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Abstract:  

With more than 5 million fatalities and close to 300 million reported cases, COVID-19 is the 

first documented pandemic due to a coronavirus that continues to be a major health challenge. 

Despite being rapid, uncontrollable, and highly infectious in its spread, it also created incentives 

for technology development and redefined public health needs and research agendas to fast-track 

innovations to be translated. Breakthroughs in computational biology peaked during the pandemic 

with renewed attention to making all cutting-edge technology deliver agents to combat the disease. 

The demand to develop effective treatments yielded surprising collaborations from previously 

segregated fields of science and technology. The long-standing pharmaceutical industry's aversion 

to repurposing existing drugs due to a lack of exponential financial gain was overrun by the health 

crisis and pressures created by front-line researchers and providers. Effective vaccine development 

even at an unprecedented pace took more than a year to develop and commence trials. Now the 

emergence of variants and waning protections during the booster shots is resulting in breakthrough 

infections that continue to strain health care systems. As of now, every protein of SARS-CoV-2 

has been structurally characterized and related host pathways have been extensively mapped out. 

The research community has addressed the druggability of a multitude of possible targets. This 

has been made possible due to existing technology for virtual computer-assisted drug development 

as well as new tools and technologies such as artificial intelligence to deliver new leads. Here in 

this article, we are discussing advances in the drug discovery field related to target-based drug 

discovery and exploring the implications of known target-specific agents on COVID-19 

therapeutic management. The current scenario calls for more personalized medicine efforts and 

stratifying patient populations early on for their need for different combinations of prognosis-

specific therapeutics. We intend to highlight target hotspots and their potential agents, with the 

ultimate goal of using rational design of new therapeutics to not only end this pandemic but also 

uncover a generalizable platform for use in future pandemics.  

 

Key words: SARS-CoV-2, COVID-19, Drug targeting, Rational improvement, Artificial 

Intelligence, Target-based drug discovery, Mathematical modeling 
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Introduction 

Since the beginning of the COVID-19 pandemic, which is caused by SARS-CoV-2, there has 

been an impending question ‘what can be the standard course of therapy, and which agents need 

to be trialed. The first year of the pandemic followed Murphy’s Law (Bloch, 2003) with the 

ensuing chaos causing severe mortality rates due to a lack of population immunity and the use of 

ineffective interventions. The rapid global spread of the disease overwhelmed medical care 

systems due to exponential regional surges. As of July 4th, 2022, the pandemic has claimed 6.35 

million lives worldwide and caused over 0.5 billion cases of infection (“WHO Coronavirus 

Disease (COVID-19) Dashboard,” n.d.). The USA has been the worst hit with more than a million 

deaths out of 87.5 million cases (Dong et al., 2020; Ruhm, 2022). The surge in cases is often at an 

intensity that its severity is made worse by a shortage of medical resources. This has stymied trials 

conducted for several agents (Robinson et al., 2022). Many promising initial reports of therapeutic 

approaches became proven failures, and yet they often were needlessly trialed repeatedly by 

different groups. Hampering effective therapeutic development, the rush to trials often fell short 

in the number of patients recruited. This under empowerment and the varying degree of symptom 

sets leads to prognosis and therapeutic response variability which makes it difficult to stratify 

patient populations. This was further exacerbated by the changing pathophysiology caused by 

newer variants, which combined with the evolving self-medication landscape, resulted in 

inconsistent trial data for some agents and ultimately unreliable outcome results (Watson, 2022). 

Prohibitive costs of newer drugs, as well as antibody therapies, have generated worldwide interest 

in trying a variety of agents to reduce the severity of COVID-19 infection. For instance, 

preliminary evidence suggested that hydroxychloroquine (HQ) therapy can reduce viral load 

(Gautret et al., 2020). However, a recent meta-analysis of multiple trial data has now concluded 
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that although HQ therapy is safe at the trial doses used, it remains ineffective in reducing mortality 

and severity of disease (T. Gupta et al., 2022). Conversely, other trials have shown more promising 

results, such as the use of Oseltamivir (Theraflu), which statistically demonstrated to reduce 

mortality in COVID-19 patients (Zendehdel et al., 2022). Additionally, various comorbidities like 

old age, diabetes, obesity, hypertension, and the immunocompromised state contribute to COVID-

19 mortality, their associations are still not enough to stratify patients and take universal 

prophylactic measures (Gentile and Schiano Moriello, 2022) and as a result, new therapeutic 

interventions remain in high demand.  

Computational structural biology is a interdisciplinary field performed on computer or via 

computer simulation that encompasses the theory and application of approaches to model, predict, 

and explain biological function at the molecular level, well-known as in silico experiment. Proteins 

are flexible molecules that undergo conformational changes (such as folding and unfolding or 

domain motions) as part of their interactions with other biopolymers as partners or drug molecules. 

Conformational changes of the proteins might reflect a closed, open, or intermediate states and 

this dynamical aspect plays a critical role in drug discovery. Nowadays, molecular dynamics 

makes it possible to simulate these conformational changes with a timescale ranging from 

nanoseconds to microseconds of time. Molecular dynamics simulations is a  computer (in silico) 

technique that makes it possible to predict how a system will evolve over time and, consequently, 

to predict the movement of the molecules in the system. In silico methods (molecular modeling, 

molecular docking or screening, molecular dynamics, etc) could be used to efficiently identify and 

design drug candidates, to study their interactions with their targets. The Nobel Prize in Chemistry 

2013 has been awarded to Martin Karplus, Michael Levitt and Arieh Warshel for development of 
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multiscale models of complex chemical systems as computational  techniques for structural 

biology (https://www.nobelprize.org). 

In silico drug discovery has proved to be instrumental in suggesting numerous agents and many 

of the predicted agents have been used to manage COVID-19. It has been a long-standing principle 

that the fixed 3D structure of protein dictated by amino acid composition is the basis for assigning 

function. There have been exceptions to this principle in multiple instances when proteins have 

multiple structures owing to disordered regions (Anjum et al., 2022; Prateek Kumar et al., 2022a; 

J. Zhang et al., 2022). This is more evident in RNA viral proteomes due to a higher rate of 

mutations and a protein often has more than one function. For instance, PLpro is a protease and a 

deubiquitinase and ion channel 3a, all of which are important for viral envelope formation, and 

their functional activities are associated with inflammasome formation in infected cells (Lewis et 

al., 2022; J. Zhang et al., 2022). Such redundancy, size limitations, and genetic instabilities call 

for highly flexible proteins which are generally seen in the experimentally solved crystal structure, 

their variabilities in viral proteins in the form of multiple ‘states’ and confirmations (Fornasier et 

al., 2022; Siragusa et al., 2022). As starting crystal structure is the bottleneck of any virtual 

screening effort, this variability led to numerous ‘false’ hits that had no agreement between binding 

prediction and biological activity (Martin et al., 2020). Like all the other fields, the field of 

computational biology methods also had multiple breakthroughs which now have more 

applications than just COVID-19 drug discovery research. Additionally, we now have AI 

predictions for the shape of nearly every known protein, which can be structurally complementary 

to drug discovery (Callaway, 2022). Many laboratories have been pioneering novel technologies 

in the machine learning, AI, and conformational dynamics space (Caulfield and Medina-Franco, 
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2011; Coban et al., 2021b, 2021a, 2020; Hines et al., 2019b, 2019a; Kayode et al., 2016; 

Puschmann et al., 2017; Savytskyi et al., 2013). 

Recently, the anti-cancer drug Pralatrexate was discovered to have in vitro EC50 values of 

0.008μM. While being a strong immunosuppressant it’s usability in COVID-19 is highly debatable 

the pipeline that delivered this compound comprised of deep learning models and force field 

dynamics simulations (Zhang et al., 2020). With newer and faster methods made available there 

are multiple methods producing a similar pipeline (Rapicavoli, Alaimo, Ferro, & Pulvirenti, 2022; 

Zhang et al., 2022). Free energy perturbation calculations enabled Zhang et.al in 2022 to improve 

main protease Triarylpyridinone inhibitors to have EC50 values as low as 0.080 μM (Ramos, Zeze, 

Velut, & Jan, 1987). 

In this review, we try to boil down protein-inhibitor relationships that have been exploited as 

anti-COVID-19 therapeutics or have a high validated potential for the same. Such information 

should be used to steer the computational learning approaches through AI to understand why these 

work and others don’t despite having positive classic predicted interactions. Additionally, we 

provide a comprehensive analysis of existing, approved, and experimental therapeutics with their 

mechanism of action against either the viral or host protein targets.  

Drugging COVID-19: what constitutes a “good” drug? 

There have been some controversial agents that have undergone trials against SARS-CoV-2 

due to some in vitro reports or proposed mechanisms of action (Ivanova et al., 2022). Many of 

these agents did not have a consistent effect and had surprising side effects such as QT 

prolongations (abnormal heart rhythms and sudden cardiac arrest) e.g Chloroquine and 

Hydroxychloroquine (Deng et al., 2022). While others were not fully effective at tolerable doses 
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e.g. Ivermectin (Hariyanto et al., 2022), some were mildly effective even though they had no 

interaction with SARS-CoV-2 targets, e.g. oseltamivir (Zendehdel et al., 2022). Some were highly 

dangerous, especially with the misinformation inspired panicked patient self-medications e.g. 

Chlorine Dioxide (Chejfec-Ciociano et al., 2022). Since the beginning of the pandemic, Ibuprofen 

was contraindicated as it is known to increase ACE2 receptor expression in the cells exacerbating 

viral infectiousness. However, there was widespread use of nebulized ibuprofen (NaIHS) as a 

wonder cure and reported to be highly effective, had negative correlations and so-called positive 

effects were probably due to concomitant aggressive corticosteroid therapy (Calonico et al., 2022). 

As a result, there is a need to understand both classical drug targets and other modalities that may 

be therapeutic. 

 

Techniques for elucidation of drug-target interaction and efficacy 

One of the foundations of drug design is to utilize a molecular model of druggable targets. 

Today’s drug discovery labs can draw from a multitude of techniques for determining experimental 

structures, yet the different techniques have their strengths and weaknesses. For example, 

membrane proteins are notoriously difficult to crystallize, so the gold standard x-ray 

crystallography is generally not successful. Typically, cryo-EM is utilized for large 

proteins/complexes, such as membrane proteins. The caveat here is that cryo-EM is in general a 

lower resolution technique and may bias conformations because of the air-water interface. A 

relatively new structural technique is x-ray free-electron laser (XFEL), coupled with lipid-cubic 

phase crystallization (Ono et al., 2022). Essentially, this consists of growing small crystals in a 

lipidic environment that is more amenable for membrane proteins, which are then injected at 
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random orientations and illuminated with extremely brilliant x-ray photons to generate diffraction 

patterns. This has been successfully applied to a variety of membrane proteins recently, though 

not as yet any COVID-19-related target; however, this technique has potential application in the 

field as shown with other viruses (Townsend et al., 2021). Proteases and kinase inhibitors have 

traditionally held roles as drugs of choice for inhibiting virion production (Bain et al., 2003; Mahdi 

et al., 2020; Pearlman, 2012; “Protein Kinase Inhibitors,” 2012; Zhou et al., 2015), however, in 

recent times the shift to virus centric proteins has made progress (Chakraborty et al., 2021; Dai et 

al., 2020; Narayanan et al., 2022; Prajapat et al., 2020; Y.-X. Zheng et al., 2021). Added to these 

new targets has been the implementation of new computational tools to more quickly address the 

urgency of the need (Callaway, 2022; Coban et al., 2021b). 

 

Enter the era of the machine: learning to use algorithm-guided drug design 

The complex multivariate approaches to drug modeling on a molecular structure are well suited to the 

application of machine learning (ML) techniques. Generative chemistry is at the forefront of new 

medicinal chemistry design workflows, where the implementation of layered data with context to 

various data sources allows us to integrate complex datasets into the framework of a deep learning 

or machine-based intelligence that can find associations otherwise not possible. Both ML and 

artificial intelligence (AI) are being applied to many areas of biological research. With respect to 

COVID-19, ML has been used to help screen drug targets, druggable sites on the targets, drugs, 

and drug-target interactions (El-Behery et al., 2021). This has led to the repurposing of drugs that 

are already FDA-approved for COVID-19 therapy, the discovery of novel molecules as potential 

drugs, and the identification of cryptic binding pockets introduced by virus/host protein-protein 

interaction (Dang and Song, 2022). In addition, ML has been used to mine bioinformatics data and 
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analyze biological pathways to identify novel pathways that can lead to a greater understanding of 

the disease mechanism, as well as detect additional points of intervention (Auwul et al., 2021). AI 

has assisted in the analysis of samples to help make rapid diagnoses with a less expensive assay 

that is highly sensitive, selective, and accurate (Jaroenram et al., 2022; Lai et al., 2022). The 

method works by employing two pH-dependent dyes and a reverse transcription loop-mediated 

isothermal amplification (RT-LAMP) assay; the colorimetric readout data was used to train an 

algorithm for classification i.e. diagnosis of positive or negative infection status. Other uses of ML 

related to COVID-19 are the large-scale screening for anti-COVID-19 biomolecules in foods 

(Laponogov et al., 2021). The study used a similar approach to standard drug screening but started 

with a database of food-based bioactive molecules; they identified 52 molecules predicted to 

disrupt the COVID-19-host interactome. Engaging in multiple treatment paradigms is beneficial 

in that it increases the likelihood of therapeutic benefit to the patient, decreases the chance of the 

virus developing resistance, and can reduce dosing to limit adverse side effects. Interruption of 

COVID-19 progression with multi-drug therapy looking for synergetic effect with computational 

biology for high-throughput screening has been successful (Coban et al., 2021b), which has the 

capability of using mixed algorithms to examine the impact of structural changes. As a result, the 

application of ML and AI techniques is expected to yield rapid progress in the discovery of new 

candidates for antiviral use. 

