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Abstract: In this paper, a novel natural influenza A HIN1 virus neuraminidase (NA) inhibitory
peptide derived from cod skin hydrolysates was purified and its antiviral mechanism was
explored. From the hydrolysates, novel efficient NA-inhibitory peptides were purified by a
sequential approach utilizing an ultrafiltration membrane (5000 Da), sephadex G-15 gel column
and reverse-phase high-performance liquid chromatography (RP-HPLC). The amino acid sequence
of the pure peptide was determined by electrospray ionization Fourier transform ion cyclotron
resonance mass spectrometry (ESI-FTICR-MS) was PGEKGPSGEAGTAGPPGTPGPQGL, with a
molecular weight of 2163 Da. The analysis of the Lineweacer-Burk model indicated that the
peptide was a competitive NA inhibitor with Ki of 0.29 mM and could directly bind free
enzymes. In addition, docking studies suggested that hydrogen binding might be the driving
force for the binding affinity of PGEKGPSGEAGTAGPPGTPGPQGL to NA. The cytopathic
effect reduction assay showed that the peptide PGEKGPSGEAGTAGPPGTPGPQGL protected
Madin-Darby canine kidney (MDCK) cells from viral infection and reduced the viral production in a
dose-dependent manner. The ECs value was 471 + 12 pug/mL against HIN1. Time-course analysis
showed that PGEKGPSGEAGTAGPPGTPGPQGL inhibited influenza virus in the early stage
of the infectious cycle. The virus titers assay indicated that the NA-inhibitory peptide
PGEKGPSGEAGTAGPPGTPGPQGL could directly affect the virus toxicity and adsorption by
host cells, further proving that the peptide had an anti-viral effect with multiple target sites.
The activity of NA-inhibitory peptide was almost inactivated during the simulated in vitro
gastrointestinal digestion, suggesting that oral administration is not recommended. The peptide
PGEKGPSGEAGTAGPPGTPGPQGL acts as a neuraminidase blocker to inhibit influenza A virus
in MDCK cells. Thus, the peptide PGEKGPSGEAGTAGPPGTPGPQGL has potential utility in the
treatment of the influenza virus infection.

Keywords: cod skin; NA-inhibitory peptide; influenza virus; neuraminidase; molecular docking;
adsorption

1. Introduction

The influenza virus remains a highly contagious pathogen that causes high morbidity and
mortality [1]. In 2009, the influenza A (H1N1) virus first emerged and resulted in more than 8000 deaths
worldwide [2]. Furthermore, the number of patients suffering from influenza continues to grow.
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Neuraminidase (NA), a surface glycoprotein, is a major structural component of the virion and plays
an important role in virus replication [3]. Therefore, it is essential to explore the inhibition of NA in
order to control the influenza virus.

NA inhibitors can bind to the active site of the viral NA to interfere with the virus replication [1]
and are a promising target for screening anti-influenza drugs. Current NA inhibitor drugs, such as
zanamivir and oseltamivir [4,5], significantly affect the duration of infection and clinical diseases [6].
However, the pharmaceutical drug efficacy, resistance and cost remain to be solved [7]. In addition,
the NA inhibitor drugs may lead to some side effects, such as potential neurotoxicity, digestive
discomfort and respiratory diseases [8]. Hence, it is necessary to develop alternative and natural NA
inhibitors. Recently, many NA-inhibitory peptides have been found to show potential as antiviral drugs.
For example, Amri et al. [9] found that some cyclic peptides, RRR and RRP, showed high NA-inhibitory
activity. In addition, Upadhyay et al. [10] found that the mimosine tetrapeptide (M-FFY) also showed
high NA-inhibitory activity. However, natural NA-inhibitory peptide was seldom reported.

Cod is an important fish species in China. Lots of scraps are generated during the processing
and utilization of cod, which can lead to the waste of resources and environmental pollution.
Thus, it is necessary to make full use of the cod scraps. More than 80% of the dry matter of
cod skin [11] is collagen, which is rich in proline and L-hydroxyproline [12]. Both proline and
L-hydroxyproline contain a pyrrolidine structure [13] and this group can act as hydrogen bond donors
or receptors to exert anti-influenza effects by binding to neuraminidase, thus allowing the formation
of proline-containing polypeptide inhibitors. A number of studies have showed that synthetic
pyrrolidine-containing compounds exhibited high NA-inhibitory activity [14,15], which suggested
that natural pyrrolidine-containing substances (proline and L-hydroxyproline) might also play an
important role in the inhibition of NA. Recently, cod skins were widely applied in the preparation of
ACE-inhibitory peptides [16,17]. However, the preparation of natural NA-inhibitory peptides from
cod skin hydrolysates was not reported. Therefore, the peptide derived from cod skin hydrolysates
might have the high potential in the inhibition of NA. In addition, it has been reported that the
influenza-infection cycle involves several distinct steps [5,18]. Hemagglutinin (HA), a significant
surface glycoprotein, also plays an important role in viral infection by mediating viral entry and
fusion [19-21]. Thus, it is significant to further investigate the potential mechanisms of peptides
against the influenza A virus.

To the best of our knowledge, the preparation of natural influenza A HIN1 virus neuraminidase
inhibitory peptide from cod skin hydrolysates has seldom been reported. The study aims to prepare
efficient NA-inhibitory peptides from cod skin hydrolysates. We identified the NA-inhibitory
peptides with high activities by electrospray ionization Fourier transform ion cyclotron resonance
mass spectrometry (ESI-FTICR-MS). In addition, molecular docking simulations were conducted
to investigate the interactions between the peptides and NA. Moreover, the mechanism of the
peptide against the influenza virus was also discussed. This study can provide previously unknown
information about the effect of the novel NA-inhibitory peptides on influenza A HIN1 virus and
alternative approach for antiviral therapy.

2. Results and Discussion

2.1. Isolation and Purification of Neuraminidase (NA)-Inhibitory Peptide

The enzymatic hydrolysates of cod skins were firstly ultrafiltered with an 5 K membrane to
obtain the components whose molecular weight were less than 5000 Da. The ICsy value of the
ultrafiltrate was 6.4 mg/mL (Table 1). The NA-inhibitory peptides were then fractionated using
a Sephadex G-15 gel column and Fractions A-F were obtained at 220 nm (Figure 1A). The NA
inhibition assays of these fractions showed that Fraction D exhibited high NA-inhibitory activity
(IC59 =3.50 £ 0.11 mg/mL). The fractions with the same molecular weight peaked simultaneously in
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the Sephadex G-15 gel column [22]. Therefore, Fraction D may be a mixture and needs to be further
fractionated by reverse-phase high-performance liquid chromatography (RP-HPLC).

