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Abstract: A facile and effective colorimetric-sensing platform based on the diazotization of
phenosafranin for the detection of NO−2 under acidic conditions using the Griess assay is presented.
Diazotization of commercial phenosafranin produces a color change from purplish to blue, which
enables colorimetric quantitative detection of NO−2 . Optimal detection conditions were obtained at a
phenosafranin concentration of 0.25 mM, HCl concentration of 0.4 M, and reaction time of 20 min.
Under the optimized detection conditions, an excellent linearity range from 0 to 20 µM was obtained
with a detection limit of 0.22 µM. Favorable reproducibility and selectivity of the colorimetric sensing
platform toward NO−2 were also verified. In addition, testing spiked ham sausage, bacon, and sprouts
samples demonstrated its excellent practicability. The presented colorimetric sensing platform is a
promising candidate for the detection of NO−2 in real applications.

Keywords: Griess assay; colorimetric; nitrite; phenosafranin

1. Introduction

As one of the most important inorganic salt anions, nitrite (NO−2 ) plays significant roles in the fields
of food, organic synthesis, pharmaceuticals, dyes, and agrochemicals [1–5]. However, the widespread
use of nitrite poses a great threat to the environment due to its persistence in the soil and water [6,7].
In particular, in order to inhibit the propagation of toxic microorganisms in food and improve the
color and flavor of meat products, nitrite has also been heavily used as an additive [8–12]. Extensive
intake of nitrite can result in dysfunction of hemoglobin, digestive system cancer, and some other
diseases [13–17]. In regards to the these problems, World Health Organization (WHO) and U.S.
Environmental Protection Agency (EPA) set maximum contaminant levels (MCL) of nitrite in drinking
water to 3.0 mg/L (65.1 µM) and 1.0 mg/L (21.7 µM), respectively [18]. Therefore, detection of nitrite is
of great importance for environmental protection and food safety.
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Currently, numerous detection technologies have been developed for the nitrite analysis.
For example, high performance liquid chromatography (HPLC) [19,20], ion chromatography (IC) [21,22],
gas chromatography-mass spectrometry (GC-MS) [23,24], and other sensing platform [25] are widely
employed for the detection of nitrite. Despite accuracy and sensitivity, the large-scaled equipment
needed, complex samples pretreatment, and requirement of skilled personnel handicap their in-field
applications. To address these issues, electrochemical sensors based on various nano-materials were
fabricated [26–28]. Yet, the vulnerability of the electrode (ease of being poisoned) may influence the
sensitivity and precision of detection. The reproducibility and selectivity could pose large challenges
for real samples analysis based on electrochemical sensors [29,30]. Thus, the development of a robust
and simple sensing platform for nitrite detection is urgently needed.

The colorimetric sensor is being examined by scientists and engineers in the field of nitrite
discrimination due to its speed and ability to be visualized by naked eyes [31–35]. Among them,
the catalytic spectrophotometric method was extensively investigated based on the reaction between
an oxidizing agent (potassium bromate, potassium chlorate, potassium permanganate, and hydrogen
peroxide) and some organic dyes in the presence of nitrite, which leads to the color change of dyes and
quantitative detection of nitrite [36,37]. However, the time-consuming catalytic spectrophotometric
method and the ease of disturbance by SO2−

3 , Br−, and I− hinder their widespread use in real
application [38]. The Griess assay, as one of the most common alternatives to the colorimetric detection
of nitrite, involves a diazo-coupling procedure under acidic conditions in the presence of nitrite and
−NH2 on a certain chromophore, by which the color of sensing system changes and subsequently
nitrite detection is achieved [18,39]. For example, some reported a spectrophotometric sensor based
on diazotization of p-nitrophenol (Griess assay) to quantitatively detect nitrite [40,41]. Although
a satisfactory detection goal can be obtained using a UV-visible spectrometer, the relatively small
conjugation degree of the diazonium salt of p-nitrophenol (absorbance at 400 to 500 nm) is hard to
visualize by the naked eye. Recently, Noor et al. [42] presented a new optosensor for visual quantitation
of nitrite by physically immobilizing safranine O (SO) reagent onto a self-adhesive poly(n-butyl acrylate)
(poly(nBA)) microspheres matrix. The large conjugate structure of SO (purplish) was diazotized
through the Griess assay and formed a blue diazonium salt compound, which produces an obvious
color change from purplish to blue and subsequently can be easily identified using the naked eye.
The possible incomplete diazotization reaction resulted in a relatively high linear nitrite concentration
ranging from 10 to 100 ppm (0.22 to 2.17 mM) in the solid phase, which does not meet the requirements
set by the WHO (65.22 µM) and EPA (21.74 µM) [43].