In silico deduced target-specific leads that reached clinical trials 

Favipiravir is a purine analog that is a potent RNA-dependent RNA polymerase (RdRp) 

inhibitor initially selected on basis of similarities with known target EBOLA RdRp (da Silva et 

al., 2022; Mashayekhi-Sardoo and Hosseinjani, 2022). Favipiravir showed a 62.8% viral clearance 

in 4 days compared to untreated (Ivashchenko et al., 2021). While favipiravir has little effect on 

Jo
urn

al 
Pre-

pro
of



10 
 

 

nonhospitalized patients, its use among hospitalized patients has led to faster viral clearance and 

better radiological imaging endpoints in multiple trials (Hung et al., 2022). With upcoming reports 

of long-term lung damage in both hospitalized and nonhospitalized patients (C. Wang et al., 2022; 

J. Yu et al., 2022), there is a need for a retrospective follow-up trial needed to assess favipiravir’s 

long-term benefits. Icatibant is a known bradykinin type 2 receptor antagonist that was 

computationally predicted to target the SARS-CoV-2 main protease (Liu and Wang, 2020). 

However, the clinical trial (NCT04978051) results were inconclusive (Malchair et al., 2022) and 

there is no target-specific inhibition data available. Lopinavir & Ritonavir are other predicted 

inhibitors of 3CLpro (Reina and Iglesias, 2022), however, numerous clinical trials have failed to 

establish their clinical usefulness as anti-COVID-19 medications (Cao et al., 2020; Sheahan et al., 

2020). PF-07321332 (nirmatrelvir) a rationally improved second-generation frontrunning drug 

from Pfizer is in the Phase3 clinical trial, It targets 3CLpro and thereby inhibits viral replication 

(Vandyck and Deval, 2021). Ciclosporin/Cyclosporine immunomodulatory drug is a calcineurin 

inhibitor that was discovered through computational host interactome modeling for the SARS virus 

(SARS-CoV) (Pfefferle et al., 2011) and was predicted to have a positive effect on COVID-19 

through immunosuppression (Ellinger et al., 2021). Further, it was found to have antiviral activity 

in vitro (Dittmar et al., 2021). Later HR (hazard ratio) improvement value of 2.15 was observed in 

a combination trial with a low dose of steroid (Galvez-Romero et al., 2021) and was an efficacious 

treatment option in the COQUIMA cohort (Schuurmans and Hage, 2021) and multiple variants 

(Fenizia et al., 2022). Another 3CLpro inhibitor, found through in silico screenings was 

Cepharanthine (CEP), a small phyto-alkaloid obtained from the Stephania cepharantha. CEP had 

IC50 of 1.90 µm (Hijikata et al., 2022) against the Wuhan strain (wild type) and consistent activity 

against three other VOCs (Prabhakaran Kumar et al., 2022). It’s a promising anti-COVID-19 
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candidate in animal testing offering significant protection from lung fibrosis in bleomycin (BLM)-

challenged rats (Li et al., 2022). 

Cytotherapy 

Cellular therapies have been proven to protect immunosuppressed patients (>20% mortality 

rate) by providing anti-viral cellular immunity and immune modulation for vulnerable patient 

populations (Farhangnia et al., 2022; Verma et al., 2022). Different trials with SARS-CoV-2 

specific T-cell trials (allogeneic CSTs familial or HLA matched), Natural killer (NK) cell (e.g. 

FT516 cells), Tregs (T regulatory cell), and Mesenchymal Stem Cell Infusion or Stem Cell 

Products have shown therapeutic potential comparable to available antiviral therapies (Conway et 

al., 2022). With a longer lifespan of T-cells, there is longer-lasting protection than humoral 

immunity. 

Biological activities of SARS-CoV-2 components as potential therapeutic targets  

A wide variety of targets are addressable for attenuating the infection progression of SARS-

CoV-2 as depicted in Figure 1. As previously mentioned, therapeutics active on some of these 

targets are now in clinical trials. Yet many more Non-Structural Protein (NSP) targets have been 

identified and are in various stages of development (Table 1). In this review, we will address both 

classical drug targets (enzymatic vs non-enzymatic) and new modalities for possible use as COVID 

therapies. 
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Figure 1. Schematic depiction of different SARS-CoV-2 proteome (ORF map) coded targets(3D ribbons or cartoons) 

involved in different steps of viral replication (labeled blue) and various example inhibitors (labeled red). The infection cycle 

starts when the SARS-CoV-2 Spike protein binds to a Human receptor followed by either viral-host cell fusion (1a) or endocytosis 

(1b). Fusion directly allows the viral RNA to enter the host cell (2), The large viral script is known to encode 29 viral proteins (3), 

A viral-specific translation yields two replicase polyproteins, pp1a and pp1ab, and many small ORFs(4). The two major 

polyproteins are processed by two proteases, PLpro and 3CLpro(5), generating 16 NSPs. ExoN possesses a viral exoribonuclease 

activity (9). Viral Helicase plays a critical role in viral replication by unwinding dsRNA formed during replication as well as 

tertiary structures of genomic RNA. (7). The enzyme 2′-O-MT methylates the viral 2′ end which is important for selective translation 

and protection from host RNA degradation (8). RdRP along with different NSPs is involved in viral-host cell replication through 

catalyzing template synthesis of polynucleotides in the 5′ to 3′ direction (7). NendoU is an Mn2+ dependent hexamer (dimer of 

trimer) enzyme responsible for protein interference with the innate immune system. For viral assembly of structural proteins ( S, 

E, and M) in the endoplasmic reticulum, along with the N protein is combined with the (+) gRNA to become a compact helical 

nucleoprotein complex(10). They assemble to form a virus particle in the endoplasmic reticulum-Golgi apparatus compartment 
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and are then excreted from the cell through budding mediated by the fusion of smooth-walled vesicles to the plasma membrane 

(11–12). 

  

Table 1. In vitro validated anti-SARS-CoV-2 agents reported with a known target 

Agent name & 

SARS-CoV-2 

target 

 Kind of agent  Assay/ 

validation 

with SARS-

CoV-2 

IC50 

(μM) 

If 

available 

Previously known 

target? 

Mechanism 

of action of 

approved 

use 

Reference  

Darunavir 

NSP 

enzymatic -

Main 

peptidase 

Protease 

inhibitors 

(synthetic 

compound) 

It was 

done using the 

High-

performance 

liquid 

chromatograph

y (HPLC) 

method.  

5.55 Target decreasing 

the risk of HIV 

transmission to other 

people.  

Works 

by 

decreasing 

HIV amount 

in the blood. 

(Costa

nzo et al., 

2020) 

Teicoplani

n 

 

NSP 

enzymatic -

Main 

peptidase 

Glycopepti

de antibiotic 

It was 

done using the 

ultra-high 

performance 

liquid 

chromatograph

y–high-

resolution mass 

spectrometry 

method.  

8.78  Target various 

infections caused by 

gram-positive bacteria. 

It 

inhibits 

peptidoglyca

n 

polymerizati

on, leading to 

the inhibition 

of bacterial 

cell wall 

synthesis and 

cell death. 

(F. Yu 

et al., 2022) Jo
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Nelfinavir 

NSP 

enzymatic -

Main 

peptidase 

A viral 

protease 

inhibitor 

Done 

using in vitro 

and in vivo 

genetic 

toxicology 

assays.  

37 Targets HIV in 

adults and children.  

Works 

by 

preventing 

HIV virion 

from fully 

maturing and 

becoming 

infective. 

(Foo 

et al., 2021; 

Ohashi et 

al., 2021) 

Bortezomi

b 

NSP 

enzymatic -

Main 

peptidase 

A 

proteasome 

inhibitor 

Done 

using HPLC-

UV Method 

 

1.39  

 

Targets multiple 

myeloma, or mantle 

cell lymphoma in 

patients. 

Works 

by 

preventing 

uncontrolled 

degradation 

of IκB, an 

inhibitory 

protein of 

NF-κB.  

(Shen 

et al., 2022) 

α-

ketoamide 

inhibitor 

compound 13b 

 

NSP 

enzymatic -

Main 

peptidase 

Protease 

inhibitor  

It was 

done using MD 

simulation.  

0.67 

± 0.18  

Targets M pro of 

α-and β-coronaviruses 

in addition to 3C 

proteases of 

enterovirus.  

Works 

by inhibiting 

the 

replication of 

SARS-CoV-

2 in human 

Calu3 lung 

cells.  

(Zhan

g et al., 

2020) Jo
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al 
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Telaprevir 

 

NSP enzy 

matic -

Main 

peptidase 

An 

NS3/4A viral 

protease 

inhibitor 

It was 

done using in-

vitro analysis.  

11.54  Targets chronic 

Hepatitis C Virus 

infections.  

Works 

by inhibiting 

viral HCV 

genotype 1 

replication.  

(Mah

moud et al., 

2021). 

Boceprevir 

NSP 

enzymatic -

Main 

peptidase 

Protease 

inhibitor.  

It was 

done through 

molecular 

docking and 

subsequent 

experimental v

alidation. 

1.95±

1.62  

(EC5

0) 

Targets chronic 

Hepatitis C, an 

infectious liver disease 

caused by infection 

with Hepatitis C Virus 

(HCV). 

Works 

by binding 

the serine 

(S139) 

residue in the 

active site 

via an (α)-

ketoamide 

functional 

group, 

inhibiting the 

proteolytic 

activity of 

the HCV 1a 

and 1b 

encoded 

enzyme.  

(Ma et 

al., 2020b) 

Ebselen 

NSP 

enzymatic -

Main 

peptidase 

Antioxida

nt drug 

 

It was 

done using in 

vitro and in 

vivo studies.  

4.67  Targets Meniere's 

Disease, Type 2 

Diabetes Mellitus, and 

Type 1 Diabetes 

Mellitus. 

Works 

by 

modulating 

metalloprotei

ns, 

enzymatic 

(Jin et 

al., 2020) 
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cofactors, 

gene 

expression, 

epigenetics, 

antioxidant 

defenses, and 

immune 

systems. 

Dactolisib 

 

NSP 

enzymatic -

Main 

peptidase 

An 

imidazoquinoli

ne derivative.  

It was 

done using in 

vitro and in 

vivo studies. 

0.225 Targets Cancer, 

Solid Tumor, Renal 

Cancer, Breast Cancer, 

and Cowden 

Syndrome, among 

others. 

Works 

by inhibiting 

PI3K kinase 

and mTOR 

kinase in the 

PI3K/AKT/

mTOR 

kinase 

signaling 

pathway, 

which may 

result in 

tumor cell 

apoptosis 

and growth 

inhibition in 

PI3K/mTOR

- 

overexpressi

ng tumor 

cells. 

(Garci

a et al., 

2021) 
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Alvocidib 

NSP 

enzymatic -

Main 

peptidase 

A 

synthetic 

flavonoid  

It was 

done using 

bioanalytical 

methods.  

 Targets cancer.  Works 

by inhibiting 

cyclin-

dependent 

kinases, 

arresting cell 

division, and 

causing 

apoptosis in 

non-small 

lung cancer 

cells.  

(Fong, 

2020) 

Methotrex

ate 

 

NSP 

enzymatic -

Main 

peptidase 

Antimetab

olites 

It was 

done using the 

HPLC-SRM-

MS plasma 

analysis.  

 

 It targets severe 

psoriasis, certain types 

of cancer including 

uterine, breast, and 

lung cancer, certain 

types of lymphoma, 

certain cancers of the 

head and neck, and 

leukemia. 

Works 

by slowing 

the growth of 

cancer cells. 

Equally, it 

decreases the 

activity of 

the immune 

systems to 

treat 

rheumatoid 

arthritis.  

(Steg

mann et al., 

2021) 

Carmofur 

 

NSP 

enzymatic -

Antineopla

stic drug or 

chemotherapeut

ic agent.  

It was 

done using In 

Vitro and in 

Vivo biological 

evaluations.  

28.2 

± 9.5  

Targets colorectal 

and breast cancer.  

Works 

by 

controlling 

cancer cell 

proliferation, 

suppressing 

(Ma et 

al., 2020a) 
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Main 

peptidase 

 N-

acylethanola

mine acid 

amidase 

(NAAA) 

activity. 

Conivapta

n 

 

NSP 

enzymatic -

Main 

peptidase 

An 

antidiuretic 

hormone 

inhibitor. 

Done 

using bio-

analytical 

HPLC-MS/MS 

method  

12.2 

± 4.20  

 

Target euvolemic 

or hypervolemic 

hyponatremia in 

hospitalized patients. 

Works 

by raising 

serum levels. 

(Yang 

et al., 2020) 

Atovaquon

e 

 

NSP 

enzymatic -

Main 

peptidase 

An 

antiprotozoal 

agent. 

It was 

done using a 

spectrophotom

etric method. 

6.78 ± 

0.73  

Targets 

Pneumocystis 

pneumonia in adults 

and teenagers.  

Works 

by stopping 

specific 

protozoa 

from causing 

pneumonia.  

(Yang 

et al., 2020) 

Vilazodon

e 

 

NSP 

enzymatic -

An 

antidepressant 

It was 

done using the 

Spectrofluorim

etric Detection 

method.  

  

belo

w 15  

Targets 

depression in adults.  

Works 

by raising the 

serotonin 

activity in 

the brain.  

(Ghas

emiyeh et 

al., 2021) 
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Main 

peptidase 

Michael 

acceptor 

inhibitor N3 

 

NSP 

enzymatic -

Main 

peptidase 

Protease 

inhibitor.  

It was 

done using 

QM/MM 

simulations. 

16.77  

(EC5

0) 

Targets SARS-

CoV-2.  

Works 

by inhibiting 

SARS-CoV-

2 3CLpro. 

(Jin et 

al., 2020) 

Raloxifene 

NSP 

enzymatic -

Main 

peptidase 

A selective 

estrogen 

receptor 

modulator.  

It was 

done using 

competitive 

binding assays.  

4.50 - 

7.99  

Targets 

osteoporosis and breast 

cancer in high-risk 

postmenopausal 

women.  

Works 

by promoting 

estrogen-like 

effects on 

lipid 

metabolism.  

(Imam

ura et al., 

2021) 

Ouabain 

 

NSP 

enzymatic -

Main 

peptidase 

A 

cardioactive 

glycoside.  

It was 

done through 

cell biological 

studies.  

0.030 

μM - 

0.075  

It targets atrial 

fibrillation and flutter, 

and heart failure.  

Works 

by inhibiting 

the Na-K-

ATPase 

membrane 

pump.  

(Farag 

et al., 2020)  

GC373 

NSP 

enzymatic -

Main 

peptidase 

Feline 

drug  

It was 

done using 

downstream 

biochemical 

assays. 

0.40 

± 0.05  

Targets SARS-

CoV-2.  