Table 1. Purification procedure of NA-inhibitory peptides.

Components Purification ICs5p (mg/mL) Purification Fold
Hydrolysates (<5000 Da) Ultrafiltration 6.40 £0.132 1.00
D Sephadex G-15 3.50 +0.11° 1.83
D1 RP-HPLC 0.89 £0.07 € 7.19

Mean =+ standard deviation (SD) (n = 3). Values with different superscript letters are significantly different (p < 0.05).
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Figure 1. Isolation and purification of NA-inhibitory peptides using a Sephadex G-15 gel column (A)
and reverse-phase high-performance liquid chromatography (RP-HPLC) (B). Purity identification of
neuraminidase (NA)-inhibitory peptide D1 (C).

RP-HPLC is a common tool for isolating and purifying the polypeptides [22]. After 5 min
of elution, six major peaks were detected at 220 nm, among which the peak corresponding to
Fraction D1 exhibited a relatively high intensity (Figure 1B). Fraction D1 exhibited the high activity
(IC50 = 0.89 £ 0.07 mg/mL). After a two-step purification process, Fraction D1 was purified by
7.19 times (Table 1), suggesting that the NA-inhibitory activity of cod skin peptides can be significantly
improved by fractionation and purification. In addition, Fraction D1 exhibited a single peak in an
analytical C1g HPLC column (Figure 1C), suggesting that the purity of D1 had met the requirement
for sequencing.

2.2. Identification of the NA-Inhibitory Peptide

ESI-FTICR-MS can simultaneously dissociate multiple precursor ions and has a wide detection
range, high resolution, and high precision [23]. To determine the matching degree of the identification
sequence, the sequence results were matched by using the Swiss Prot database. The matching result
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showed that the determined sequence was PGEKGPSGEAGTAGPPGTPGPQGL with a molecular
mass of 2163 Da (Figure 2). The peptide consisted of 24 amino acid residues and proline accounted for

a quarter.
100 . 876.49
g | ¢
287 PGEKGPSGEAGTAGPPGTPGPQGL
S 60- \ \1068.52
=
i 66525
% 40 T (y 4.39
E 20 1008 | 3PS m“ 659.18 7::2236 binad 25740
| 240 :t12i3246|936 (;2756' 70329 Jl |9972P "95521196 313vs.66,
200 3?0 400 500 600 uma—sw—fm—meemo 1200 13'[10 1400
Mass (m/z)

Figure 2. Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry
(ESI-FTICR-MS) spectra of the amino acid sequences of Fraction D1.

2.3. Mode of Action and Molecular Docking of PGEKGPSGEAGTAGPPGTPGPQGL

To determine the mode of action of the NA-inhibitory peptide, a Lineweaver-Burk kinetic
model was used to explore the relationship between the reaction rate and the substrate concentration.
As shown in Figure 3, PGEKGPSGEAGTAGPPGTPGPQGL (peptide P) is a competitive NA inhibitor
(Ki = 0.29 mM), suggesting that the peptide P can directly bind free enzyme. Such a binding results in
a decrease in substrate affinity at the active site [24]. The binding of NA to a substrate or competitive
inhibitor of amino acid residues is the highly specific binding [25]. A number of studies have shown
that modes of action of NA inhibitors include competitive, non-competitive, uncompetitive and
mixed modes. For example, Park et al. [26] obtained 2-hydroxy-3-methyl-3-butenyl alkyl (HMB) from
Angelica keiskei and HMB was a non-competitive inhibitor with Ki of 14.0 & 1.5 uM (ICsp = 12.3 uM).
Nguyen et al. [27] isolated eight oligostilbenes from Vitis amurensis, which were all non-competitive
inhibitors with Ki of 8-25 pM (ICsg = 8.94-234.61 uM). Jiang et al. [28] isolated indole alkaloid from
Streptomyces sp. FIM090041, which was a competitive inhibitor with Ki of 13.5 uM (ICsp = 67.8 uM).
In addition, oseltamivir was a competitive inhibitor of chemically synthesized drugs. Compared
with those NA inhibitors, the NA-inhibitory intensity of the peptide P was relatively low. Thus, the
synergistic combination with other inhibitors should be further explored based on this study.
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Figure 3. Kinetic study of the NA inhibition profile of PGEKGPSGEAGTAGPPGTPGPQGL.

For the purpose of understanding the interaction mechanism between peptide P and NA,
molecular docking was performed. Prior to docking, the conformation of the peptide P was determined
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using molecular dynamics (MD). Peptide P has several conformations in the solution. Two main
clusters were identified. Two minimum-energy conformations of peptide P from the two main clusters
were selected for binding modes determination. As shown in Figure 4, Conformation A forms
6 hydrogen bonds with the residues Asn347, Asp151 and Lys150, whereas Conformation B only forms
3 hydrogen bonds with the residues Lys150, Asn347 and Ser369. In addition, Pro21 of Conformation A
is important in the formation of hydrogen bonds. Thus, Conformation A is probably more energetically
favorable to bind to the NA. Our docking studies suggested that hydrogen binding might be the
driving force for the binding affinity of peptide P to NA. Li et al. [22] also reported that the hydrogen
binding was the main driving force for the binding affinity of PNVA to angiotensin converting enzyme
(ACE). The binding site of the NA is filled with charged residues and properly introducing charged
residues to the NA can be a way to increase the binding affinity of peptide P analogues.

Figure 4. Probable binding mode of peptide PGEKGPSGEAGTAGPPGTPGPQGL at HIN1 NA.
Conformation of the peptide was determined by MD simulations. Conformation of the peptide
was clustered from the last 50 ns MD. (A,B) show the binding modes of the two minimum-energy
conformations (Conformation A and Conformation B) of the peptide extracted from the two largest
clusters at the binding site of NA. The dashed lines show the hydrogen bonds formed between residues
from the peptide and residues of the NA.