To improve the practicality of the sensing platform for nitrite detection in the real world, we
present a simple and effective colorimetric sensing platform based on the Griess assay. As shown in
Figure 1, commercially cost-efficient phenosafranin (serving as the acting site and signal reporter)
with large conjugated structure (purple) can be diazotized to form a blue diazonium salt (DOS) by
nitrite under acidic conditions in the presence of nitrite in aqueous solution. Thus, qualitative and
quantitative detection of nitrite was achieved according to the changes in absorbance of the UV-visible
spectrum. In addition, the sensing platform was able to detect nitrite spiked into ham sausage, bacon,
and sprouts with remarkable recovery. The results demonstrated that the sensing platform as presented
displays excellent sensitivity and is robust against disturbance, and is a promising candidate for nitrite
analysis in real samples.
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2. Experiment

2.1. Reagents and Chemicals

Phenosafranin (PS, 80%) and NaHSO3 were purchased from Aladdin Chemistry (Shanghai,
China). NaHCO3 was obtained from Chongqing Inorganic Chemical Reagent Plant. Disodium
hydrogen phosphate (Na2HPO4) and sodium hydroxide (NaOH) were bought from Tianjin Chemical
Reagent Co. Ltd. (Tianjin, China). A standard stock solution of NO−2 was prepared using NaNO2

with ultrapure water. Other stock solutions of anions at 15 mM were prepared in ultrapure water
with the corresponding salts with different anions of NaHCO3, Na2SO4, Na2SO3, Na2S2O3·5H2O,
Na2S2O5, Na2CO3, Na3PO4·12H2O, Na2HPO4·12H2O, NaH2PO4, CH3COONa, C6H5O7Na3·2H2O,
NaF, NaCl, NaBr, NaI, NaNO3, NH4NO3, NH4Cl, KCl, MgCl2, CuCl2·2H2O, MnCl2·4H2O, KSCN,
FeCl3, and FeCl2·4H2O. All the above-mentioned chemicals were purchased from Chengdu Kelong
Chemical Reagent Factory (Chengdu, China) except where indicated. All the above-mentioned reagents
were of analytical purity unless otherwise stated. All aqueous solutions were prepared with deionized
(DI) water (18.25 MΩ cm) from a Millipore water system.

2.2. Instruments

The UV-Vis absorption spectra obtained were recorded by a TU-1901 double-beam UV-vis
spectrophotometer (Peking General Instrument Co. Ltd. Beijing, China). Fourier-transform infrared
spectroscopy (FT-IR) with Spectrum GX Infrared and Microscopy System (PerkinElmer, USA) were
used to confirm the chemical structure change of phenosafranin.

2.3. Preparation of Stock Solutions

To form 1 M aqueous stock solution for further use, 6.90 g of NaNO2 was dissolved in 100 mL
deionized water. We prepared 1 M HCl aqueous solution by diluting 9 mL concentrated hydrochloric
acid (36%–39%) into 100 mL deionized water. All the inorganic salts aqueous solutions were obtained
by diluting them into 100 mL deionized water to form 0.1 µM stock solutions. All these aqueous
solutions with certain concentrations were acquired by diluting corresponding stock solutions.

2.4. Preparation of Real Samples

Sprouts, bacon, and ham sausages bought from the local supermarket were selected as real
samples for modeling the real world application of the proposed sensing platform. Pretreatment of
these samples was performed according to the GB 5009.33-2016 (determination of nitrite and nitrate in
food). Five grams of sample (sprouts, bacon, and ham sausage) was cut up and put into a 250 mL
conical flask loaded with 10 mL deionized water to form a homogenate. After that, 12.5 mL saturated
borax solution (50 g/L) and 150 mL hot deionized water (70 °C) were added into the conical flask
and incubated boiling water for 15 min. Then, the conical flask was taken out and cooled to room
temperature. The extracting solution was transferred to 200 mL volumetric flask and added with
5 mL potassium ferricyanide aqueous solution (106 g/L). After shaking up, 5 mL zinc acetate solution
(220 g/L) was added to precipitate the protein. Subsequently, deionized water was added into the
volumetric flask to a total volume of 200 mL and allowed to stand for 30 min. Residuals were removed
by filtering the stock solution was acquired. Finally, real samples were obtained after stock solution
spiking with various concentrations of NO−2 .