Works 

by inhibiting 

SARS-CoV-

2 M pro. 

(Vuon

g et al., 

2020) 
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GC376 

 

NSP 

enzymatic -

Main 

peptidase 

Prodrug  It was 

done using a 

fluorescence 

resonance 

energy transfer 

(FRET)–based 

cleavage assay. 

0.19 

± 0.04  

Targets SARS-

CoV-2. 

Works 

by inhibiting 

SARS-CoV-

2 M pro. 

(Vuon

g et al., 

2020) 

Imatinib 

 

NSP 

enzymatic -

Main 

peptidase 

A tyrosine 

kinase inhibitor 

It was 

done using 

UPLC-MS/MS 

assay and 

ultrafiltration 

method.  

0.17  

 

Targets 

gastrointestinal 

stromal tumors, 

leukemias, systemic 

mastocytosis, 

myelodysplastic/myel

oproliferative disease, 

dermatofibrosarcoma 

protuberans, and 

hypereosinophilic 

syndrome. 

Works 

by inhibiting 

the Bcr-Abl 

tyrosine 

kinase and 

proliferation 

of cells and 

induces 

apoptosis in 

fresh 

leukemia 

cells and 

Bcr-Abl 

positive cell 

lines.  

(Han 

et al., 2021) 

Triclabend

azole 

 

NSP 

enzymatic -

Main 

peptidase 

An 

anthelmintic 

drug.  

It was 

done using in 

Vitro and 

animal studies. 

70  Targets 

fascioliasis in livestock 

and humans.  

Works 

by reducing 

resting 

membraned 

and 

inhibiting 

tubulin 

function and 

(Gao 

et al., 2020) 
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enzyme and 

protein 

necessary for 

Fasciola 

species 

survival.  

Emedastin

e 

 

NSP 

enzymatic -

Main 

peptidase 

A selective 

H1-receptor 

antagonist.  

It was 

done using an 

in Vitro study. 

82 ± 

7  

Targets allergic 

conjunctivitis.  

Works 

by managing 

symptoms of 

allergic 

conjunctiviti

s.  

(Gao 

et al., 2020) 

Bendamus

tine 

 

NSP 

enzymatic 

An 

antineoplastic 

agent  

It was 

done using an 

in-vitro study. 

26 ± 

1  

Targets chronic 

lymphocytic leukemia 

(CLL) and indolent B-

cell non-Hodgkin 

lymphoma.  

Workin

g by causing 

intra- and 

inter-strand 

crosslinks 

between 

DNA bases 

resulting in 

cell death.  

(Gao 

et al., 2020) 

Mebendaz

ole 

 

NSP 

enzymatic -

An 

anthelmintic or 

anti-worm 

medication. 

It was 

done using a 

spectrophotom

etric method in 

the UV region. 

0.25-

1.2   

Targets infections 

caused by hookworm, 

pinworm, whipworm, 

and roundworm 

infections.  

Works 

by 

preventing 

newly 

hatched 

insect larvae 

(worms) 

(Ahme

d et al., 

2021) 
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Main 

peptidase 

from 

growing or 

multiplying 

in your body. 

Carprofen 

NSP 

enzymatic -

Main 

peptidase 

A 

nonsteroidal 

anti-

inflammatory 

drug  

It was 

done using an 

in vitro Study. 

3.97 

± 0.60% 

Targets arthritic 

symptoms in geriatric 

dogs. 

Works 

by inhibiting 

cyclooxygen

ase activity.  

(Gime

no et al., 

2020)  

Lapatinib 

 

NSP 

enzymatic -

Main 

peptidase 

An anti-

cancer drug 

It was 

done using in 

Vitro and 

animal studies.  

31.1 Targets solid 

tumors such as breast 

and lung cancer.  

Works 

by binding to 

the 

intracellular 

phosphorylat

ion domain 

to prevent 

receptor 

autophospho

rylation upon 

ligand 

binding.  

(Lau 

et al., 2021) 

Celecoxib 

 

NSP 

enzymatic -

Main 

peptidase 

A 

nonsteroidal 

anti-

inflammatory 

drug.  

It was 

done using a 

validated 

HPLC 

analytical 

method.  

13.02  Targets mild to 

moderate pain and 

symptoms of arthritis.  

Works 

by 

suppressing 

hormones 

causing 

inflammatio

n and pain.  

(Most

afa et al., 

2020) 
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Retapamul

in 

 

NSP 

enzymatic -

Main 

peptidase 

A topical 

antibiotic agent. 

It was 

done through In 

Vitro studies.  

 Targets impetigo.  Works 

by inhibiting 

the initiation 

of protein 

synthesis by 

binding to a 

specific site 

on the 50S 

subunit of 

the bacterial 

ribosome.  

 

Bafetinib 

 

NSP 

enzymatic -

Main 

peptidase 

Antineopla

stic drug  

It was 

done through a 

quantitative 

readout 

performed by 

mass 

spectrometry. 

0.79  Targets Adult 

Gliosarcoma, Adult 

Mixed Glioma, Adult 

Glioblastoma, Chronic 

Myeloid Leukemia, 

and Acute 

Lymphocytic 

Leukemia, among 

others. 

Works 

by inhibiting 

the Bcr/Abl 

fusion 

protein 

tyrosine 

kinase. 

(Meye

r et al., 

2021) 

Masitinib 

 

NSP 

enzymatic -

Main 

peptidase 

Antineopla

stic and 

immunomodula

ting agents.  

It was 

done using 

randomized, 

placebo-

controlled 

phase trial 

studies.  

 

3.8  Targets cell 

tumors in dogs.  

Works 

by inhibiting 

tyrosine-

kinase.  

(Dray

man et al., 

2021) 
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Simeprevir 

NSP 

enzymatic -

Main 

peptidase 

 

A direct-

acting antiviral 

agent 

It was 

done using 

HPLC with 

Fluorescence 

Detection.  

9.6 ± 

2.3  

Targets chronic 

hepatitis C viral 

infection in adults with 

HCV genotype 1 or 4. 

Works 

by inhibiting 

HCV 

NS3/4A 

protease.  

(Lo et 

al., 2021) 

Grazoprev

ir 

NSP 

enzymatic -

Main 

peptidase 

An 

antiviral and 

NS3/4A 

protease 

inhibitor 

It was 

done using the 

RP-HPLC 

method.  

 

 Targets hepatitis 

C infections.  

Works 

by inhibiting 

viral HCV 

replication.  

(Abidi 

et al., 2021) 

  

 

Ciluprevir 

NSP 

enzymatic -

Main 

peptidase 

An orally 

active inhibitor 

of the HCV 

NS3 protease.  

It was 

done using a 

randomized, 

multiple-dose, 

double-blind, 

placebo-

controlled pilot 

study.  

20.77 Targets hepatitis 

treatment.  

Works 

by blocking 

NS3 

protease-

dependent 

polyprotein 

processing in 

HCV 

replicon-

containing 

cells.  

(Baker 

et al., 2021) 

Narlaprevi

r 

 

NSP 

enzymatic -

An 

antiviral drug 

and protease 

and proteinase 

inhibitor.  

It was 

done using In 

Vivo and In 

Vitro studies.  

1.10 Targets chronic 

hepatitis. 

Works 

by inhibiting 

hepatitis C 

protease, 

SARS 

(Bai et 

al., 2021; 

Baker et al., 

2021) 
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Main 

peptidase 

coronavirus 

main 

proteinase, 

and 

coronavirus.  

Silibinin 

 

NSP 

enzymatic -

Main 

peptidase 

An 

antioxidant and 

antineoplastic 

agent.  

It was 

done using in 

Vitro and 

anima research 

studies.  

 Targets toxic liver 

damage and cancer.  

Works 

by altering 

cell 

proliferation, 

metastasis, 

invasion, 

apoptosis, 

and 

angiogenesis

.  

(Hamd

y et al., 

2022) 

Suramin & 

Quinacrine 

NSP 

enzymatic -

Main 

peptidase 

Protease 

inhibitor  

It was 

done using in 

Vitro studies.  

6.3 ± 

1.4  

Targets SARS-

CoV-2.  

Works 

by inhibiting 

ARS-CoV-2 

main 

protease 

(3CLpro).  

(Eberl

e et al., 

2021) 

Bisindolm

aleimide-IX 

NSP 

enzymatic -

Main 

peptidase 

An 

enzyme 

inhibitor.  

It was 

done using a 

virtual 

screening 

pipeline and in-

vitro validation 

assays.  

113.7

 ± 5.2 

Targets chronic 

lymphocytic leukemia.  

Works 

by inhibiting 

protein 

kinase C and 

inducing 

apoptosis.  

(Gupta 

et al., 

2021b) 
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NSP Enzymatic targets 

Main Peptidase  

The 3CLpro/Mpro gene is the Main Peptidase of SARS coronavirus and is responsible for ~11 

cleavage sites in viral propeptide. As a result, it is an essential target for both viral replicase as 

well as structural assembly for completing the viral cycle (Gupta et al., 2021b). This 306 amino 

acid long protease has a catalytic core with C145 and H41 and is highly conserved among variants 

to preserve essential function (Gupta et al., 2021a) but also has multiple conformation states 

making drug targeting difficult (Savytskyi and Kornelyuk, 2022). The most recent PF-07321332 

(nirmatrelvir) is a Pfizer anti-SARS-CoV-2 compound targeting 3CLpro (Reina and Iglesias, 

2022). In combination with ritonavir, a xenobiotic degradation reducing agent for PF-07321332 

(Lamb, 2022), the drug combination has shown a strong efficacy across multiple SARS-CoV-2 

variants (Ullrich et al., 2022). Additional research on combinations with other antiviral agents 

targeting different components (e.g. Monupiravir/remdesivir for RdRp) is ongoing (Table 1). 

Earlier, in silico predictions discovered a 3CLpro inhibitor, Atazanavir, that was later shown to 

block viral replication (Fintelman-Rodrigues et al., 2020) and showed positive outcomes in various 

trials (Kalantari et al., 2021). However, due to many side effects such as hepatotoxicity, Atazanavir 

failed to be a drug of choice in the long run (Mazaherpour et al., 2021). Daclatasvir is a well-

accepted HCV therapeutic and its combination with sofosbuvir is well tolerated and efficacious 

(Merat, 2020). While both Daclatasvir and sofosbuvir had anti-SARS-CoV-2 activity, the 

combination showed inconsistent results in different trials but had an overall positive effect (Chan 
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et al., 2021, p. 2). Another anti-HCV protease inhibitor Danoprevir showed some efficacy in initial 

trials (H. Chen et al., 2020) but was abandoned in Phase 4 trials (NCT04345276).  

Papain-like proteinases  

Papain-like viral protease (Plpro) is named NSP 3 and is a versatile enzyme that processes the 

viral polypeptide into functional proteins similar to 3CLpro but has Catalytic triad C111, H272, 

and D286 which is also highly conserved (Fu et al., 2021). While activating it also protects viral 

peptides being attacked by host proteasome machinery and de-ubiqutinylase Lys-linked polyUb 

chains (Lewis et al., 2022). Although a potential therapeutic target, drugs blocking Plpro have yet 

to be identified. 

RNA-dependent RNA polymerase  

Viral RNA-dependent RNA polymerase (RdRp) is identified in the SARS-CoV-2 genome as 

the NSP 12, It’s part of a large replicase complex carrying out RNA replication. This protein class 

has been a highly exploited target in several RNA viruses and the resulting inhibitors have served 

as a rich pool for many repurposable antivirals (Abolhassani et al., 2021). While all the natural 

variants in SARS-CoV-2 are highly susceptible to remdesivir (Pitts et al., 2022), studies have 

shown the possibility of mutational resistance which is contraindicated for monotherapy (Stevens 

et al., 2022). Azvudine is a 4′-Modified Nucleoside and a potent anti-HIV drug candidate (Chang, 

2022). Early trials showed Azvudine as a promising anti-COVID-19 agent with evident shortening 

of nucleic acid negative conversion (Ren et al., 2020), but it has only been regionally approved as 

an anti-HIV therapeutic in China and has not been trialed elsewhere. AT527 (RO-7496998) a.k.a. 

bemnifosbuvir is an oral purine nucleotide prodrug that has potent in vitro antiviral activity SARS-

CoV-2 (Shannon et al., 2022) and has also shown a shortening of disease tenure in early trials 

(Good et al., 2021). Clevudine a pyrimidine analog is an anti-HBV drug that underwent a trial in 
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the Korean republic but was grossly ineffective (Song et al., 2021). Sofosbuvir (PSI-7977), an 

approved anti-HCV phosphoramidite prodrug (Messina et al., 2022), is a treatment that has been 

shown to reduce mortality and improve associated clinical outcomes in patients with COVID-19 

(Hsu et al., 2022). Molnupiravir is a prodrug and it is hydrolyzed by esterases to form intermediate 

ribonucleoside N-hydroxycytidine (NHC) which is further phosphorylated intracellularly yielding 

active agent NHC triphosphate (NHC-TP) (Cox et al., 2021; Wahl et al., 2021). It is a well-

tolerated and highly effective anti-COVID-19 treatment owing to its high bioavailability (Table.2) 

(Caraco et al., 2022; Jayk Bernal et al., 2022; Whitley, 2022). 

Helicase  

NSP 13 is an ATP-dependent Helicase with a 5’to 3’ polarity acting on either double-stranded 

RNA/DNA (Shu et al., 2020). Among all SARS-CoV-2 NSPs, Helicase is the most conserved 

among different beta coronavirus species (Jang et al., 2020). There are reports of helicase forming 

a complex with RdRp/replicase complex suggesting a role in proofreading during RNA replication 

(J. Chen et al., 2020). Also, there are isolated reports of helicase affecting infected cell interferon 

(IFN) signaling to neighboring healthy cells by altering JAK1 phosphorylation of SAT1 (Fung et 

al., 2022). While there were multiple helicase inhibitors discovered against SARS and MERS there 

were not many interesting leads for SARS-CoV-2 despite high sequence similarity (Cimolai, 2020) 

except amantadine or memantine that have been shown in isolated reports to be effective in 

COVID-19 with neurological symptoms (Rejdak and Grieb, 2020). Ranitidine bismuth citrate also 

targets helicases and was initially shown to be highly effective in protecting Syrian hamster 

COVID-19 animal models (Yuan et al., 2020). While SARS-CoV-2 helicase is highly susceptible 

to bismuth salts, which are accepted to be the primary mechanism (Shu et al., 2020), zinc chelation 

(Zamai, 2021, p. 20) and allosteric main protease inhibition (Tao et al., 2021) additional 
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mechanisms in play. A pilot study showed that 50% of patients receiving Bismuth Subsalicylate 

(BSS) became RT-PCR negative, however, authors state issues with dosage and bioavailability.  

