(JPG)

Figure S3 Frequencies of genes displaying different values of

improvement of explained variance with three distinct models,

comprising only pathogen diversity, subsistence strategies and

climate conditions (including annual temperature and precipita-

tion rate ranges instead of mean levels), separately (A); and when

testing each variable separately and taking the maximum value for

each environmental category (B).

(EPS)

Figure S4 Frequencies of genes on chromosome 1 displaying

different values of improvement of explained variance with three

distinct models, comprising only pathogen diversity, subsistence

strategies and climate conditions, using low-coverage new-

generation sequencing data from 1000 Genomes Project.

(EPS)

Table S1 List of sampled populations with specification of their

country, continental group and number of genotyped individuals.

(XLS)

Table S2 Chromosomal location for the entire set of analyzed

SNPs.

(XLS)

Table S3 Environmental variables for each population. Values

were averaged for each country.

(XLS)

Table S4 Enrichment of genic SNPs for different classes of

similar Minor Allele Frequencies (MAF), FST or recombination

rate.

(PDF)

Table S5 Improvement of explained variance (termed I(R2))

values and their p-values for the whole set of genes.

(XLS)

Table S6 Genes having at least one significantly associated SNP

with Bayenv software (ranked Bayes factor .0.995) for one

variable for each environmental class.

(XLS)

Table S7 Gene ontology analysis results (Function and Compo-

nent domains) for SNPs mapping on genes which correlate with

pathogen diversity.

(PDF)

Table S8 Annotation of genes correlated with pathogen

diversity.

(XLS)
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