2.4. Cytotoxicity and Antiviral Activity of Peptide PGEKGPSGEAGTAGPPGTPGPQGL on Madin—Darby
Canine Kidney (MDCK) Cells

The peptide P exhibited no significant cytotoxicity in Madin-Darby canine kidney (MDCK)
cells at a concentration of 250 pug/mL or less (p > 0.05), while peptide P significantly reduced the
viability of MDCK cells at concentrations over 250 pug/mL (p < 0.05) (Figure 5B). The inhibitory
effect of the peptide P on the HIN1 virus was examined in vitro. MDCK cells treated with HIN1
(Figure 5A) exhibited cytoplasmic shrinkage, loss of cell-cell contract, and reduction in cell numbers.
After co-treatment with peptide P, MDCK cell morphology was changed slightly and appeared healthy
with a regular shape compared with the control cells. The treatment with 62.5~1000 pg/mL peptide P
significantly reduced the cytopathic effect (CPE) and peptide P increased the viability of virus-infected
cells dose-dependently (Figure 5C). The peptide P at a concentration of 250 pug/mL inhibited HIN1
by 42%, which showed a lower antiviral effect than ribavirin (p < 0.05). The ECs( value of peptide P
against HIN1 was 471 £ 12 pug/mL. Test results indicated that peptide P could protect MDCK cells
from viral infection and reduced the viral production in a dose-dependent manner.
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Figure 5. (A) Morphological changes in HIN1-infected MDCK cells; (B) Cell viability of Madin-Darby
canine kidney (MDCK) cells after being incubated with the peptide at different concentrations for 48 h;
(C) Inhibitory effects of the peptide on influenza virus HIN1 infection in MDCK cells. Values of three
replicates are expressed as mean = standard deviation. Different lowercase letters indicate significantly
different values (p < 0.05).

2.5. Inhibitory Effects of Peptide PGEKGPSGEAGTAGPPGTPGPQGL on Different Stages of Viral Replication

To determine the stages in which the peptide P plays a role in the influenza virus life cycle,
a time-of-addition experiment was conducted. MDCK cells treated with HIN1 exhibited the shrinkage
of cytoplasm, loss of cell-cell contract, and apoptosis (Figure 6A). The MDCK-cell morphology
was different in three stages and the pretreatment group appeared healthier than adsorption and
after-adsorption groups, with regular shapes. A significant protection effect was observed when the
peptide P was added before viral adsorption and the inhibition ratio was 73%, which was slightly
lower than the positive control of ribavirin (75%) (Figure 6B), suggesting that the possible target of
peptide P was located in the cell surface and could reduce viral virulence. In addition, the viability of
the infected cells was partly recovered by the peptide P during viral adsorption, and the inhibition
ratio was 58%, which was significantly lower than positive control of ribavirin (75%) (Figure 6B),
indicating that peptide P could effectively prevent the attachment of virus and cells. Moreover, peptide
P showed less inhibition rates by approximately 31.5% against HIN1 when it was added after the
infection (Figure 6B), indicating that peptide P could inhibit an after-adsorption step of the influenza
virus life cycle. In addition, the ICs( values in three different stages of viral replication were increased
according to the following order: pretreatment < adsorption < after-adsorption (Figure 6B). The result
was consistent with the results of inhibition assays. Overall, the time-course analysis showed that the
peptide P mainly inhibited influenza virus in the early stage of the infectious cycle.

Previous studies reported the protein-enriched fraction (PEF) that isolated from the larvae of
housefly had strong antiviral activity against influenza virus at a very early stage of the interaction with
virus particles or their entry into the cells [29]. The extract of Ginkgo biloba (EGB) could directly interact
with influenza virus and markedly reduce the infectivity of the virus by preventing the adsorption to
host cells [30]. The theaflavin derivatives had a direct effect on viral particle infectivity [31]. Similar to
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the results in the study, these studies also indicated that the inhibition of influenza virus occurred in
the early stage of the infectious cycle. Ding et al. [32] reported that chlorogenic acid (CHA) inhibited
influenza virus in the late stage of the infectious cycle.
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Figure 6. (A) Morphological changes of H1N1-infected MDCK cells under different treatment
conditions. (i) Pretreatment, (ii) adsorption, (iii) after-adsorption; (B) MDCK cells were infected
with the peptide under three different treatment conditions; (C) hemagglutination (HA) titers of
influenza virus HIN1 treated with different concentrations of peptide. Values of three replicates

are expressed as mean =+ standard deviation. Different letters indicate significantly different values

(p < 0.05).

2.6. Hemagglutination (HA) Assay

To explore whether the inhibitory effect of the peptide P on HIN1 was cell-specific or not, the virus
titers in MDCK cell supernatants were measured by hemagglutination (HA) assay. The virus particles
contain hemagglutinin protein, which binds to receptors on the surface of erythrocytes and causes
hemagglutination (HA) [33]. The maximum dilution ratio of red blood cell agglutination can be set
as the HA titer in HA experiments with different dilutions of virus. Some active substances can bind
to the surface of the virus and block the hemagglutinin, thereby preventing the combination of red
blood cells and inhibiting hemagglutination. As shown in Figure 6C, the HA titer of the virus was
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inhibited by the peptide P dose-dependently and the peptide P could significantly reduce the virus
titer at the concentration over 125 ug/mL (p < 0.05). The NA-inhibitory peptide P could affect the
virus toxicity and adsorption by host cells, further proving that the peptide had an anti-viral effect
with multiple target sites. Wang et al. [29] also reported that PEF could decrease the infectious capacity
in HA titer and prevent the attachment of virus and cells. In addition, Haruyama et al. [30] reported
that EGB contained an anti-influenza virus substance that directly affected influenza virus particles
and disrupted the function of hemagglutinin in the adsorption to host cells.

2.7. Simulated Digestion Test on NA-Inhibitory Peptide

The NA-inhibitory peptides need to resist digestive enzymes in vivo to maintain the stability
of the peptides. In the simulated environment of the digestive tract, the activity the NA-inhibitory
peptides before and after digestion were measured. To explore the behaviors of the peptide in the
digestive tract in vitro, the peptide P was treated with digestive enzymes. After the simulated digestion,
the activity of the NA-inhibitory peptide was significantly decreased (p < 0.05), indicating the instability
of the NA-inhibitory peptide during the simulated in vitro gastrointestinal digestion (Figure 7).
Kuba et al. [34] extracted ACE inhibitory peptide Trp-Leu from Tofuyo (fermented soybean food)
and suggested that the inhibitory activity of Trp-Leu was completely preserved after the simulated
digestion. Different peptides have different tolerances to gastrointestinal proteases. The activities
of some functional peptides were increased after digestion and could be taken orally as a prodrug
through sustained release or direct digestion. However, the activity of NA-inhibitory peptide in cod
skin hydrolyzates after digestion was not ideal, so oral administration is not recommended. There are
many ways to uptake the NA-inhibitory peptides, including adsorption, injection, oral administration
and other ways. Therefore, it is necessary to further explore other routes of entry.
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Figure 7. NA-inhibitory rate of the peptide PGEKGPSGEAGTAGPPGTPGPQGL during the simulated
in vitro gastrointestinal digestion. Values of three replicates are expressed as mean =+ standard
deviation. Different lowercase letters indicate significantly different values (p < 0.05).