NendoU  

NSP 15 is a uridylate-specific endoribonuclease (NendoU) that exists as a homo hexamer (Tran 

et al., 2022). While NendoU is highly conserved among most of the nidoviruses, especially 

vertebrates infecting coronaviruses, its knockouts are known to replicate at par with wild types 

(Grellet et al., 2022). The role of NendoU is to protect viral RNA from host intracellular defenses 

(Boodhoo et al., 2022). A few of the known corticosteroids can inhibit SARS/MERS in vitro and 

were also reported to have potent activity against SARS-CoV-2 with IC50s niclosamide (0.28 μM), 

ciclesonide (4.33 μM), and tilorone (4 μM) (Ko et al., 2021). Ciclesonide has been shown to lose 

antiviral activity on MERS-Nendou mutants (Matsuyama et al., 2020). While Ciclesonide has been 

part of many therapeutic combinations, there have been a few focused monotherapy randomized 

trials with inhaled formulations that have resulted in lower hospitalizations and reduced respiratory 

symptoms in treated patients (Clemency et al., 2022; Ezer et al., 2021). Ciclesonide is of particular 

interest for long-haul patient management for preventing severe lung damage (Ruggiero et al., 

2022). Exebryl-1 a known ß-amyloid anti-aggregation molecule (Alzheimer’s therapy) was shown 

to have consistent antiviral activity between 10 to 66 μM, in various cell lines and was discovered 

through high throughput screens (Choi et al., 2021). Exebryl-1 has been shown to disturb 

hexamerization of NendoU critical for its activity (Tran et al., 2022). So far there are no trials with 

Exebryl-1 against COVID-19, but negative drug interactions with COVID-19 medications with 

Alzheimer's disease does suggest a utility for this repurposable agent (Balli et al., 2020). 
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Other targets 

ADP ribose phosphatase (NSP3) is another interesting target playing a role in cellular immune 

evasion by SARS-CoV-2 by resisting ADP-ribosylation of host proteins induced by IFN (Russo 

et al., 2021). Exoribonuclease (ExoN, NSP14) is a 5‘-to-3‘ exonuclease and has been the focus of 

many computational drug screening pipelines (Castillo-Garit et al., 2021; Gupta et al., 2021b). 

ExoN is inhibited by S-adenosylhomocysteine (Riccio et al., 2022) which is a marker for severe 

COVID-19 (Ponti et al., 2021) and its abundance may have been protecting liver cholangiocytes 

expressing ACE-2. NSP16 is another critical target which is an Mn2+ dependant putative 2'-O-

methyl transferase that forms a heterodimer with NSP10 (Minasov et al., 2021).  

 Non-enzymatic targets 

3a Ion channel  

ORF3a encodes an accessory protein that forms K+ channels that trigger NLRP3 activation 

resulting in the maturation of IL-1β and cleavage/activation of Gasdermin via NFκB (Kern et al., 

n.d.; J. Zhang et al., 2022). ORF3a is susceptible to amantadine (Toft-Bertelsen et al., 2021) which 

has been shown to improve patient conditions suffering from COVID-19-Related Diffuse 

Leukoencephalopathy (Lam et al., 2022). In a larger trial with co-morbidities in Parkinson's and 

multiple sclerosis patients already receiving amantadine, there was significant prevention of 

COVID-19 infection (Kamel et al., 2021). A larger trial is in progress and its results are awaited 

(Rejdak and Grieb, 2020). Tomar et.al. 2021 reported many more FDA-approved drugs with 

significant in vitro activity against heterologously expressed 3a Ion channel; Plerixafor, 

Kasugamycin, Capreomycin, Pentamidine, Spectinomycin, Flumatinib, Darapladib, Floxuridine, 

and Fludarabine (Tomar et al., 2021, 2021).  
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Non-structural protein 1 

NSP-1 is the host shutoff factor that halts the translational machinery of SARS-CoV-2 infected 

cells by binding with the mRNA channel within the ribosome (Simeoni et al., 2021). The main c-

terminal domain playing a role in the ribosome binding can be blocked by Mitoxantrone 

hydrochloride (Novantrone) (Prateek Kumar et al., 2022b). Notably, Mitoxantrone HCL also 

blocks viral entry through perturbing spike-heparan sulfate interactions (Q. Zhang et al., 2022). 

Other SARS-CoV-2 targets 

NTD-N-protein or N terminal domain of Nucleocapsid protein is responsible for binding and 

thereby assembling the RNA genome of SARS-CoV-2 (Ye et al., 2020). Recently multiple in vitro 

anti-SARS-CoV-2 molecules were discovered as interacting with the NTD-N-protein through 

isothermal titration calorimetry with EC50s: Telmisartan (1.02 μM), Bictegravir (8.11 μM), 

Bisdemethoxycurcumin (1.64 μM), and MCC-555 (4.26 μM) (Dhaka et al., 2022). Additional 

targets have been proposed and investigated as drug targets in silico. NSP2 is involved in host 

signaling interferences, NSP3 mediates a bipartite shift of host translational machinery to translate 

viral RNA only, NSP4 plays a role in the replicase complex assembly, and NSP18 is critical for 

replication (Yan et al., 2022). 

Structural protein targets 

Envelope protein 

The E protein is a transmembrane cation-selective viroporin with Ca2+ and/or K+ selectivity 

(Hong et al., 2020; Mandala et al., 2020). Similar to previous reports with SARS/MERS, SARS-

CoV-2, the E protein also forms an inflammasome by TLR2 or NRLP5 activation through NF-kB 

due to K+ influx (Yalcinkaya et al., 2021; M. Zheng et al., 2021). β-boswellic acid and glycyrrhizic 
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acid natural product combinations have been shown to shorten the recovery time (Gomaa et al., 

2022), and in a suggestion of a possible mechanism, they have shown positive binding with the E 

protein in vitro (Fatima et al., 2022). There are a few phytochemicals i.e. proanthocyanidins 

(PAC), wortmannin, and veliparib reported to block E protein in vitro (Y. Wang et al., 2022).  

Spike glycoprotein  

Spike protein, (S1, S2, S3) is the largest protein coded by the SARS-CoV-2 genome. It has 

various domains including transmembrane, S1 & S2 domains. S1 binds to different receptors 

(ACE2, CD147, B0AT1, and NRP1) and interacts with heparan sulfate and the S2 domain is a 

viral fusion domain. S1 domain has open and closed states to maintain the receptor-binding domain 

(RBD) specificity (Gupta et al., 2021c; Jackson et al., 2022). The fusion inhibitors are discussed 

in detail in later RBD-ACE-2 interaction inhibition. S2 activation requires cleavage of spike 

protein mediated by furin and TMPRSS2 (Y. Gupta et al., 2022). Itraconazole and Estradiol 

Benzoate were found to be interacting with the S2 domain of spike protein and had in vitro 

activities of IC50 0.45 (µM) and 1.02 (µM) respectively (Yang et al., 2021). Itraconazole 

synergistically improved the remdesivir efficacy in vitro (Schloer et al., 2021). Pan-CoV fusion 

inhibitor EK1 (fusion domain S2) is efficacious against all variants suggesting high target 

conservancy despite the high degree of amino acid mutations in SARS-CoV-2 variants (Lan et al., 

2021). Further, a designer peptide mimicking the HR2 sub-domain of the S2 fusion domain 

(VVNIQKEIDRLNEVAKNLNESLID) was designed in silico and validated both by MD 

simulations and in vitro testing (Kandeel et al., 2021; Manna et al., 2020). 
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Table 2. Descriptions of anti-viral agents from clinical trials  

#  Name of the agent  The total 

no of 

patients 

and trials  

No of days of 

treatment 

 

Outcome  

(Negativ

e SARS-

CoV-2 test 

conversions 

(NSTC)) 

 

Contraindication

s 

Reference(s) 

0

1 

Remdesivir 

 

13 

studies  

>1000

00 patients  

Dosing was 

usually 200 mg 

on day 1 

followed by 100 

mg for 5 days or 

up to 10 days  

 

Found 

significant 

greater 

improvement 

in mortality, 

hospitalizatio

n, symptoms, 

and ICU 

dependency 

incidence of 

mechanical 

ventilation, in 

patients with 

no oxygen or 

low oxygen 

(efficacy 

74% - 87%) 

however, did 

 (Angamo 

et al., 2022; 

Barratt-Due et 

al., 2021; 

Beckerman et 

al., 2022; 

Beigel et al., 

2020; 

Costanzo et al., 

2020) Jo
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not lower any 

kind of risk in 

patients 

receiving 

high-flow 

oxygen 

0

2 

Lopinavir/Rit

onavir  

38 

studies 

12352 

patients  

Dosing was 

usually 

Lopinavir/ritona

vir 

400mg/100mg 

BID for 5- 

10days. Along 

with standard-of-

care 

 

Found no 

reductions in 

mortality, 

hospitalizatio

n, symptoms 

and ICU 

dependency 

incidence of 

mechanical 

ventilation, 

and NSTC 

(MD: 1.09) 

 

 

 

 

(Bahman 

Amani et al., 

2021; 

Costanzo et al., 

2020; 

Kalantari et al., 

2021; 

Mazaherpour 

et al., 2021) 

0

3 

Oseltamivir 

 

5 

studies  

>1000

00 patients 

Dosing was 

usually 

30mg,45mg,75m

g, and BID for 5 

days. Along with 

standard-of-care  

Found no 

reductions in 

mortality, 

hospitalizatio

n, symptoms 

and ICU 

dependency 

increased 

severity of disease 

and risk of 

mortality OR= 

4.20, 

(Zendehde

l et al., 2022) 

Jo
urn

al 
Pre-

pro
of



35 
 

 

incidence of 

mechanical 

ventilation, 

and NSTC 

(SMD of 1.65 

days) 

0

4 

Umifenovir(a

rbidol) 

 

16 

studies and 

1 phase 3 

trails  

Dosing was 

usually 

Umifenovir 800 

mg BID, 

maximum 14 

days, along with 

standard-of-care 

Found no 

reductions in 

mortality, 

hospitalizatio

n, symptoms, 

and ICU 

dependency 

incidence of 

mechanical 

ventilation, 

and NSTC 

RR=1.1 

associated 

with higher 

adverse events 

RR: 2.24 

(Behnam 

Amani et al., 

2021; Y. Lin et 

al., 2021; 

Ramachandran 

et al., 2022) 

 

0

5 

Sofosbuvir-

based 

(Daclatasvir, 

ledipasvir, 

velpatasvir, 

ravidasvir) 

8 

articles and 

11 trials 

and 4 

studies 

3079 

patients  

Dosing was 

usually 

400 mg 

Sofosbuvir and 

60 mg 

Daclatasvir 

Found 

lower 

mortality 

OR= 0.49 to 

0.59 

RR=0.31, 

ICU 

dependency 

 (Chan et 

al., 2021; Hsu 

et al., 2022; 

Kow et al., 

2022; Merat, 

2020; Messina 

et al., 2022; A. 
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incidence of 

mechanical 

ventilation 

(RR=1.20, 

P=0.011), 

and some 

certainty of 

the evidence 

for clinical 

recovery with 

combination 

with 

Sofosbuvir/ 

Daclatasvir. 

 

F. M. Z. Zein 

et al., 2022) 

0

6 

Molnupiravir 1 

Phase 3 

trial  

1433 

patients  

Dosing was 

usually  

 800 mg 

orally BID daily 

for 5 days only 

initiated 

within 5 days 

after the onset 

of symptoms 

found 

reductions in 

mortality, 

hospitalizatio

n, symptoms 

and ICU 

dependency 

incidence of 

there is a 

theoretical risk 

that molnupiravir 

will be 

metabolized by 

the human host 

cell and 

incorporated into 

the host DNA, 

leading to 

mutations 

(Caraco et 

al., 2022; Jayk 

Bernal et al., 

2022; Wong et 

al., 2022) 
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mechanical 

ventilation, 

and NSTC 

  

0

7 

Nirmatrelvir 

based 

1 

Phase 2-3 

trial 

2246 

patients  

 

Dosing was 

usually  

300 mg of 

nirmatrelvir plus 

100 mg of 

ritonavir BID for 

5 days  

Found 

reductions in 

progression 

to severe RR 

reduction 

88.9%, along 

with 

reductions in 

mortality, 

hospitalizatio

n, symptoms 

and ICU 

dependency 

incidence of 

mechanical 

ventilation, 

and viral load 

was lower at 

day 5 of 

treatment 

 

 

 (Hammon

d et al., 2022; 

Lamb, 2022; 

Reina and 

Iglesias, 2022; 

Wong et al., 

2022) 
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0

8 

GIAPREZ

A 

(Angiotensin II 

receptor blocker) 

 

1 study 

132 

patients 

 

Dosing was 

usually One-time 

inclusion 

 

Found 

faster decrease 

in Fio2 and 

positive effect 

on BP in the 

first 12H of 

infusion and 

later no 

reductions in 

mortality, 

hospitalization, 

symptoms and 

ICU 

dependency 

incidence of 

mechanical 

ventilation, and 

NSTC 

 (Serpa 

Neto et al., 

2022) 

0

9 

Losartan 

(Angiotensin II 

receptor blocker) 

2 

studies  

1683 

patients  

Dosing was 

usually 

Max 50 mg 

orally twice daily 

for 10 days 

 

Found 

losartan has a 

protective role 

against 

COVID-19 

mortality in 

hypertensive 

patients only. 