2.5. Measurement Procedure

The analytical performance of phenosafranin toward NO−2 was investigated at room temperature.
Briefly, the phenosafranin solution (0.5 mL, 0.25 mM) was mixed with HCl aqueous solution (2 mL,
0.4 M) and loaded into a 5 mL centrifuge tube, followed by adding 1 mL NO−2 in certain concentrations
and incubating for 15 min. Finally, the UV-visible spectra of the mixture were recorded.
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3. Results and Discussion

3.1. Sensing Mechanism

The mechanism of the phenosafranin-based colorimetric-sensing platform is shown in Figures 1
and 2. HCl was employed since the Griess assay occurs under acidic conditions. As shown in
Figure 2, the UV-visible absorbance spectrum of phenosafranin was dominated by a single intense
peak at 538 nm. No obvious change was observed for absorbance spectra of phenosafranin after
incubation with HCl, indicating no influence of HCl on the color change of phenosafranin. Upon
addition of NO−2 at a concentration of 14 µM into phenosafranin solution with the presence of HCl, the
strong absorbance peak at 538 nm receded and broadened, accompanied by a slight bathochromic
shift (Figure 2), which can be ascribed to the diazotization of phenosafranin in agreement with a
previous report [42]. As displayed in Figure 1, diazotization of −NH2 increases the conjugation degree
of phenosafranin, resulting in the bathochromic shift of the absorbance peak. The color change of
sensing system from red to blue can be clearly verified by the photo images in the inset of Figure 2.
In order to demonstrate the chemical structure change, the DOS sample was first obtained by complete
reaction between high concentration phenosafranin aqueous solutions with excess sodium nitrite under
acidic conditions. Figure 3 shows the FT-IR spectra of phenosafranin and DOS in the wavenumber
ranging from 2000 to 4000 cm−1. Two well-defined peaks at 3320.0 and 3185.0 cm−1 of phenosafranin
are attributed to stretching vibration of amino group. After complete reaction with excessive NO−2 ,
the stretching vibration of amino group disappeared, suggesting the formation of diazonium salts
DOS. Thus, colorimetric detection of NO−2 based on phenosafranin under acidic conditions through
the Griess assay could be achieved.
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3.2. Optimization of Detection Conditions

In order to obtain an improved colorimetric response, the influence of concentrations of
phenosafranin and HCl and incubation time were studied. As a sensing element and signal producer,
a higher concentration of phenosafranin enables a more efficient diazotization reaction. However,
quantitative detection is affected by the exorbitant concentration of phenosafranin due to the deviation
from Lambert’s law. Additionally, a deep background disturbance influences the judgment on the color
change of the sensing platform, extremely in the case of trace NO−2 sensing. Therefore, appropriate
concentration is important for the fabricated sensing platform. Figure 4A displays the absorbance
spectra of phenosafranin at five concentrations. Taking these considerations into account, 0.25 mM
phenosafranin was used for further studies. After optimization of phenosafranin concentration,
the effect of concentration of HCl was also investigated. As shown in Figure 4B, the changes in the
absorbance of phenosafranin (∆A) at 532 nm increased with increasing HCl addition until it reached
a maximum at a HCl concentration of 0.4 M and NO−2 concentration of 14 µM, suggesting that HCl
facilitates the diazotization of phenosafranin. At high HCl concentration (>0.4 M), ∆A decreased
gradually with the increase in concentration of HCl, which may be contributed by the protonation
of amidogen, being detrimental to diazotization [44]. Thus, we selected the HCl concentration of
0.4 M as optimal for conducting subsequent studies. Additionally, the influence of incubation time on
NO−2 detection even with large concentration (20 µM, to ensure the complete reaction time we can
obtain) was researched and the test results are presented in Figure 4C. After a 10-minute incubation,
an intense ∆A was obtained. After 20 min of reaction time, the ∆A leveled off, indicating that the
reaction reached saturation. Typically, the reaction time of 20 min was chosen as the optimal time
for further tests. Generally, we used the optimized phenosafranin concentration of 0.25 mM, HCl
concentration of 0.4 M, and reaction time of 20 as favorable detection conditions for the investigation
of the analytical performance of the sensing platform for NO−2 .
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3.3. The Sensitivity of Colorimetric Sensing Platform

Under optimized detection condition, the sensitivity of the colorimetric sensor for NO−2 was
investigated and the test results are displayed in Figure 5. The UV-visible spectra, in the range from 300
to 750 nm of 0.25 mM phenosafranin in the presence of NO−2 with various concentrations, are recorded
in Figure 5A. Well-defined UV-visible absorbance peaks were obtained after incubation with NO−2
in different concentrations. The absorbance peaks intensities decreased at 532 nm gradually with
increasing concentrations ranging from 0 to 100µM, accompanied by gradually increasing bathochromic
shift. New stepped-up peaks at 350 nm arose with increasing NO−2 concentrations. Figure 5B shows
the ∆A at 532 nm with the addition of different concentrations of NO−2 . When increasing NO−2
concentrations, ∆A increased accordingly. A well-defined linear relationship (R2 = 0.9977) between
∆A with NO−2 ranging from 0 to 20 µM was obtained. The detection limit was calculated to be
0.22 µM (3S/N), which is much lower than the MCL of nitrite in drinking water set by the EPA and the
WHO. Notably, satisfactory sensitivity and linear relationship range were acquired compared with
the previously reported colorimetric sensing platform listed in Table 1, which are attributed to the
large conjugated structure of phenosafranin and its highly reactive diazotization reaction. The low cost
and ease of operation of this colorimetric sensing platform enable its widespread use. The test results
demonstrated the potential feasibility of the sensing platform for the quantitative detection of NO−2
within the requirements given by the EPA and WHO.
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Table 1. Comparison of the analytical performance of previously reported colorimetric sensors with
this work.