3. Materials and Methods

3.1. Reagents

Cod skins were purchased from Shandong Meijia Group Co., Ltd. (Rizhao, China). Ribavirin
(50 mg/mL) was purchased from Cisen Pharmaceutical Co., Ltd. (Jining, China). Zorbax SB-C18
column (9.4 mm x 250 mm) was obtained from Agilent Technologies (Santa Clara, CA, USA).
RPM1640 medium, fetal bovine serum (FBS), penicillin and streptomycin were obtained from Gibco
(Grand Island, NY, USA). 4-Methylumbelliferyl-N-acetyl-o-D-neuralminic acid (MUNANA) and
2-(N-morpholino) ethanesulphonic acid (MES) were bought from Sigma (St. Louis, MO, USA).
Influenza virus HIN1 neuraminidase (NA) was kindly made by the School of Medicine and Pharmacy,
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Ocean University of China (Qingdao, China). All other chemicals were bought from local commercial
sources and were of the highest purity available.

3.2. Cells and Viruses

MDCK cells were purchased from Shanghai Institute of Biochemistry and Cell Biology (Shanghai,
China), and maintained in RPM1640 medium included 10% of FBS, 100 U/mL of penicillin and
100 png/mL of streptomycin. The influenza virus A /Puerto Rico/8/1934 (HIN1) was obtained from
Wuhan Institute of Virology (Wuhan, China), and grown in 10-day-old embryonated eggs at 36.5 °C
for 72 h. As for infection, virus propagation solution was diluted in phosphate buffered saline (PBS)
containing 0.2% bovine serum albumin (BSA) and then added into the cells at the indicated multiplicity
of infection (MOI). Viruses were allowed to be adsorbed 60 min at 37 °C. After removing the virus
inoculum, cells were maintained in infecting media (RPM1640, 4 ug/mL trypsin) at 37 °C in 5% COs,.

3.3. Protein Extraction of Cod Skins

The protein of cod skins was prepared according to the method described by Zhao et al. [35].
Briefly, 100 g of cod skins were firstly cut up and homogenized in 600 mL of distilled water.
Then, protein of cod skins was extracted from the homogenates in a water bath at 85 °C for 6 h
and centrifuged (5000x g, 30 min) to obtain the solutions. The solutions were freeze-dried with a
lyophilizer (Ningbo Scientz Biotechnology Co., Ltd., Ningbo, China).

3.4. Preparation of Cod Skin Protein Hydrolysates

The freeze-dried cod skin protein was initially dissolved in water and its substrate concentration
was adjusted to 22 mg/mL. After that, pepsin (1.6 kU/g protein) was added into the solution and
hydrolyzed in a water bath at 37 °C for 6.8 h. Afterward, the pepsin was inactivated at 100 °C for
10 min. After centrifugation at 5000 x g for 30 min, the ultrafiltration precipitation was carried out with
5 K membrane (Millipore Isopore, Billerica, MA, USA). The precipitate obtained was freeze-dried and
stored for use.

3.5. Purification of NA-Inhibitory Peptide

The Sephadex G-15 column (2.6 cm x 65 cm) was used to purify the NA-inhibitory peptides.
The flow rate was 1.2 mL/min and double distilled water was used for elution. After that, the Zorbax
SB-C18 column (9.4 mm x 250 mm, Agilent, CA, USA) equipped with an Agilent 1260 infinity HPLC
system (Agilent Technology, Mississauga, ON, Canada) was used to analyze the peptides in the
hydrolysates at a flow rate of 1.5 mL/min. An acetonitrile gradient from 5% to 40% was adopted for
20-min elution to separate groups of peptides. Chromatographic separation was carried out at 35 °C.
The components were collected at the absorbance of 220 nm and freeze-dried for further analysis.

3.6. NA-Inhibitory Activity Assay

The NA activity assay was performed according to the previous method with slight
modifications [36]. Briefly, the sample (10 pL) and NA solution (30 uL) were added to a 96-well
plate. After the incubation at 37 °C for 30 min, 60 puL of reaction buffer (33 mM MES buffer, pH = 3.5;
4 mM CaCly; 10 uL MUNANA) was added. After the incubation under the same conditions, 100 uL
of stop solution (83% ethanol; 14 mM NaOH) was added to each well. The fluorescence intensity
was measured with a SpectraMax M5 plate reader (Molecular Decices, Sunnyvale, CA, USA) with the
excitation and emission wavelengths of 355 and 460 nm, respectively; 10 pL of PBS and 30 uL of NA
were used as the positive control, and 10 uL of PBS and 30 puL of PBS were used as the negative control.
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The hydrolysates (10 uL) and NA (30 puL) were used as the samples and 10 pL of hydrolysates and
30 uL of PBS were used as the negative control of the sample. The inhibition activity is calculated as:

(Apc — Anc) — (ASample - ASNC)
Apc — Anc

Inhibition activity (%) = x 100% (1)

PC: positive control, NC: negative control, SNC: negative control of the sample.

3.7. Amino Acid Sequence Analysis

The peptides were sequenced using ESI-FTICR-MS. The sequencing was completed in the Beijing
Proteome Research Center (Beijing, China).

3.8. NA Inhibition Mode

The mode of NA inhibition was determined according to the previous method with slight
modifications [37]. Various concentrations of MUNANA (1.25, 2.5, 5, 10 and 20 uM) were incubated
with NA in the absence or presence (0-2.5 mg/mL) of the peptide P at 37 °C. The inhibition kinetics of
NA in the presence of peptide P was determined based on the Lineweaver—Burk plot. The inhibitor
constant Ki was calculated by plotting 1/Vmax versus the concentrations of peptide P.

3.9. Molecular Dynamics Simulation

The initial conformation of the peptide P was produced with the xleap module in AMBER 16.
The protonation states of the peptide P residues were predicted with the PropKa 3.1 method [38].
The initial model was minimized and refined through molecular dynamics (MD) simulations with
the Amber 16 package and ff14SB force field [39]. The system was minimized and equilibrated
according the previous method [40]. The SHAKE algorithm was used for the MD simulations [41].
The long-range electrostatic interactions were modeled using the particle-mesh ewald (PME)
method [42]. MD trajectories were analyzed with VMD [43] and molecules were drawn with PyMol
(Schrodinger LLC, Portland, OR, USA).

3.10. Docking

Docking the MD refined structures of peptide P to HIN1 (PDB Code: 1RUZ) [44] was performed
in AutoDock 4.2 [45]. Gasteiger charges were used and nonpolar hydrogens of the macromolecule and
ligand were merged. A grid box with the dimensions of 60 A x 60 A x 60 A and a grid spacing of
0.375 A was set up and centered at the geometric center of the binding box defined with the bound
ligand in the crystal structure. Docking was performed by using a Lamarckian genetic algorithm
(LGA), with the receptor treated as a rigid body. The docking results were analyzed by AutoDock
Tools. The produced conformations were selected based the docking score and manual analysis.