No reductions 

in mortality, 

hospitalization, 

symptoms and 

 (Puskarich 

et al., 2022) Jo
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ICU 

dependency 

incidence of 

mechanical 

ventilation, and 

NSTC in non-

hypertensive 

patients  

 

1

0 

Famotidine 

(Selective 

histamine H2-

receptor (H2R) 

antagonist) 

9 

studies  

39745 

patients  

Dosing was 

usually 20 or 40 

mg 

oral or IV median 

of 5 to 6 days 

Found no 

reductions in 

mortality, 

hospitalization, 

symptoms and 

ICU 

dependency 

incidence of 

mechanical 

ventilation, and 

NSTC 

 

 (Freedber

g et al., 2020) 

 

1

1 

Plitidepsin 

 

 

1 phase 

1 trial 46 

patients 

 

Dosing was 

usually 1.5 mg (n = 

15), 2.0 mg (n = 

16), or 2.5 mg (n = 

15) OD for 3 days. 

 

Found 

reductions in 

viral load 

concerning 

their baseline 

value, and 

improvement 

of biomarkers 

 (Varona 

et al., 2022) 
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associated with 

inflammatory 

processes. 

There were 

reports of 

prompt 

clearance of 

pneumonia 

infiltrates in 

some 

participants 

with available 

chest imaging 

performed for 

medical 

reasons 

1

2 
Heparin 

(Standard 

heparin, and low 

molecular weight 

heparin) 

 

3 

Trials, 33 

studies  

25768 

patients  

No fixed does 

was used  

Found 

significant 

reduction in 

mortality, 

invasive 

mechanical 

ventilation, and 

any thrombotic 

event in 

moderately ill 

patients and 

found no 

reductions in 

mortality, 

 (Giossi et 

al., 2021; 

Thachil, 

2020) 
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hospitalization, 

symptoms and 

ICU 

dependency 

incidence of 

mechanical 

ventilation, and 

NSTC 
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Homo sapiens (Host) COVID-19 therapeutic targets 

In addition to targeting SARS-CoV-2 proteins, another therapeutic approach is to target host 

proteins that enable viral infection, replication, and spread (Figure 2). The interventions range from 

interfering with the host receptors for SARS-CoV-2 (e.g. ACE2), to blocking the proteolytic 

processing needed for viral particle internalization (e.g. Cathepsin L),  

 

Figure 2. Host proteome targets involved in COVID-19 hyperimmune and their inhibitors. Cartoon representation of 

molecular components involved in hyperimmune reaction leading to the severe clinical presentation (ARDS) among COVID-19 

patients. The lung fibrosis observed in COVID-19 patients and resulting hypoxia is the main reason for mortality in severe cases 

along with immunosuppressed conditions and concomitant infections. Classic pathways are hijacked in COVID-19-associated lung 

fibrosis by various proteins coded by SARS-CoV-2.In COVID-19 patients due to inflammation mediators such as IL-6 and cytokine 

storm or increased release from damaged/dying cells, there is a loss of lung surface area to fibrosis. There is an aggravation of 

the infection cycle due to hypoxia-induced ACE2, TMPRSS2 overexpression, and furin cell surface localization. Multiple immune 
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suppressants and modulators have been effective in reducing the severity and mortality as seen in large trials. However, the 

mechanism for which is still not well established. There are many other agents known to modulate many members of this cascade, 

especially the NLRP3 pathway responsible for characteristic COVID-19 storm but not yet exploited due to a rather recent 

elucidation. 

Viral receptors targets of human host 

Table 3. Drugs targeting different viral/host proteins with in vitro validations 

Name & 

discovered 

target 

Type 

 

Indication Mechanism 

of Action 

(Gener

al) 

IC50 Refs 

Haloperid

ol 

 

Peptides 

Conventional 

antipsychotic agent: 

Haloperidol works 

by inhibiting the 

SARS-CoV-2. 

Psychoti

c patients 

It is 

administered 

in the 

treatment of 

mental 

disorders such 

as 

schizophrenia. 

It works 

by inducing 

a high 

potency 

suppression 

of undesired 

mental 

reactions in 

schizophreni

a patients. 

6.5μ

M 

(Daniel 

et al., 

2015; 

Pandey et 

al., 2020) 

 

PD-

144418 

 

Peptides 

Sigma 1 agent 

works by exerting 

antiviral effects on 

SARS-CoV-2 

protein. 

Psychoti

c activities of 

patients 

It is the 

highest 

selective 

sigma 

receptor 

ligand. 

It works 

through 

selecting the 

stimuli that 

are 

insignificant 

0.08

Μm 

(Vela

, 2020) 
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to ion 

channels or 

enzyme 

actions in 

patients. 

Clemastin

e 

 

Peptides 

Antihistamine 

agent Works by 

blocking interactions 

between SARS-

CoV-2 nonstructural 

protein NSP6 and 

host sigma-1 

receptor. 

Rhinitis, 

allergic skin, 

or pruritus 

patients. 

It is a 

significant 

histamine H1 

remedy for 

treating 

rhinitis, skin 

allergy, and 

pruritus. 

It works 

by inducing 

sedative and 

anticholiner

gic reactions 

in patients. 

8.32μ

M 

(Rezniko

v et al., 

2021) 

 

Cloperasti

ne 

 

Peptides 

Antitussive 

agent Works by 

blocking interactions 

between SARS-

CoV-2 nonstructural 

protein NSP6 and 

host sigma-1 

receptor 

Bronchu

s infections 

It cures 

coughs 

associated 

with bronchus 

infection. 

It acts 

through an 

antihistamin

ic activity 

that causes 

mild 

broncho 

relaxant. 

effect on 

patients 

0.08μ

M 

(Rez

nikov et 

al., 2021; 

Vela, 

2020) 

Progester

one 

 

Steroid hormone 

Works by inhibiting 

the SARS-CoV-2 

Ovaries 

and adrenal 

cortices. 

It is 

produced by 

the corpus 

It works 

by 

regulating 

173-

196μM. 

(Sha

h, 2021; 
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Peptides priming protease 

TMPRSS2. 

luteum in the 

second half of 

the menstrual 

cycle. 

the inner 

lining of the 

uterus. 

Vela, 

2020) 

Aprotinin 

 

Spike 

processing 

enzymatic -  

 Serine 

protease 10 

It is a 

fibrinolytic agent 

that Works by 

controlling SARS-

CoV-2 replication 

It occurs 

in the bovine 

lung 

It is a 

naturally 

occurring 

inhibitor 

which is a 

polypeptide of 

58 amino 

acids. 

It 

functions by 

inhibiting 

the action of 

certain 

serine 

proteases 

such as 

trypsin, 

plasmin, and 

chymotrypsi

n. 

20µ

M 

(Boj

kova et 

al., 2020; 

da Silva 

et al., 

2022)  

MI-1900 

 

Spike 

processing 

enzymatic - 

 Serine 

protease 10 

It is an 

antithrombin agent 

that works by 

reducing 25-fold 

virus titer in SARS-

CoV-2 Calu-3 

infected cells. 

Myocard

ial patients 

It is 

applied to 

restore 

coronary 

patency in 

myocardial 

patients 

This 

drug acts by 

reducing the 

size of the 

infarct on 

patients’ 

heart 

structure. 

10µ

M 

(Lin 

et al., 

2022; 

Russo et 

al., 2021) 

MI-432 

 

It is an antiviral 

agent 

Used by 

patients 

It reduces 

the rate of 

It is 

applied as a 

1.30 

± 0.14 µM 

(Lin 

et al., 
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Spike 

processing 

enzymatic -  

 Serine 

protease 10 

 

Works by 

inhibiting the 

protease TMPRSS2. 

suffering 

from herpes 

simplex virus 

virus growth 

and 

development 

and therefore 

suppresses 

any potential 

survival of the 

virus. 

cream on 

herpes 

simplex 

patients to 

relieve pain 

and 

irritations 

that cause 

sores. 

2022) 

Nafamost

at 

 

Spike 

processing 

enzymatic -  

 Serine 

protease 10 

Synthetic serine 

protease 

 

Works by 

blocking SARS-

CoV-2 infection of 

Calu-3 cells. 

Patients 

with 

inflammatory 

reactions. 

It acts 

alongside 

anticoagulant 

and anti-

inflammatory 

effects. 

It 

performs by 

inhibiting 

the activities 

of proteases 

such as 

plasmin, 

kallikrein, 

and trypsin. 

0.010

μM 

(Ya

mamoto 

et al., 

2020) 

E-64d 

 

Spike 

processing 

enzymatic -  

 Serine 

protease 10 

Prodrug ethyl 

ester Works by 

inhibiting 

coronaviral entry in 

certain cell types. 

Patients 

with 

inflammatory 

reactions. 

It is only 

active in its 

acidic form 

(E64c). 

It 

hydrolyzed 

from E64d 

to E64c in 

the gut to 

inhibit 

cysteine 

proteases. 

 (Mell

ott et al., 

2021) 
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PCI-

27483 

 

Spike 

processing 

enzymatic -  

 Serine 

protease 10 

Selective 

inhibitor 

 

Works by 

inhibiting TMPRSS2 

in biochemical 

and cell infection ass

ays. 

It is 

administered 

on TF-

expressive 

cancer 

patients 

It inhibits 

tumor 

invasiveness 

in cancer 

patients 

It 

performs by 

inhibiting 

cell 

migration 

and 

angiogenesi

s reactions 

that cause 

tumor 

invasiveness

. 

1.41 

± 0.04μM 

(Sun 

et al., 

2021, p. 

2) 

Otamixab

an 

 

Spike 

processing 

enzymatic -  

 Serine 

protease 10 

FXa agent 

Works by 

suppressing 

TMPRSS2 activity 

and SARS-CoV-2 

infection. 

Patients 

with acute 

coronary 

diseases 

This is an 

activated 

factor X (FXa) 

inhibitor 

involved 

applied in 

acute 

coronary 

syndrome 

patients 

It acts 

through a 

high 

selection of 

FXa 

compounds 

to inhibit the 

generation 

of thrombin. 

 (He

mpel et 

al., 2021) 

MI-1851 

 

Novel furin 

inhibitor agent 

 

Works by 

SARS-

Cov-2 

patients 

It 

prevents 

proteolytic 

processing of 

It acts 

by inhibiting 

the 

conversion 

10μM (Dev

i et al., 

2022) 
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Spike 

processing 

enzymatic -  

Furin 

inhibiting furin to 

prevent the spread of 

SARS-CoV-2 

S-protein of furin in 

HEK293 

cells to S 

protein. 

Terifumid

e 

 

Spike 

processing 

enzymatic - 

Cathepsin  

Malononitilamid

e agent 

 

Works by 

inhibiting SARS-

CoV-2 replication. 

Beta-1a 

patients 

It inhibits 

the 

proliferation 

of both T and 

B cells. 

It acts 

by blocking 

the 

mitochondri

al enzyme 

hydro-

orotate 

dehydrogen

ase 

67μM (Rabi

e, 2021) 

Leflunom

ide 

 

Spike 

processing 

enzymatic - 

Cathepsin  

Immunomodulat

ory agent 

Works by 

inhibiting SARS-

CoV-2 replication. 

Rheumat

oid arthritis. 

It 

decreases 

inflammation 

and slows the 

rate of arthritis 

inflammation. 

It 

performs by 

inhibiting 

the action of 

pyrimidines 

in synthesis. 

200μ

M 

(Rabi

e, 2021) 

Favipiravi

r 

Spike 

processing 

enzymatic - 

Cathepsin  

Therapeutic 

agent 

 

Works by 

inhibiting SARS-

CoV-2 infections. 

Influenza 

patients 

It is used 

to cure 

influenza. 

It works 

as a chain 

terminator 

during the 

incorporatio

n of viral 

200μ

M 

(Cost

anzo et 

al., 2020) 
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RNA and 

hence 

reducing the 

viral load. 

Amantadi

ne 

Spike 

processing 

enzymatic - 

Cathepsin  

Antiviral agent 

 

Works by 

inhibiting SARS-

CoV-2 replication. 

Influenza 

patients 

It is used 

to treat 

patients with 

advanced 

influenza 

symptoms. 

It works 

by reducing 

dopamine 

release and 

blocking 

dopamine 

reuptake. 

83-

119μM. 

(Fink 

et al., 

2021; 

Rejdak 

and 

Grieb, 

2020) 

Sulfated 

polysaccharid

es 

 

Homo 

Sapien Targets 

Sulfate agent 

 

Works by 

binding to the viral 

spike glycoprotein, 

preventing virus 

entry into the host 

cell 

adipocyt

es 

Induces 

the extraction 

of algae type 

called 

sargassum 

Hymenophyll

um 

It acts 

by reducing 

inflammator

y reactions. 

512~

289μM 

(Yim 

et al., 

2021) 

Teicoplan

in 

Structural 

protein targets 

Bacteriostatic 

agent Works by 

preventing entry 

of SARS-CoV-2 into 

the cellular 

cytoplasm. 

Bacterial 

infection 

It inhibits 

the synthesis 

of bacterial 

peptidoglycan 

It acts 

by binding 

to the d-

alanyl-d-

alanine 

moiety. 

2.038

μM 

(F. 

Yu et al., 

2022) 
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Nelfinavir 

Structural 

protein targets 

 

Anticancer 

agent 

 

Works by 

inhibiting SARS-

CoV-2 replication 

Cancer 

patients 

It induces 

stress in the 

endoplasmic. 

It acts 

through HIV 

protease 

inhibition. 

3.3μ

M 

(Foo 

et al., 

2021) 

Cepharant

hine 

Structural 

protein targets 

 

Antiviral agent 

 

Works by 

inhibiting SARS-

CoV-2 entry into the 

host cell. 

Covid-19 

patients 

It is used 

to derail the 

entry of the 

COVID-19 

virus into a 

host 

It acts 

by blocking 

target cells 

of viral 

binding. 

2.8μ

M 

(Hiji

kata et 

al., 2022) 

Trimipra

mine 

 

Structural 

protein targets 

 

Antiviral agent 

 

Works to inhibit 

SARS-CoV-2 by 

targeting viral 

proteins. 

Influenza 

patients 

It is used 

to treat 

patients with 

advanced 

influenza 

symptoms. 

It works 

by reducing 

dopamine 

release and 

blocking 

dopamine 

reuptake. 

1.5μ

M 

(Xia

ng et al., 

2022) 

Osimertin

ib 

 

Structural 

protein targets 

 

Selective 

inhibitor 

 

Works by 

preventing SARS-

CoV-2 entry into 

host cells. 

It is 

administered 

to patients 

It inhibits 

tumor 

invasiveness 

in cancer 

patients 

It 

performs by 

inhibiting 

cell 

migration 

and 

angiogenesi

3.98μ

M 

(Xia

ng et al., 

2022) 
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s reactions 

that cause 

tumor 

invasiveness

. 