Reagents Linearity Ranges (µM) Detection Limits (µM) Reference

azo-BODIPY 0–50 0.5 [8]
Ruthenium complexes 1–840 0.39 [32]

4-ATP/AuNPs 1–25 1 [33]
Griess reagent 1.6–21.74 0.86 [34]

safranine O (SO) 10–100 ppm 3 ppm [41]
phenosafranin 0.1–20 0.22 this work

3.4. Interferences Study

We conducted an interferences study to verify the selectivity of the colorimetric sensing platform.
We selected 27 potential co-existing organic salts or alkali as interference chemicals to be tested.
As shown in Figure 6, ∆A at 532 nm of the sensing platform after reaction with different substances
(350 µM Na2SO4, NaHSO3, Na2S2O3, Na2SO3, Na2S2O5, Na2CO3, NaHCO3, Na3PO4, Na2HPO4,
NaH2PO4, CH3COONa, C6H5O7Na3, NaOH, NaF, NaCl, NaBr, NaI, NaNO3, NH4Cl, NH4NO3, KCl,
KSCN, CuCl2, MgCl2, FeCl2, FeCl3, and MnCl2) under optimal conditions were recorded, suggesting
little influence on the sensing platform from these interferences. In contrast, ∆A (absorbance change)
at 532 nm of the as-presented sensing platform after incubation with 35 µM of NaNO2 under the
same detection conditions significantly increased, indicating a good selectivity of this sensing platform
toward NO−2 . The selectivity of the sensing platform was assigned to the diazotization reaction of
phenosafranin with NO−2 . The results indicated that the colorimetric sensing platform presented here
has a good anti-disturbance ability.
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3.5. Reproducibility Study

To evaluate the stability, we recorded ∆A at 532 nm for the sensing platform upon incubation
with 35 µM NaNO2 under the optimized detection conditions. Ten batches with six replicates for one
batch were tested and the results are shown in Figure 7. An excellent reproducibility (relative standard
deviation (RSD) = 1.59%) of the colorimetric sensing platform was obtained.
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3.6. The Practicability of the Colorimetric Sensing Platform

Various concentrations of NO−2 spiked ham sausage, bacon, and sprouts samples (real sample
pretreatment procedure was described in Preparation of real samples) were tested to evaluate the
practicability of the colorimetric sensing platform. The ∆A at 532 nm of ham sausage, bacon, and sprouts
samples spiked with NO−2 were recoded to calculate the recoveries (Table 2). The detection results
matched well with the accurate concentration for nearly all cases spiked with 0, 10, and 20 µM of NO−2 ,
demonstrating the good practicability of the colorimetric sensing platform. The recoveries acquired
were calculated to range from 94.63% to 109.94%, with favorable reproducibility (RSD < 2%). These
results suggested that the colorimetric sensing platform displays the potential for trace NO−2 detection
in real applications.

Table 2. Detection of NO−2 in spiked ham sausage, bacon, and sprouts samples.

Samples Added (µM) Found (µM) RSD (%) Recoveries (%)

ham sausage
0 1.68 / /

10 12.6 1.5 108.97
20 20.6 1.3 94.63

bacon
0 1.56 / /

10 11.9 1.4 103.74
20 20.8 1.2 96.21

sprouts
0 1.93 / /

10 12.9 1.8 109.94
20 21.1 1.3 95.91

4. Conclusions

We presented a simple and effective colorimetric sensing platform based on the diazotization of
phenosafranin for the detection of NO−2 under acidic conditions using the Griess assay. Commercial
phenosafranin served as both acting site and signal producer. The color of phenosafranin changed
from purplish to blue upon addition of NO−2 , enabling colorimetric sensing to achieve quantitative
detection of NO−2 . A satisfactory sensitivity and favorable linearity were obtained under the optimal
detection conditions. Interferences and reproducibility studies were conducted verify the selectivity
and stability of the sensing platform. The testing of spiked real samples (ham sausage, bacon, and
sprouts) confirmed its excellent practicability. All the results suggested the presented colorimetric
sensing platform is a promising strategy for NO−2 analysis in real applications.
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