3.11. Cytotoxicity Test by MTT Assay

The MTT assay was used to determine the effect of the peptide on the viability of MDCK cells [5,46].
The 96-well plates were used to culture the MDCK cells. After adding 10 pL of PBS containing MTT
(0.5 mg/mL) into each well, the solution was incubated at 37 °C for 4 h. After removing the supernatant,
200 pL of DMSO was added into each well. The optical density (OD) for each well was determined at
570 nm. The ICsp was calculated as the concentration of the sample at which the number of viable cells
was decreased to 50% of that in the cell control.

3.12. Cytopathic Effect (CPE) Reduction Assay

The cytopathic effect (CPE) reduction assay was performed according to the previous method [5,47].
MDCK cells were firstly infected with influenza A HIN1 virus (IAV) (MOI = 0.1) and then treated
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with different concentrations of peptide in triplicate after removing the virus inoculum. After 48-h
incubation, 4% formaldehyde was used to fix the cells for 20 min. After removing formaldehyde,
0.1% crystal violet was used to stain the cells for 30 min. After elution of the dye with methanol,
the intensity of crystal violet staining for each well was measured at 570 nm.

3.13. Acting Mode of Inhibitory Peptide

In order to investigate the inhibitory effects of the peptide on the influenza at different stages
of replication, time course analysis was determined according to the previous method [5]. In the
pretreatment assay, influenza A virus (IAV, MOI = 3.0) was pretreated with 250 ng/mL of the peptide
at 37 °C for 1 h before infection. Then, the virus/peptide mixture was added to MDCK cells for 1 h at
4 °C, and the culture solutions were removed and replaced by sample-free solutions. In the adsorption
assay, MDCK cells were infected in solutions containing 250 ug/mL of the peptide at 4 °C after 1-h
adsorption and then the culture solutions were removed and replaced by sample-free solutions. In the
post-adsorption assay, the virus suspension was added into each well containing a confluent MDCK
cell monolayer and then the cells were treated with 250 ug/mL of the peptide after removing the virus
inoculums. At 24 h, the antiviral activity was detected by the CPE inhibition assay as described above.

3.14. HA Assay

The hemagglutination (HA) assay was performed as previously reported [48]. The virus solutions
(10° PFU/mL) were serially diluted in 96-well plates, followed by adding different dilutions of
NA-inhibitory peptides. The same volume of 1% standardized chicken red blood cells (cRBCs) prepared
according to the World Health Organization (WHO) manuals were added to each well. After 60-min
incubation at 4 °C, RBCs in negative wells were sedimented to form red buttons, whereas positive
wells had an opaque appearance without sedimentation. HA titers were given as hemagglutination
units /50 uL (HAU/50 uL).

3.15. Simulated Digestion Assay

Simulated digestion assay was performed according to the previous method with slight
modifications [49]. The NA-inhibitory peptide was dissolved in deionized water to prepare 10 mg/mL
solution. The pH was adjusted to 2.0 with 1 mol/L HCI and then pepsin (2.86% of the substrate,
dry basis) was added. Digestion was performed at 37 °C for 2 h, followed by boiling for 10 min to stop
the enzyme activation. Subsequently, the pH was adjusted to 7.5 with 0.2 mol/L NaOH. After adding
chymotrypsin (4.00% of substrate, dry basis), the reaction was carried out at 37 °C for 1 h. The sample
was submerged in a 95 °C water bath for 10 min to terminate the enzymatic digestion and cooled on
ice to room temperature. Then, trypsin (4.00% of substrate, dry basis) was added, and the above steps
were repeated. Afterwards, the digested mixtures were centrifuged at 10,000x g for 10 min to obtain
the digestive juices. The NA inhibition assay in digestive juices was detected as described above.

3.16. Statistical Analysis

The data were expressed as mean =+ standard deviation (SD). The results were validated by
one-way analysis of variance (ANOVA). Duncan’s multiple range tests were performed to determine
the differences between means (significance level was set at 5%) using SPSS 20.0 (SPSS Inc., Chicago,
IL, USA).

4. Conclusions

The novel NA-inhibitory peptide PGEKGPSGEAGTAGPPGTPGPQGL was first prepared from
cod skin hydrolysates. Docking studies suggested that hydrogen binding might be the driving force
for the binding affinity of the peptide to NA. Time-course analysis showed that the peptide inhibited
influenza virus in the early stage of the infectious cycle. The assay of virus titers indicated that the
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NA-inhibitory peptide could directly affect the virus toxicity and the adsorption by host cells, further
proving that the peptide had an anti-viral effect with multiple target sites. The activity of NA-inhibitory
peptide was almost inactivated during the simulated in vitro gastrointestinal digestion, suggesting
that oral administration was not recommended and the need to further explore other routes of entry.
Furthermore, the antiviral activities of peptide against HIN1 in vivo need to be further investigated
in order to facilitate the development of peptide in preventing influenza virus infection. The peptide
exhibits potential utility in the control of influenza virus infections. This study provides a theoretical
basis for guiding the discovery of new natural anti-influenza drugs.

Author Contributions: Data curation, J.L. and N.Y.; Project administration, Y.Z.; Software, R.Y.; Validation, Y.C,,
Z.L., HW. and S.D.; Visualization, Z.L.; Writing—original draft, ].L.; Writing—review and editing, M.Z. and Y.Z.

Funding: This project was supported by Ningbo Agricultural Science and Technology Key Projects (2017C110006),
Qingdao Science and Technology Development Project (No. 17-3-3-46-nsh) and Natural Science Foundation of
Shandong Province (No. ZR2015CMO011).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Baron, Y,; Glasner, A.; Meningher, T.; Achdout, H.; Gur, C.; Lankry, D.; Vitenshtein, A.; Meyers, AFA.;
Mandelboim, M.; Mandelboim, O. Neuraminidase-mediated, NKp46-dependent immune-evasion
mechanism of influenza viruses. Cell Rep. 2013, 3, 1044-1050. [CrossRef] [PubMed]

2. Li Y;Lin, Z; Guo, M;; Xia, Y.; Zhao, M.; Wang, C.; Xu, T.; Chen, T.; Zhu, B. Inhibitory activity of selenium
nanoparticles functionalized with oseltamivir on HIN1 influenza virus. Int. . Nanomed. 2017, 12, 5733-5743.
[CrossRef] [PubMed]

3. Matrosovich, M.N.; Matrosovich, T.Y.; Gray, T.; Roberts, N.A.; Klenk, H.D. Neuraminidase is important
for the initiation of influenza virus infection in human airway epithelium. J. Virol. 2004, 78, 12665-12667.
[CrossRef] [PubMed]