Abemacic

lib\ 

 

Structural 

protein targets 

 

 

Sensitizing 

agent 

 

Works by 

preventing SARS-

CoV-2 entry into 

host cells. 

Cancer 

patients 

It inhibits 

the 

conversions of 

2-anilino-2, 4-

pyrimidine 

from 

palbociclib 

The 

drug blocks 

the spread of 

cancer 

infections by 

inhibiting 

the 

replication 

of associated 

cells. 

3.16μ

M 

(Xia

ng et al., 

2022) 

Ingenol 

 

Structural 

protein targets 

 

Mebutate agent 

 

Works by 

preventing SARS-

CoV-2 entry into 

host cells. 

Keratosis 

patients 

It cures 

skin 

conditions. 

It is 

applied to 

the skin to 

kill cells 

causing 

scaly skin 

patches. 

0.06μ

M 

(Xia

ng et al., 

2022) 

Imatinib 

 

Structural 

protein targets 

Fusion agent 

 

Works by 

preventing SARS-

Leukemi

a patient 

It is an 

inhibitor of 

the fusion 

process 

It 

functions by 

inhibiting 

protein 

5.32μ

M 

(Xia

ng et al., 

2022) 

Jo
urn

al 
Pre-

pro
of



52 
 

 

 CoV-2 entry into 

host cells. 

fusion of 

Bcr-Abl 

Itraconaz

ole 

 

Structural 

protein targets 

 

Antiviral agent 

 

Works by 

preventing SARS‐

CoV‐2 S protein‐

mediated 

intercellular fusion 

Covid-19 

patients 

It is used 

to derail the 

entry of the 

COVID-19 

virus into a 

host 

It acts 

by blocking 

target cells 

of viral 

binding. 

0.45 

µM 

(Yan

g et al., 

2021) 

Estradiol 

benzoate 

 

Structural 

protein targets 

 

Ester agent 

 

Works by 

preventing SARS‐

CoV‐2 protein‐

mediated 

intercellular fusion. 

Adult 

human 

It is a 

steroid sex 

hormone 

It acts 

by 

maintaining 

fertility and 

secondary 

behaviors. 

1.02 

µM 

(Yan

g et al., 

2021) 

Fluoxetin

e 

 

Structural 

protein targets 

 

Serotonin agent 

 

Works by 

inhibiting cytokine 

release to prevent 

SARS‐CoV‐2 in 

human lung tissue. 

Mentally 

disorder 

patients 

It is used 

to treat 

depression 

It acts 

by 

preventing 

serotonin 

reuptake. 

0.8 µ

M 

(Zim

niak et 

al., 2021) 

Citalopra

m 

Serotonin agent 

 

Mentally 

disorder 

It helps to 

maintain 

Its acts 

by 

27.51

 µM 

(Fred 

et al., 
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Structural 

protein targets 

 

Work by 

reducing viral 

infection by SARS‐

CoV‐2. 

patients mental 

balance. 

increasing 

the amount 

of serotonin. 

2022) 

Reboxetin

e 

 

Structural 

protein targets 

 

Antidepressant 

agent 

Work by 

reducing viral 

infection by SARS‐

CoV‐2. 

Mentally 

disorder 

patients 

It reduces 

panic disorder 

and attention 

deficit 

hyperactivity. 

It acts 

by reducing 

norepinephri

ne reuptake 

inhibitor 

17.69

 µM 

(Fred 

et al., 

2022) 

Chlorpro

mazine 

 

Structural 

protein targets 

 

Antitussive 

agent 

Work by 

reducing viral 

infection by SARS‐

CoV‐2. 

Bronchu

s infections 

It cures 

coughs 

associated 

with a 

bronchial 

infection. 

It works 

by reducing 

dopamine 

release and 

blocking 

dopamine 

reuptake. 

0.972

 µM 

(Fred 

et al., 

2022) 

Flupenthi

xol 

 

Structural 

protein targets 

 

Antiviral agent 

 

Work by 

reducing viral 

infection by SARS‐

CoV‐2. 

Covid-19 

patients 

It is used 

to treat 

patients with 

advanced 

influenza 

symptoms. 

It works 

by reducing 

dopamine 

release and 

blocking 

dopamine 

reuptake. 

1.072

 µM 

(Fred 

et al., 

2022) 

Pimozide Oral Butyroph It induces It acts 4.539 (Fred 
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Structural 

protein targets 

 

diphenylbutylpiperid

ine antipsychotic 

agent 

 

Work by 

reducing viral 

infection by SARS‐

CoV‐2. 

enones 

patients 

stress in the 

endoplasmic. 

through HIV 

protease 

inhibition 

 µM et al., 

2022) 

Mitoxantr

one 

hydrochloride 

 

non-

enzymatic 

targets 

Bacteriostatic 

agent 

Works by 

inhibiting ROS1 

fusion protein and its 

downstream 

signaling minimizing 

cell apoptosis. 

Bacterial 

infection 

It inhibits 

the synthesis 

of bacterial 

peptidoglycan 

It acts 

by binding 

to the d-

alanyl-d-

alanine 

moiety. 

2.99 

± .608μM 

 

Capreomy

cin 

 

non-

enzymatic 

targets 

Selective 

inhibitor 

 

Works by 

inhibiting SARS-

CoV2 protease. 

It is 

administered 

to patients 

It inhibits 

tumor 

invasiveness 

in cancer 

patients 

It 

performs 

through 

inhibiting 

cell 

migration 

and 

angiogenesi

s reactions 

that cause 

1 µM (Ku

mar et 

al., 2021) 
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tumor 

invasiveness 

Pentamidi

ne 

 

non-

enzymatic 

targets 

Anti-infective 

agent Works by 

blocking the SARS-

CoV-2 3a-channel. 

Pneumon

ia patients 

It treats 

pneumonia 

caused by 

organisms. 

It acts 

by blocking 

the spread of 

cold in the 

host body. 

7.5 µ

M. 

(And

reana et 

al., 2022) 

Spectino

mycin 

 

non-

enzymatic 

targets 

Ester agent 

Works by 

blocking the SARS-

CoV-2 3a-channel. 

Adult 

human 

It is a 

steroid sex 

hormone 

It acts 

by 

maintaining 

fertility and 

secondary 

behaviors. 

50 µ

M. 

(Tom

ar et al., 

2021, 

2021) 

Kasugam

ycin 

 

non-

enzymatic 

targets 

Serotonin agent 

 

Works by 

blocking the SARS-

CoV-2 3a-channel. 

Mentally 

disorder 

patients 

It is used 

to treat 

depression 

It acts 

by 

preventing 

serotonin 

reuptake. 

50 µ

M. 

(Tom

ar et al., 

2021, 

2021) 

Plerixafor 

 

non-

enzymatic 

targets 

Mebutate agent 

 

Works by 

blocking the SARS-

CoV-2 3a-channel. 

Keratosis 

patients 

It cures 

skin 

conditions. 

It is 

applied to 

the skin to 

kill cells 

causing 

scaly skin 

50 µ

M. 

(Tom

ar et al., 

2021, 

2021) 
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patches. 

Flumatini

b 

 

non-

enzymatic 

targets 

Antiviral agent 

 

Works by 

blocking the SARS-

CoV-2 3a-channel. 

Covid-19 

patients 

It is used 

to derail the 

entry of the 

COVID-19 

virus into a 

host 

It acts 

by blocking 

target cells 

of viral 

binding 

50 µ

M. 

(Tom

ar et al., 

2021, 

2021) 

Darapladi

b 

 

non-

enzymatic 

targets 

Fusion agent 

 

Works by 

blocking the SARS-

CoV-2 3a-channel. 

Leukemi

a patient 

It is an 

inhibitor of 

the fusion 

process 

It 

functions by 

inhibiting 

protein 

fusion of 

Bcr-Abl 

50 µ

M. 

(Tom

ar et al., 

2021, 

2021) 

Floxuridi

ne 

 

non-

enzymatic 

targets 

Therapeutic 

agent 

 

Works by 

blocking the SARS-

CoV-2 3a-channel. 

Influenza 

patients 

It is used 

to cure 

influenza. 

It works 

as a chain 

terminator 

during the 

incorporatio

n of viral 

RNA and 

hence 

reducing the 

viral load. 

50 µ

M. 

(Tom

ar et al., 

2021, 

2021) 

Fludarabi

ne 

Antidepressant 

agent 

Mentally 

disorder 

It reduces 

panic disorder 

It acts 

by reducing 

50 µ

M. 

(Tom

ar et al., 
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non-

enzymatic 

targets 

 

Works by 

blocking the SARS-

CoV-2 3a-channel. 

patients and attention 

deficit 

hyperactivity 

norepinephri

ne reuptake 

inhibitor 

2021, 

2021) 

Ciclesoni

de 

 

RNA-

dependent RNA 

polymerase 

Antitussive 

agent 

 

Works by 

suppressing the 

replication of SARS-

CoV-2 in cultured 

cells. 

Bronchu

s infections 

It cures 

coughs 

associated 

with a 

bronchial 

infection. 

It 

performs 

through 

inhibiting 

cell 

migration 

and 

angiogenesi

s reactions 

that cause 

tumor 

invasiveness 

5.1 µ

M. 

(Mat

suyama 

et al., 

2020) 

Exebryl-1 

 

RNA-

dependent RNA 

polymerase 

Mebutate agent 

 

Work by 

promoting SARS-

CoV-2 antiviral 

activity in Vero 76, 

Caco-2, and Calu-3 

cells. 

Keratosis 

patients 

It cures 

skin 

conditions 

It is 

applied to 

the skin to 

kill cells 

causing 

scaly skin 

patches. 

10 to 

66μM. 

(Cho

i et al., 

2021) 

Sofosbuvi

r 

Selective 

inhibitor 

It is 

administered 

It inhibits 

tumor 

It 

performs 

6.2 - 

9.5 μM 

(Sha

bani et 
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RNA-

dependent RNA 

polymerase 

 

Works by 

inhibiting SARS-

CoV-2 replication in 

brain and lung cells. 

to patients invasiveness 

in cancer 

patients 

through 

inhibiting 

cell 

migration 

and 

angiogenesi

s reactions 

that cause 

tumor 

invasiveness 

(EC50 ) al., 2021) 

Alovudin

e 

 

RNA-

dependent RNA 

polymerase 

Anticancer 

agent 

Works by 

terminating RNA 

synthesis of SARS-

CoV-2 virus. 

Cancer 

patients 

It inhibits 

the 

conversions of 

2-anilino-2, 4-

pyrimidine 

from 

palbociclib 

It 

performs by 

inhibiting 

the activities 

of proteases 

such as 

plasmin, 

kallikrein, 

and trypsin. 

100 

µM 

(Ku

mar et 

al., 2021) 

Tenofovir 

alafenamide 

 

RNA-

dependent RNA 

polymerase 

FXa agent 

 

Works by 

blocking the SARS-

CoV-2 polymerase 

extension. 

Patients 

with acute 

coronary 

diseases 

This is an 

activated 

factor X (FXa) 

inhibitor 

involved 

applied in 

acute 

It acts 

through a 

high 

selection of 

FXa 

compounds 

to inhibit the 

 (Koc

abaş and 

Uslu, 

2021; 

Zanella 

et al., 
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coronary 

syndrome 

patients 

generation 

of thrombin. 

2021) 

Zidovudin

e 

 

RNA-

dependent RNA 

polymerase 

Prodrug ethyl 

ester 

 

Can work by 

inhibiting SARS-

CoV-2 replication 

and transcription. 

Patients 

with 

inflammatory 

reactions. 

It is only 

active in its 

acidic form 

(E64c). 

It 

hydrolyzed 

from E64d 

to E64c in 

the gut to 

inhibit 

cysteine 

proteases 

 (Mat

suyama 

et al., 

2020) 

Suramin 

 

RNA-

dependent RNA 

polymerase 

Malononitilamid

e agent 

 

Works by 

inhibiting SARS-

CoV-2 replication. 

Rheumat

oid arthritis. 

It 

decreases 

inflammation 

and slows the 

rate of arthritis 

inflammation. 

It acts 

by blocking 

target cells 

of viral 

binding. 

20μM 

(EC50) 

(Mos

tafa, 

2020) 

Atorvastat

in 

 

RNA-

dependent RNA 

polymerase 

Anti-infective 

agent 

 

Works by 

inhibiting SARS-

CoV-2 replication. 

Pneumon

ia patients 

It treats 

pneumonia 

caused by 

organisms. 

It 

performs 

through 

inhibiting 

cell 

migration 

and 

angiogenesi

s reactions 

3.9-

15.7 µM 

(Zap

ata-

Cardona 

et al., 

2021) 
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that cause 

tumor 

invasiveness 

Flupenthi

xol 

 

RNA-

dependent RNA 

polymerase 

Novel furin 

inhibitor agent 

 

Works by 

preventing SARS-

CoV-2 spike protein 

pseudovirus cell 

entry in the host cell. 

It is 

administered 

to patients 

It inhibits 

the synthesis 

of bacterial 

peptidoglycan 

It acts 

by inhibiting 

the 

conversion 

of furin. 

0.56μ

M 

(Dev

i et al., 

2022) 

Raloxifen

e 

 

RNA-

dependent RNA 

polymerase 

Mebutate agent 

 

Works by 

modulating SARS-

CoV-2 replication. 

Keratosis 

patients 

It cures 

skin 

conditions 

It is 

applied to 

the skin to 

kill cells 

causing 

scaly skin 

patches. 

40 

µM to 

0.31 µM 

(Nica

stri et al., 

2022) 

Disulfira

m 

 

Papain-

like 

proteinases 

Selective 

inhibitor 

 

Works by 

inhibiting SARS-

CoV-2 papain-like 

proteases 

It is 

administered 

to patients 

It inhibits 

tumor 

invasiveness 

in cancer 

patients 

It works 

by reducing 

dopamine 

release and 

blocking 

dopamine 

reuptake. 

9.35 

µM 

(Fill

more et 

al., 2021) 
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GRL0617 

 

Papain-

like 

proteinases 

Serotonin agent 

 

Works by 

inhibiting SARS-

CoV-2 PLpro. 