4. Lee, M.Y,; Yen, H.L. Targeting the host or the virus: Current and novel concepts for antiviral approaches
against influenza virus infection. Antivir. Res. 2012, 96, 391-404. [CrossRef] [PubMed]

5. Wang, W,; Cui, Z.Q.; Zhang, P; Hao, C.; Zhang, X.E.; Guan, H.S. In vitro inhibitory effect of carrageenan
oligosaccharide on influenza A HIN1 virus. Antivir. Res. 2011, 92, 237-246. [CrossRef] [PubMed]

6. Jiang, L.; Fantoni, G.; Couzens, L.; Gao, J.; Plant, E.; Ye, Z.; Eichelberger, M.C.; Wan, H. Comparative
efficacy of monoclonal antibodies that bind to different epitopes of the 2009 pandemic HIN1 influenza virus
neuraminidase. J. Virol. 2016, 90, 117-128. [CrossRef] [PubMed]

7. Hayden, EG.; Pavia, A.T. Antiviral management of seasonal and pandemic influenza. J. Infect. Dis. 2006, 194,
119-126. [CrossRef] [PubMed]

8.  Yen, H.L.; Mckimm-Breschkin, J.L.; Choy, K.T.; Wong, D.D.Y.; Cheung, PP.H.; Zhou, J.; Ng, LH.; Zhu, H,;
Webby, R.J.; Guan, Y.; et al. Resistance to neuraminidase inhibitors conferred by an R292K mutation in
a human influenza virus H7N9 isolate can be masked by a mixed R/K viral population. MBio 2013, 4,
€00396-13. [CrossRef] [PubMed]

9.  Amri, N,; Parikesit, A.A.; Tambunan, U.S.E. In silico design of cyclic peptides as influenza virus, a subtype
HIN1 neuraminidase inhibitor. Afr. J. Biotechnol. 2013, 11, 11474-11491.

10. Upadhyay, A.; Chompoo, J.; Taira, N.; Fukuta, M.; Gima, S.; Tawata, S. Solid-phase synthesis of mimosine
tetrapeptides and their inhibitory activities on neuraminidase and tyrosinase. J. Agric. Food Chem. 2011, 59,
12858-12863. [CrossRef] [PubMed]

11.  Yuan, N.; Zeng, M.Y.; Gao, FZ.; Guo, X.M.; Wang, H.T.; Zhao, Y.H.; Wang, W. Preparation of active peptide
from cod skins with inhibitory activity on influenza virus neuraminidase. Chin. . Mar. Drugs 2012, 31, 1-7.

12.  Nagai, T.; Suzuki, N. Preparation and partial characterization of collagen from paper nautilus (Argonauta
argo, Linnaeus) outer skin. Food Chem. 2002, 76, 149-153. [CrossRef]

13. Mattice, W.L.; Mandelkern, L. Ordered structures in sequential copolypeptides containing L-proline or
4-hydroxy-L-proline. |. Am. Chem. Soc. 1970, 92, 5285-5287. [CrossRef] [PubMed]


http://dx.doi.org/10.1016/j.celrep.2013.03.034
http://www.ncbi.nlm.nih.gov/pubmed/23602571
http://dx.doi.org/10.2147/IJN.S140939
http://www.ncbi.nlm.nih.gov/pubmed/28848350
http://dx.doi.org/10.1128/JVI.78.22.12665-12667.2004
http://www.ncbi.nlm.nih.gov/pubmed/15507653
http://dx.doi.org/10.1016/j.antiviral.2012.09.013
http://www.ncbi.nlm.nih.gov/pubmed/23022351
http://dx.doi.org/10.1016/j.antiviral.2011.08.010
http://www.ncbi.nlm.nih.gov/pubmed/21867732
http://dx.doi.org/10.1128/JVI.01756-15
http://www.ncbi.nlm.nih.gov/pubmed/26468531
http://dx.doi.org/10.1086/507552
http://www.ncbi.nlm.nih.gov/pubmed/17163384
http://dx.doi.org/10.1128/mBio.00396-13
http://www.ncbi.nlm.nih.gov/pubmed/23860768
http://dx.doi.org/10.1021/jf203494t
http://www.ncbi.nlm.nih.gov/pubmed/22047208
http://dx.doi.org/10.1016/S0308-8146(01)00255-2
http://dx.doi.org/10.1021/ja00720a085
http://www.ncbi.nlm.nih.gov/pubmed/5432672

Mar. Drugs 2018, 16, 377 13 of 14

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Wang, G.T.; Chen, Y.; Wang, S.; Gentles, R.; Sowin, T.; Kati, W.; Muchmore, S.; Giranda, V.; Stewart, K.;
Sham, H.; et al. Design, synthesis, and structural analysis of influenza neuraminidase inhibitors containing
pyrrolidine cores. J. Med. Chem. 2001, 44, 1192-1201. [CrossRef] [PubMed]

Hanessian, S.; Bayrakdarian, M.; Luo, X. Total synthesis of A-315675: A potent inhibitor of influenza
neuraminidase. . Am. Chem. Soc. 2002, 124, 4716-4721. [CrossRef] [PubMed]

Himaya, SW.A.; Ngo, D.H.; Ryu, B.M.; Kim, S.K. An active peptide purified from gastrointestinal enzyme
hydrolysate of Pacific cod skin gelatin attenuates angiotensin-1 converting enzyme (ACE) activity and
cellular oxidative stress. Food Chem. 2012, 132, 1872-1882. [CrossRef]

Ngo, D.H.; Vo, T.S.; Ryu, B.M.; Kim, S.K. Angiotensin-I-converting enzyme (ACE) inhibitory peptides from
Pacific cod skin gelatin using ultrafiltration membranes. Process Biochem. 2016, 51, 1622-1628. [CrossRef]
Madrahimov, A.; Helikar, T.; Kowal, B.; Lu, G.; Rogers, J. Dynamics of influenza virus and human host
interactions during infection and replication cycle. Bull. Math. Biol. 2013, 75, 988-1011. [CrossRef] [PubMed]
Lin, Z.; Li, Y,; Guo, M,; Xu, T.; Wang, C.; Zhao, M.; Wang, H.; Chen, T.; Zhu, B. The inhibition of HIN1
influenza virus-induced apoptosis by silver nanoparticles functionalized with zanamivir. RSC Adv. 2017, 7,
742-750. [CrossRef]

Lauster, D.; Glanz, M.; Bardua, M.; Ludwig, K.; Hellmund, M.; Hoffmann, U.; Hamann, A.; Bottcher, C;
Haag, R.; Hackenberger, C.PR.; et al. Multivalent peptide-nanoparticle conjugates for influenza-virus
inhibition. Angew. Chem. Int. Ed. 2017, 56, 5931-5936. [CrossRef] [PubMed]

Xiao, S.; Si, L.; Tian, Z.; Jiao, P.; Fan, Z.; Meng, K.; Zhou, X.; Wang, H.; Xu, R.; Han, X,; et al. Pentacyclic
triterpenes grafted on CD cores to interfere with influenza virus entry: A dramatic multivalent effect.
Biomaterials 2016, 78, 74-85. [CrossRef] [PubMed]

Li, J; Liu, Z.; Zhao, Y.; Zhu, X.; Yu, R.; Dong, S.; Wu, H. Novel natural angiotensin converting enzyme
(ACE)-inhibitory peptides derived from sea cucumber-modified hydrolysates by adding exogenous proline
and a study of their structure-activity relationship. Mar. Drugs 2018, 16, 271. [CrossRef] [PubMed]

Irungu, J.; Go, E.P;; Zhang, Y.; Dalpathado, D.S.; Liao, H.X.; Haynes, B.F; Desaire, H. Comparison of
HPLC/ESI-FTICR MS versus MALDI-TOF/TOF MS for glycopeptide analysis of a highly glycosylated HIV
envelope glycoprotein. J. Am. Soc. Mass Spectr. 2008, 19, 1209-1220. [CrossRef] [PubMed]

Sangsawad, P; Roytrakul, S.; Choowongkomon, K.; Kitts, D.D.; Chen, X.M.; Meng, G.; Lichan, E,;
Yongsawatdigul, J. Transepithelial transport across Caco-2 cell monolayers of angiotensin converting enzyme
(ACE) inhibitory peptides derived from simulated in vitro gastrointestinal digestion of cooked chicken
muscles. Food Chem. 2018, 251, 77-85. [CrossRef] [PubMed]

Sun, H.; Li, T.J.; Zhao, X.H. Ace inhibition and enzymatic resistance in vitro of a casein hydrolysate subjected
to plastein reaction in the presence of extrinsic proline and ethanol- or methanol-water fractionation. Int. J.
Food Prop. 2014, 17, 386-398. [CrossRef]

Park, J.Y; Jeong, HJ.; Kim, YM.; Park, S.J.; Rho, M.C.; Park, K.H.; Ryu, Y.B.; Lee, W.S. Characteristic
of alkylated chalcones from Angelica keiskei on influenza virus neuraminidase inhibition. Bioorg. Med.
Chem. Lett. 2011, 21, 5602-5604. [CrossRef] [PubMed]

Nguyen, T.N.A.; Dao, T.T.; Tung, B.T.; Hwanwon, C.; Eunhee, K.; Junsoo, P.; Seongil, L.; Wonkeun, O.
Influenza A (HIN1) neuraminidase inhibitors from Vitis amurensis. Food Chem. 2011, 124, 437-443.
[CrossRef]

Jiang, H.L.; Wang, C.X.; Jiang, N.Y.; Chen, M.H.; Peng, E; Xie, Y.; Jiang, H. Neuraminidase inhibitors
produced by the marine derived Streptomyces sp. FIM090041. Chin. ]. Antibiot. 2012, 37, 265-268.

Wang, F; Ai, H.; Lei, C. In vitro anti-influenza activity of a protein-enriched fraction from larvae of the
housefly (Musca domestica). Pharm. Biol. 2013, 51, 405-410. [CrossRef] [PubMed]

Haruyama, T.; Nagata, K. Anti-influenza virus activity of Ginkgo biloba leaf extracts. ]. Nat. Med. 2013, 67,
636—642. [CrossRef] [PubMed]

Zu, M,; Yang, F.; Zhou, W,; Liu, A.; Du, G.; Zheng, L. In vitro anti-influenza virus and anti-inflammatory
activities of theaflavin derivatives. Antivir. Res. 2012, 94, 217-224. [CrossRef] [PubMed]

Ding, Y.; Cao, Z.; Cao, L.; Ding, G.; Wang, Z.; Xiao, W. Antiviral activity of chlorogenic acid against influenza
A (HIN1/H3N2) virus and its inhibition of neuraminidase. Sci. Rep. 2017, 7, 45723. [CrossRef] [PubMed]
Wang, L.B.; Chen, Q.Y.; Wu, X.M.; Che, Y.L.; Wang, C.Y.; Chen, R.J.; Zhou, L.J. Isolation of a reassortant HIN2
swine Flu strain of type “Swine-Human-Avian” and its genetic variability analysis. BioMed Res. Int. 2018,
2018. [CrossRef] [PubMed]


http://dx.doi.org/10.1021/jm000468c
http://www.ncbi.nlm.nih.gov/pubmed/11312919
http://dx.doi.org/10.1021/ja0126226
http://www.ncbi.nlm.nih.gov/pubmed/11971721
http://dx.doi.org/10.1016/j.foodchem.2011.12.020
http://dx.doi.org/10.1016/j.procbio.2016.07.006
http://dx.doi.org/10.1007/s11538-012-9777-2
http://www.ncbi.nlm.nih.gov/pubmed/23081726
http://dx.doi.org/10.1039/C6RA25010F
http://dx.doi.org/10.1002/anie.201702005
http://www.ncbi.nlm.nih.gov/pubmed/28444849
http://dx.doi.org/10.1016/j.biomaterials.2015.11.034
http://www.ncbi.nlm.nih.gov/pubmed/26686050
http://dx.doi.org/10.3390/md16080271
http://www.ncbi.nlm.nih.gov/pubmed/30081563
http://dx.doi.org/10.1016/j.jasms.2008.05.010
http://www.ncbi.nlm.nih.gov/pubmed/18565761
http://dx.doi.org/10.1016/j.foodchem.2018.01.047
http://www.ncbi.nlm.nih.gov/pubmed/29426427
http://dx.doi.org/10.1080/10942912.2011.642048
http://dx.doi.org/10.1016/j.bmcl.2011.06.130
http://www.ncbi.nlm.nih.gov/pubmed/21824777
http://dx.doi.org/10.1016/j.foodchem.2010.06.049
http://dx.doi.org/10.3109/13880209.2012.723724
http://www.ncbi.nlm.nih.gov/pubmed/23134203
http://dx.doi.org/10.1007/s11418-012-0725-0
http://www.ncbi.nlm.nih.gov/pubmed/23179317
http://dx.doi.org/10.1016/j.antiviral.2012.04.001
http://www.ncbi.nlm.nih.gov/pubmed/22521753
http://dx.doi.org/10.1038/srep45723
http://www.ncbi.nlm.nih.gov/pubmed/28393840
http://dx.doi.org/10.1155/2018/1096079
http://www.ncbi.nlm.nih.gov/pubmed/30003086

Mar. Drugs 2018, 16, 377 14 of 14

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

Kuba, M,; Tanaka, K.; Tawata, S.; Takeda, Y.; Yasuda, M. Angiotensin I-converting enzyme inhibitory peptides
isolated from tofuyo fermented soybean food. Biosci. Biotechnol. Biochem. 2003, 67, 1278-1283. [CrossRef]
[PubMed]

Zhao, H.Y,; Liang, C.C.; Miao, J.L.; Li, G.Y. Preparation and composition analysis of cod skin collagen protein.
Chin. J. Mar. Drugs 2005, 24, 30-32.