Mentally 

disorder 

patients 

It is used 

to treat 

depression 

It acts 

by 

preventing 

serotonin 

reuptake. 

2.1 

µM 

(Fu 

et al., 

2021, p. 

202) 

Maprotili

ne 

 

Papain-

like 

proteinases 

Antitussive 

agent 

 

Works by 

preventing SARS-

CoV-2 infection on 

Vero cells. 

Bronchu

s infections 

It cures 

coughs 

associated 

with a 

bronchial 

infection. 

It acts 

by reducing 

norepinephri

ne reuptake 

inhibitor 

5μM 

to 35μM 

(Car

pinteiro 

et al., 

2020) 

Reserpine 

 

Papain-

like 

proteinases 

Anti-infective 

agent 

 

Works by 

inhibiting SARS-

CoV-2 activities. 

 

Pneumon

ia patients 

It is used 

to cure 

influenza. 

It works 

as a chain 

terminator 

during the 

incorporatio

n of viral 

RNA and 

hence 

reducing the 

viral load. 

3.4 to 

6.0μM. 

(Xia

n et al., 

2020) 

Levothyro

xine 

 

Therapeutic 

agent 

 

Works by 

Influenza 

patients 

It is used 

to cure 

influenza. 

It works 

by reducing 

dopamine 

release and 

5.0±1

.9 to 

11±3μM 

(Bre

witz et 

al., 2022) 
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Papain-

like 

proteinases 

inhibiting SARS-

CoV-2 PLpro 

blocking 

dopamine 

reuptake. 

Proanthoc

yanidin 

 

Papain-

like 

proteinases 

Antiviral agent 

 

Works by 

inhibiting SARS-

CoV-2. 

Covid-19 

patients 

It is used 

to derail the 

entry of 

COVID-19 

virus into a 

host. 

It acts 

by blocking 

target cells 

of viral 

binding. 

 (Sug

amoto et 

al., 2022) 

 

Sepantron

ium bromide 

 

Papain-

like 

proteinases 

Novel furin 

inhibitor agent 

It is 

administered 

to patients 

It inhibits 

the synthesis 

of bacterial 

peptidoglycan 

It acts 

by inhibiting 

the 

conversion 

of furin. 

 (Dev

i et al., 

2022) 

Cryptotan

shinone 

Papain-

like 

proteinases 

Bacteriostatic 

agent 

 

Works by 

inhibiting SARS-

CoV-2 protease 

Bacterial 

infection 

It inhibits 

the synthesis 

of bacterial 

peptidoglycan 

It acts 

by blocking 

target cells 

of viral 

binding. 

13.6μ

M 

(Zha

o et al., 

2021) 

Tanshino

ne I 

Anti-infective 

agent 

 

Bronchu

s infections 

It cures 

coughs 

associated 

It is 

applied to 

the skin to 

0.7μ

M 

(Eleb

eedy et 

Jo
urn

al 
Pre-

pro
of



63 
 

 

Papain-

like 

proteinases 

Works by 

inhibiting viral 

protease, SARS-

CoV-2 3CLpro, and 

PLpro 

with a 

bronchial 

infection. 

kill cells 

causing 

scaly skin 

patches. 

al., 2021) 

Ranitidine 

Bismuth 

citrate 

 

Helicas

e 

Oral 

diphenylbutylpiperid

ine antipsychotic 

agent 

 

Works by 

suppressing SARS-

CoV-2 replication. 

Butyroph

enones 

patients 

It induces 

stress in the 

endoplasmic 

It acts 

through HIV 

protease 

inhibition 

0.69μ

M 

(Shu 

et al., 

2020) 

 

Host receptors   

ACE2 is the most abundant and highest affinity receptor of SARS-CoV-2 spike protein and is 

the first step in viral entry into the host cell. There are multiple reports that ACE2 polymorphisms 

and Spike protein modulate viral infectivity (Suryamohan et al., 2021). Various known ACE2 

inhibitors, as well as expression modulators, have been proposed to be viable anti-COVID-19 

therapeutics. There is another novel approach of molecular mimicry where B38-CAP an ACE2 

homolog carboxypeptidase of bacterial origin protected patients from lung injury without apparent 

viral neutralization, but through a mechanism of RAS inactivation and decreased Acute 

Respiratory Distress Syndrome (ARDS) (Yamaguchi et al., 2021). This is coherent with the 

previous reports of lung damage protection with recombinant soluble ACE2 in animal models 
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(Imai et al., 2005, p. 20). Also, soluble recombinant human ACE2 has a high SARS-CoV-2 

neutralizing potential as shown in vitro (Monteil et al., 2020). Giapreza, the angiotensin II substrate 

of ACE2, had variable outcomes from different studies. The conclusive multicentric trial 

concluded a decrease in blood pressure and improved fraction of inspired oxygen (FiO2) levels 

but there was no apparent benefit in terms of mortality among severe ARDS patients. ACE2 

agonists have also shown a decrease in Spike-ACE2 interaction as their binding site is closer to 

the interface compare to antagonists e.g. Losartan/Valsartan that bind in the catalytic core and have 

no positive effect as reported in multiple trials (Geriak et al., 2021; Puskarich et al., 2022, 2021). 

A small randomized trial with 51 patients receiving C21 and an ACE2 agonist showed a significant 

reduction in the requirement of mechanical ventilation (Tornling et al., 2021). Methylene Blue is 

a nonspecific ACE2-Spike interaction inhibitor and has been used to inactivate residual viruses in 

convalescent plasma (Alemany et al., 2022). Ceftazidime is an injectable broad-spectrum beta-

lactam antibiotic that is a third-generation cephalosporin. Ceftazidime was found to effectively 

block ACE-2 spike interactions in vitro (C. Lin et al., 2021). It was trialed on 136 patients in a 

study and showed a significant reduction in recovery (PCR negativity) (Eid et al., 2021). On the 

contrary, Ramipril is highly contraindicated in COVID-19 patients as it is known to highly up-

regulate ACE2 and increase SARS-CoV-2 virion loads (Theodorakopoulou et al., 2022). 

Neuropilin-1 (NRP1) is another host surface receptor mediating SARS-CoV-2 entry (Cantuti-

Castelvetri et al., 2020; Kyrou et al., 2021) and has been associated with neurological morbidities 

seen in COVID-19 (Davies et al., 2020). Apart from protein receptor binding spike protein also 

interacts with cell surface heparan sulfate and is the basis for antiviral activity of heparin (Gupta 

et al., 2021c) and sulfated polysaccharides (Kwon et al., 2020) abundant in many natural products. 

There is a high interest in using sulfated polysaccharides as anti-COVID-19 also due to the 

Jo
urn

al 
Pre-

pro
of



65 
 

 

reduction in coagulopathy seen in COVID-19 patients (B. Tu et al., 2022). There is still a 

possibility of SARS-CoV-2 variants evolving or already evolved to use different receptors like 

other coronaviruses (Nassar et al., 2021).  

Spike processing enzymatic targets 

Cathepsin L 

Cathepsin L (CTSL) is a transmembrane peptidase/serine subfamily member 2/4 and plays an 

important role in spike activation in endosomes. The widespread now-dominant mutation in the 

SARS-CoV-2 Spike glycoprotein D614G is predicted to confer a site loss for CTSL (Gobeil et al., 

2020; Y. Gupta et al., 2022). Amantadine acts as a lysosomotropic agent by disturbing 

Cathepsin L's functional environment(Smieszek et al., 2020). A few reports are showing decreased 

leukopathy (Lam et al., 2022) and the slowdown of neurodegeneration presentations of COVID-

19 by amantadine (Rejdak and Grieb, 2020).  

Furin 

Furin is a Ca2+-dependent endopeptidase that processes many secretory proteins as well as 

protein digestion (Than et al., 2005). During hypoxia, furin can translocate to the cell surface and 

is thought to be responsible for the rapid worsening of hypoxia patients in COVID-19 by increased 

spike processing at the cell surface resulting in direct fusion (Arsenault et al., 2012; Y. Gupta et 

al., 2022). Both Furin is essential for SARS-CoV-2 invasion (Bestle et al., 2020) and known furin 

inhibitors MI-1851 and E-64d have both shown in vitro efficacy against SARS-CoV-2 (Table 3) 

TMPRSS2 

Transmembrane serine protease 2 (TMPRSS2) is a cell surface activator of spike protein 

essential to exposing and activating the viral fusion domain (Bestle et al., 2020; Hoffmann et al., 
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2020). Nafamostat (CKD-314/Nafabelltan) a TMPRSS2 inhibitor was found to instigate a 

significantly higher recovery rate among treated patients and was well tolerated (Zhuravel et al., 

2021). Another TMPRSS2 inhibitor Camostat mesylate (FOY-305) in contrast didn’t show any 

positive effect in a phase III trial (Kinoshita et al., 2022). One speculation for inconclusive outcome 

with Camostat is the drug might need a better dosage formulation for effective treatment (Kosinsky 

et al., 2022). There are additional inhibitors of TMPRSS2 with promising results in vitro e.g. 

Aprotinin, MI-1900, MI-432, E-64d, PCI-27483, and Otamixaban.  

 Targets associated with host immune response 

The TLR 2/6/9 agonist PUL-042 is a phase III investigational compound that can induce 

epithelial resistance to SARS-CoV-2 in animal models (Evans et al., 2020). Famotidine is a 

selective histamine H2-receptor (H2R) antagonist (Malone et al., 2021) that also inhibits 3CLpro 

of SARS-CoV-2 (Loffredo et al., 2021). Famotidine had a positive effect with a reduced risk of 

clinical deterioration leading to intubation or death when tested in a small retrospective cohort 

(Freedberg et al., 2020). Currently, famotidine is part of multiple combinations in various trials. 

There are hypothetical reports of targeting different immune components such as Basigin

 CD_antigen: CD147, 5F7, Collagenase stimulatory factor, Leukocyte activation antigen 

M6, Extracellular matrix metalloproteinase inducer, Tumor cell-derived collagenase stimulatory 

factor, GCSF-Receptor Signaling Complex CSF3, IL-1β, leukocytic pyrogen, leukocytic 

endogenous mediator, and mononuclear cell factor, yet discussing all of these is beyond the scope 

of the current review. Major confounding comorbidity arising in a portion of the SARS-CoV-2 

infected populations is the activation of a cytokine storm leading to the development of ARDS. To 

block the cytokine storm from activating in COVID-19 patients, various antibody cocktails 

blocking these factors have been used in ongoing trials (Elahi et al., 2022; Harrison, 2020; Harrison 
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et al., 2021). Many recombinant proteins e.g. Recombinant TNF (INB03 ) and Recombinant 

human interferon α1β (Novaferon) have also been tried (Drożdżal et al., 2021). Other targets 

include Peginterferon Lambda-1a, and Chemokine Receptor Type 2 (CCR2) (Hu et al., 2021). The 

Interleukin-1 receptor-associated Kinase 4 (IRAK4) Inhibitor PF-06650833 is predicted to restore 

immunological balance (Gupta and Chun, 2021) and is under trial (Franchin, 2021). Sigma-1 

receptor (sigma non-opioid intracellular receptor 1) is an important factor associated with the 

mortality of COVID-19 patients (Lehrer and Rheinstein, 2021) several inhibitors have been 

predicted to be anti-COVID-19 e.g. Haloperidol, PD-144418, clemastine, Cloperastine, and 

progesterone. Naringenin, targeting the endo-lysosomal Two-Pore Channels (TPCs) has been 

shown as having anti-SARS-CoV-2 activity (Clementi et al., 2021) 

Mechanistic targets 

Dihydroorotate dehydrogenase  

Dihydroorotate dehydrogenase (mitochondrial DHODH), is a Dihydroorotate oxidase 

involved in pyrimidine synthesis within cells. DHODH inhibition has been shown to decrease viral 

replication/turnover rates (Kaur et al., 2021) as well as increase the incorporation of nucleoside 

analog antivirals such as N4-hydroxycytidine (NHC) which is an activated metabolite of 

Molnupiravir (Stegmann et al., 2021). Brequinar (DUP 785, NSC 368390) in combination with 

nucleoside analog Dipyridamole has shown high in vitro efficacy (Demarest et al., 2022; Xiong et 

al., 2020) and is in Phase II trials. There are many more DHODH inhibitors showing high anti-

SARS-CoV-2 activities e.g. PTC299 (Luban et al., 2021), Teriflunomide (Maghzi et al., 2020), 

and Leflunomide (Hu et al., 2020). Leflunomide also showed faster PCR negativity in COVID-19 

patients in a small trial (Hu et al., 2020). 
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Cathepsin B 

Cathepsin B (APP secretase/Cathepsin B1) is an important enzyme overexpressed in 

hyperimmune inflammatory disorders and hence can be a target for ARDS mitigation (Ding et al., 

2022).  

Caspase 

COVID-19 inflammasome causes cell death through caspase pathways, specifically caspase 8 

(Li et al., 2020). Belnacasan and Emricasan are Caspase inhibitors that showed inhibition of 

inflammasome in vitro (Jeong et al., 2022). 

Calpain 

Calpain inhibitor BLD-2660 is an anti-fibrotic and part of many ongoing trials shown to 

mitigate lung fibrosis in combinations with antivirals (Djordje et al., 2021).  

Ferroportin  

Multiple reports point to SARS-CoV-2 mediated lung injury being mediated by ferroptosis 

with a portion of spike protein mimicking hepcidin hormone (Y. Gupta et al., 2022). Vitamin D is 

known to induce ferroportin overexpression which effluxes out the excess iron thereby preventing 

ferroptosis to reduce lung injury (Moran-Lev et al., 2018). Low levels of vitamin D were associated 

with higher COVID-19 mortality and it has been part of various combinations as an inexpensive 

therapeutic supplement for COVID-19 patients (Z. Wang et al., 2022).  

Eukaryotic Elongation Factor 1A2 (eEF1A2) 

Nitazoxanide is a thiazolide chemical compound that induces eIF2α (eukaryotic translation 

initiation factor-2) overexpression and PKR (double-stranded-RNA-activated protein kinase) 

phosphorylation, which has been used clinically to control Japanese encephalitis virus replication 
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(Elazor et al., 2008; Shi et al., 2014). Nitazoxanide has been part of various combinations for 

SARS-CoV-2 infections and has shown depression in disease trajectory if started early on 

(Mendieta Zerón et al., 2021; Miorin et al., n.d.; Rocco et al., 2021). Paradoxically, Plitidepsin 

(dehydrodidemnin B/ Aplidin) is a marine-derived cyclic depsipeptide inhibiting eEF1A2 that is 

authorized in a few countries for treating refractory multiple myeloma. Preclinical and randomized 

phase-I trials showed Plitidepsin to be well tolerated and block the SARS-CoV-2 virus at the 

nanomolar range (Varona et al., 2022). Both eEF1A2 inhibition and overexpression seem to be 

detrimental to SARS-CoV-2 pathogenesis. 