Cao, H.P; Tao, PZ.; Du, G.H. Establishment and application of high throughput screening model for
influenza virus neuraminidase inhibitors in vitro. Acta Pharm. Sin. 2002, 37, 930-933.

Jag, R.; Ramos, M.; Recio, I. Angiotensin converting enzyme-inhibitory activity of peptides isolated from
Manchego cheese. Stability under simulated gastrointestinal digestion. Int. Dairy . 2004, 14, 1075-1080.
Olsson, M.H.M.; Sendergaard, C.R.; Rostkowski, M.; Jensen, ].H. PROPKA3: Consistent treatment of internal
and surface residues in empirical pK, predictions. J. Chem. Theory Comput. 2011, 7, 525-537. [CrossRef]
[PubMed]

Hornak, V.; Abel, R.; Okur, A.; Strockbine, B.; Roitberg, A.; Simmerling, C. Comparison of multiple
AMBER force fields and development of improved protein backbone parameters. Proteins 2010, 65, 712-725.
[CrossRef] [PubMed]

Tabassum, N.; Tae, H.S; Jia, X.; Kaas, Q.; Jiang, T.; Adams, D.J.; Yu, R. Role of Cys I-Cys III disulfide bond on
the structure and activity of a-conotoxins at human neuronal nicotinic acetylcholine receptors. ACS Omega
2017, 2, 4621-4631. [CrossRef] [PubMed]

Miyamoto, S.; Kollman, P.A. Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid
water models. |. Comp. Chem. 1992, 13, 952-962. [CrossRef]

Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An N-log(N) method for Ewald sums in large
systems. J. Chem. Phys. 1993, 98, 10089-10092. [CrossRef]

Humphrey, W.E,; Dalke, A.; Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 1996, 14, 33-38.
[CrossRef]

Xu, X.; Zhu, X.; Dwek, R.A.; Stevens, J.; Wilson, I.A. Structural characterization of the 1918 influenza virus
HIN1 neuraminidase. J. Virol. 2008, 82, 10493-10501. [CrossRef] [PubMed]

Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F; Belew, R.K.; Goodsell, D.S.; Olson, A.]. AutoDock4
and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2010, 30,
2785-2791. [CrossRef] [PubMed]

Talarico, L.B.; Damonte, E.B. Interference in dengue virus adsorption and uncoating by carrageenans. Virology
2007, 363, 473-485. [CrossRef] [PubMed]

Wang, W.; Zhang, P.; Yu, G.L,; Li, C.X,; Hao, C.; Qi, X.; Zhang, L.J.; Guan, H.S. Preparation and anti-influenza
A virus activity of k-carrageenan oligosaccharide and its sulphated derivatives. Food Chem. 2012, 133,
880-888. [CrossRef]

Sriwilaijaroen, N.; Kadowaki, A.; Onishi, Y.; Gato, N.; Ujike, M.; Odagiri, T.; Tashiro, M.; Suzuki, Y.
Mumefural and related HMF derivatives from Japanese apricot fruit juice concentrate show multiple
inhibitory effects on pandemic influenza A (HIN1) virus. Food Chem. 2011, 127, 1-9. [CrossRef]
Sangsawad, P; Roytrakul, S.; Yongsawatdigul, ]. Angiotensin converting enzyme (ACE) inhibitory peptides
derived from the simulated in vitro gastrointestinal digestion of cooked chicken breast. J. Funct. Foods 2017,
29, 77-83. [CrossRef]

® © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.1271/bbb.67.1278
http://www.ncbi.nlm.nih.gov/pubmed/12843654
http://dx.doi.org/10.1021/ct100578z
http://www.ncbi.nlm.nih.gov/pubmed/26596171
http://dx.doi.org/10.1002/prot.21123
http://www.ncbi.nlm.nih.gov/pubmed/16981200
http://dx.doi.org/10.1021/acsomega.7b00639
http://www.ncbi.nlm.nih.gov/pubmed/30023726
http://dx.doi.org/10.1002/jcc.540130805
http://dx.doi.org/10.1063/1.464397
http://dx.doi.org/10.1016/0263-7855(96)00018-5
http://dx.doi.org/10.1128/JVI.00959-08
http://www.ncbi.nlm.nih.gov/pubmed/18715929
http://dx.doi.org/10.1002/jcc.21256
http://www.ncbi.nlm.nih.gov/pubmed/19399780
http://dx.doi.org/10.1016/j.virol.2007.01.043
http://www.ncbi.nlm.nih.gov/pubmed/17337028
http://dx.doi.org/10.1016/j.foodchem.2012.01.108
http://dx.doi.org/10.1016/j.foodchem.2010.12.031
http://dx.doi.org/10.1016/j.jff.2016.12.005
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results and Discussion 
	Isolation and Purification of Neuraminidase (NA)-Inhibitory Peptide 
	Identification of the NA-Inhibitory Peptide 
	Mode of Action and Molecular Docking of PGEKGPSGEAGTAGPPGTPGPQGL 
	Cytotoxicity and Antiviral Activity of Peptide PGEKGPSGEAGTAGPPGTPGPQGL on Madin–Darby Canine Kidney (MDCK) Cells 
	Inhibitory Effects of Peptide PGEKGPSGEAGTAGPPGTPGPQGL on Different Stages of Viral Replication 
	Hemagglutination (HA) Assay 
	Simulated Digestion Test on NA-Inhibitory Peptide 

	Materials and Methods 
	Reagents 
	Cells and Viruses 
	Protein Extraction of Cod Skins 
	Preparation of Cod Skin Protein Hydrolysates 
	Purification of NA-Inhibitory Peptide 
	NA-Inhibitory Activity Assay 
	Amino Acid Sequence Analysis 
	NA Inhibition Mode 
	Molecular Dynamics Simulation 
	Docking 
	Cytotoxicity Test by MTT Assay 
	Cytopathic Effect (CPE) Reduction Assay 
	Acting Mode of Inhibitory Peptide 
	HA Assay 
	Simulated Digestion Assay 
	Statistical Analysis 

	Conclusions 
	References