 

Inosine-5'-monophosphate dehydrogenase (IMPDH) 

Merimepodib (MMPD) is a IMPDH inhibitor that showed 2.5-log decrease in viral titers (p-

value = 0.0004) with 4hr pretreatment (Bukreyeva et al., 2020). When used in combination with 

Remdesivir, there was a rapid undetected level of achievement of viral load in vitro; a trial with 

the same combination is ongoing (Wimmer and Keestra, 2022). 

Target independent drugs 

NSAIDs 

Indomethacin is an NSAID that inhibits prostaglandin E synthase 2 (PGES-2) (Lucas, 2016). 

Its mechanism of action is still an enigma, while its primary target is IL6 suppression through 

PGES-2 inhibition, it is also proposed to block multiple factors for severe COVID-19 e.g. 

suppressing ACE2, TMPRSS2, cytokines, and inflammation in general (Alkotaji and Al-Zidan, 

2021). Indomethacin has shown 100% protection from the development of hypoxia/desaturation 

with SpO2 ≤ 93 compared to 16-22% in the untreated pool of patients (Ravichandran et al., 2022).  
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Table 4. Descriptions of anti-COVID-19 agents (non-virus-specific) with data from clinical trials 

# Name of the Agent Total 

no of 

patients 

and 

trials  

No of days 

of 

treatment 

 

Outcome  

(Negative 

SARS-CoV-2 test 

conversions 

(NSTC)) 

 

Contraindications Refs 

0

1 

Chloroquine 

and 

Hydroxychloroquin

e 

 

50 

trials  

619

91 

patients 

dosing 

was usually 

400 mg 

orally BID 

on day 1 

and 200 mg 

BID on 

days 2–5. 

Found no 

reductions in 

mortality, 

hospitalization, 

symptoms, and 

ICU dependency 

incidence of 

mechanical 

ventilation, and 

NSTC OR= 0.97. 

Significant 

increased odds of 

QT prolongations 

(rates 0.39 vs 0.29 

treated vs. 0.13 vs 

0.09 control) 

(Barratt-

Due et al., 

2021; Deng et 

al., 2022; 

Kalantari et 

al., 2021; 

Taccone et 

al., 2020) 

0

2 
Ivermectin 

 

19 

studies 

432

8 

Patients  

Dosing 

was usually 

400 μg per 

kilogram 

for 3 days 

or placebo  

Found no 

reductions in 

mortality, 

hospitalization, 

symptoms and 

ICU dependency, 

incidence of 

mechanical 

 (Hariyant

o et al., 2022; 

Reis et al., 

2022; Shafiee 

et al., 2022) 
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ventilation, and 

NSTC OR= 0.25 

 

0

3 
Steroids  

(Methylprednis

olone and 

Glucocorticoid) 

 

62 

studies,

5 trials,7 

works of 

literatur

e 

235

97 

patients  

Dosing 

was usually 

(1–2 

mg/kg/day 

for ≤ 7 

days). 

 

Found great 

reductions in 

mortality up to 

20% (RR=73 TO 

77), 

hospitalization, 

symptoms and 

ICU dependency, 

the incidence of 

mechanical 

ventilation (RR 

0.77, increased 28-

day ventilator-free 

days (MD= 0.5 TO 

2.81) 

low-dose 

(≤2mg/kg/day) 

methylprednisolon

e treatment for ≤ 7 

days was 

associated with 

relatively better 

clinical outcomes, 

without increasing 

could slightly 

prolong the 

duration of viral 

shedding (MD 

1.03) 

(Ebrahim

i Chaharom et 

al., 2022; 

Hong et al., 

2022; 

Salvarani et 

al., 2022; J. 

Tu et al., 

2022; J. G. 

Zein et al., 

2022) 
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the duration of 

viral shedding 

0

4 

Clevudine 

 

1 

study  

61 

patients  

Dosing 

was usually 

120 mg 

orally per 

day for 14 

days 

Found no 

reductions in 

mortality, 

hospitalization, 

symptoms and 

ICU dependency 

incidence of 

mechanical 

ventilation, and 

NSTC 

 (Song et 

al., 2021)  

0

5 

Methylene Blue 1 

study  

63 

patients  

Dosing 

was usually  

Methyl

ene blue 0.5 

mg via 

nebulizatio

n TID  

Found no 

reductions in 

mortality, 

hospitalization, 

symptoms and 

ICU dependency 

incidence of 

mechanical 

ventilation, and 

NSTC 

 

 (Aleman

y et al., 2022; 

Patidar et al., 

2022) 

0

6 

 

Nitazoxanide 

 

4 

studies 

Dosing 

was usually  

Found 

improvement in 

the inflammatory 

 (Blum et al., 

2021; 

Mendieta 
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192

6 

patients 

500 to 

600 mg 

TID for 5 - 

7 days 

 

outcome but no 

reductions in 

mortality, 

hospitalization, 

symptoms and 

ICU dependency 

incidence of 

mechanical 

ventilation, and 

NSTC 

 

Zerón et al., 

2021; Miorin 

et al., n.d.; 

Rocco et al., 

2021; 

Rossignol et 

al., 2022) 

 

0

7 

C21 1 

phase 2 

trial 

106 

patients 

Dosing 

was usually  

100 mg 

C21 BID  

7 days 

in addition 

to standard 

of care 

Found marked 

reduction of 

requirement for O2 

on day 14. along 

with no reductions 

in mortality, 

hospitalization, 

symptoms, and 

ICU dependency 

incidence of 

mechanical 

ventilation, and 

NSTC 

 (Tornling 

et al., 2021) 

0

8 

Niclosamide 

 

1 

phase 2 

trial 

Dosing 

was usually 2 

Found no 

reductions in 

mortality, 

 (Cairns et al., 

2022) 
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73 

patients 

 

g orally daily 

for 7 days 

 

 

hospitalization, 

symptoms and ICU 

dependency 

incidence of 

mechanical 

ventilation, and 

NSTC 

 

 

0

9 
Nafamostat 

(Nafabelltan) 

1 

Pase 2 

trial 

104 

patients 

Dosing 

was usually 

4.8 

mg/kg/day 

plus 

standard-of-

care  

 

Found a shorter 

median time to 

clinical improvement 

in a small group of 

high-risk patients 

requiring O2 

treatment and no 

reductions in 

mortality, 

hospitalization, 

symptoms and ICU 

dependency 

incidence of 

mechanical 

ventilation, and 

NSTC in other 

patient groups  

 (Zhuravel 

et al., 2021) 

1

0 

Indomethaci

n 

 

1 

study  

210 

patients  

Dosing 

was usually 

75 mg (OD 

for BMI < 30 

Found 

significant 

symptomatic relief 

and improved 

 (Ravicha

ndran et al., 

2022) 
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(N=

103) 

and BID for 

BMI > 30) 

For 5 

days 

oxygen saturation 

level, none in the 

indomethacin group 

was desaturated. The 

median days for the 

resolution of fever is 

less than 7 days, and 

cough and myalgia 

are significantly 

reduced 

 

Newer approaches to drugging targets 

A variety of novel targets are being investigated with non-standard drug targeting. Ensovibep 

(MP0420) is a DARPins derivative that is an emerging class of novel therapeutics. This molecule’s 

three distinct DARPin domains are designed to simultaneously target the receptor binding ridge 

on each RBD of the spike trimer (Chonira et al., 2022). MP0420 had an IC50 of an average of 

2.3ng/ml except for the mutation F486V, it was twice as effective as neutralizing antibodies; 

REGN10933 and REGN10987, and had a better efficacy against variants of concern (Reichen et 

al., n.d.).  

A novel therapeutic paradigm is a proteolysis-targeting chimera (PROTAC), an application of 

targeted protein degradation, which has successfully been applied toward COVID-19 targets 

(Shaheer et al., 2021). Essentially, PROTACs have a region that binds the viral target and the same 

region that binds a ubiquitin ligase, thereby positioning it to traffic the target for degradation. Since 

the virus must enter the cell, it is thereafter susceptible to PROTACs. Viral proteins are also 
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exogenous, making them good targets from a standpoint of specificity. Furthermore, fragments 

generated from degradation can result in novel antigens that stimulate the host immune response. 

MPRO in particular has been selected as a viable candidate for PROTACs (Shaheer et al., 2021). 

Other potential targets include viral envelope proteins, PLpro, and RNA-dependent RNA 

polymerase (RdRp). PROTACs use a ligand as the basis for targeted protein degradation, novel 

therapeutics can be based on existing drugs or those in development, for the appropriate 

intracellular targets. For example, indomethacin has gained attention after drug repurposing studies 

identified its antiviral capabilities (Shekhar et al., 2022; Zeng et al., 2020). A recent study 

investigated the effectiveness of indomethacin-based PROTACs in pan anti-coronavirus therapy 

(Desantis et al., 2021). Their findings indicated the indomethacin-PROTAC was more potent at 

inhibiting coronavirus, as well as was able to be effective against multiple strains of coronavirus. 

A major limitation of PROTACs is that they are only usable for intracellular targets, or at least 

ones with an intracellular component; this limitation precludes a vast range of potential targets of 

high importance. A very recent technique called molecular degraders of extracellular proteins 

through the asialoglycoprotein receptor (MoDE-As) addresses the glaring weakness of targeted 

protein degradation. MoDE-As can target extracellular proteins for degradation (Caianiello et al., 

2021). This is accomplished via the formation of a ternary complex between a target protein, the 

ligand, and hepatocyte ASGPRs; this complex is then endocytosed, trafficked to the lysosome and 

the target protein is degraded by the host machinery. While MoDE-As has not yet been applied to 

COVID-19 therapy, it is a viable technique to intervene with viral protein targets before they enter 

the cells. Furthermore, there is evidence that the SARS-CoV-2 spike protein interacts with the 

ASGPR in hepatocytes through a lesser-known mechanism of entry (Collins and Steer, 2021; Gu 

et al., 2022). 
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Conclusion 

COVID-19 disease can be safely called a virus-induced hyper-immune disorder. There are thus 

numerous factors still being discovered from the host point of view which can be mitigated by 

various therapeutics to reduce the severe clinical presentations (W. Zhang et al., 2022). Also with 

new roles assigned to various viral components essential in pathogenesis and severe disease 

progression, numerous virus-coded proteins have been proposed as drug targets albeit only a few 

have bioactive inhibitors (Martin et al., 2020). Although there are numerous agents with known in 

vitro activity, there is an urgent need to form suitable combinations based on the synergy of the 

agents, a stratified patient population taking into consideration important pathways leading to 

either ARDS or Long-haul disorders. Also, various trialed agents with borderline protection or a 

population-specific activity can be used to fortify newly discovered strong antivirals like 

Nirmatrelvir or Molnopiravir. As there is no single pathway in this COVID-19 sequela, there is an 

urgent need for utilizing personalized medicine combinations composed of the most tolerated and 

active agent combinations.  

Intriguingly, when viewing from a drug discovery perspective, there is a learning phase we 

must endeavor to better understand the druggability of identified viral targets with known and 

potential inhibitors to continue developing new antivirals to be better prepared for the emergence 

of drug resistance to current candidates and therapeutics (Gandhi et al., 2022), especially when it's 

now known as immunocompromised patients are the source of new resistant variant emergence 

(Chen et al., 2021; Gandhi et al., 2022; Leung et al., 2022).  

Within this realm of rapidly advancing, technology is a convergent race between computational 

and experimental methods, which furthers the acceleration of drug discovery(Dara et al., 2022; 

Hinton, 2007; Jiménez-Luna et al., 2021; Lima et al., 2016; Patel et al., 2020; Sherrington and 
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Kirkpatrick, 1975; Talevi et al., 2020). We are using ML increasingly in multiple areas of science 

and even in other areas (e.g. social science), whilst we are making stronger strides in computational 

design techniques. ML is now commonplace in digital pathology, search engines, recognition 

(voice, facial, pattern), market and financial predictions, astronomy, cryptography, agriculture, and 

more. The use of AL, ML, and deep learning techniques is to better find and rapidly identify data 

from multiple sources, extract valuable insights, visualize the data meaningfully, and give context. 

Within drug discovery, there is an ongoing explosion of the use of ML with molecular modeling 

for protein structure prediction and drug-protein interaction analyses. For example, the pioneering 

of Boltzmann machines using decision trees and then adaptive rules for protein structures was a 

crucial development that allowed the generation of predetermined global variables on molecular 

structures to dictate conformational searches in directions under the reinforced learning pattern 

dictated (Caulfield and Devkota, 2012; Caulfield, 2011; Caulfield et al., 2011; Coban et al., 2021b; 

Kayode et al., 2016; von Roemeling et al., 2018). The particularly useful application of this 

allowed such things as cryo-EM fitting and rapid space searches (Caulfield and Devkota, 2012; 

Caulfield et al., 2011) using entropy as the controller. 

Particularly of note is the emergence of AI and ML to the forefront of protein structural 

modeling, conformational dynamics exploratory mission of many labs to find key druggable states, 

and the determination of the human genomic variance as a contributing factor to the way viruses 

capitalize on variation. Virus exploitation of human genetic variance is also being tackled by 

computationalists to better understand how genetics plays a role in virus proliferation, which will 

allow better tools to predict potential virus offshoots in the future. One can imagine a day when 

there will be a virtual medicine cabinet pre-stocked with the needed antivirals specific to the 

patient’s genetic predispositions and particular cell pathways. In such a scenario, we will have AI-
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based medicine that has the genetic profile, molecular structures for the targets needed, rapidly 

available custom chemistry, and rapid safety-profiling needed for the new chemical entities to be 

used in humans on-demand with acceptable safety tolerances. While this particular view of AI and 

ML is not anytime soon, the palatability of this particular star trek viewpoint is very realizable and 

within our horizon. 
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