

Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

Protein structure-based *in-silico* approaches to drug discovery: Guide to COVID-19 therapeutics

Yash Gupta, Oleksandr V. Savytskyi, Matt Coban, Amoghavarsha Venugopal, Vasili Pleqi, Caleb A. Weber, Rohit Chitale, Ravi Durvasula, Christopher Hopkins, Prakasha Kempaiah, Thomas R. Caulfield

PII: S0098-2997(22)00096-6

DOI: https://doi.org/10.1016/j.mam.2022.101151

Reference: JMAM 101151

To appear in: Molecular Aspects of Medicine

Received Date: 14 August 2022

Revised Date: 19 October 2022

Accepted Date: 21 October 2022

Please cite this article as: Gupta, Y., Savytskyi, O.V., Coban, M., Venugopal, A., Pleqi, V., Weber, C.A., Chitale, R., Durvasula, R., Hopkins, C., Kempaiah, P., Caulfield, T.R., Protein structure-based *in-silico* approaches to drug discovery: Guide to COVID-19 therapeutics, *Molecular Aspects of Medicine* (2022), doi: https://doi.org/10.1016/j.mam.2022.101151.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2022 Published by Elsevier Ltd.

Protein structure-based *in-silico* approaches to drug discovery: Guide to COVID-19 therapeutics

Yash Gupta¹, Oleksandr V. Savytskyi^{2,6}, Matt Coban^{2,4}, Amoghavarsha Venugopal¹, Vasili Pleqi¹, Caleb A. Weber², Rohit Chitale^{1,5}, Ravi Durvasula¹, Christopher Hopkins⁶, Prakasha Kempaiah¹, Thomas R. Caulfield^{2-3,7-9}

- 1 Department of Medicine, Infectious Diseases, Mayo Clinic, Jacksonville, Florida, USA
- 2 Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
- 3 Department of QHS Computational Biology, Mayo Clinic, Jacksonville, Florida, USA
- 4 Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
- 5 The Council on Strategic Risks, 1025 Connecticut Ave NW, Washington, DC
- 6 In Vivo Biosystems, Eugene, Oregon, USA
- 7 Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
- 8 Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
- 9 Department of Neurosurgery, Mayo Clinic, Jacksonville, Florida, USA

Abstract:

With more than 5 million fatalities and close to 300 million reported cases, COVID-19 is the first documented pandemic due to a coronavirus that continues to be a major health challenge. Despite being rapid, uncontrollable, and highly infectious in its spread, it also created incentives for technology development and redefined public health needs and research agendas to fast-track innovations to be translated. Breakthroughs in computational biology peaked during the pandemic with renewed attention to making all cutting-edge technology deliver agents to combat the disease. The demand to develop effective treatments yielded surprising collaborations from previously segregated fields of science and technology. The long-standing pharmaceutical industry's aversion to repurposing existing drugs due to a lack of exponential financial gain was overrun by the health crisis and pressures created by front-line researchers and providers. Effective vaccine development even at an unprecedented pace took more than a year to develop and commence trials. Now the emergence of variants and waning protections during the booster shots is resulting in breakthrough infections that continue to strain health care systems. As of now, every protein of SARS-CoV-2 has been structurally characterized and related host pathways have been extensively mapped out. The research community has addressed the druggability of a multitude of possible targets. This has been made possible due to existing technology for virtual computer-assisted drug development as well as new tools and technologies such as artificial intelligence to deliver new leads. Here in this article, we are discussing advances in the drug discovery field related to target-based drug discovery and exploring the implications of known target-specific agents on COVID-19 therapeutic management. The current scenario calls for more personalized medicine efforts and stratifying patient populations early on for their need for different combinations of prognosisspecific therapeutics. We intend to highlight target hotspots and their potential agents, with the ultimate goal of using rational design of new therapeutics to not only end this pandemic but also uncover a generalizable platform for use in future pandemics.

Key words: SARS-CoV-2, COVID-19, Drug targeting, Rational improvement, Artificial

Intelligence, Target-based drug discovery, Mathematical modeling

Introduction

Since the beginning of the COVID-19 pandemic, which is caused by SARS-CoV-2, there has been an impending question 'what can be the standard course of therapy, and which agents need to be trialed. The first year of the pandemic followed Murphy's Law (Bloch, 2003) with the ensuing chaos causing severe mortality rates due to a lack of population immunity and the use of ineffective interventions. The rapid global spread of the disease overwhelmed medical care systems due to exponential regional surges. As of July 4th, 2022, the pandemic has claimed 6.35 million lives worldwide and caused over 0.5 billion cases of infection ("WHO Coronavirus Disease (COVID-19) Dashboard," n.d.). The USA has been the worst hit with more than a million deaths out of 87.5 million cases (Dong et al., 2020; Ruhm, 2022). The surge in cases is often at an intensity that its severity is made worse by a shortage of medical resources. This has stymied trials conducted for several agents (Robinson et al., 2022). Many promising initial reports of therapeutic approaches became proven failures, and yet they often were needlessly trialed repeatedly by different groups. Hampering effective therapeutic development, the rush to trials often fell short in the number of patients recruited. This under empowerment and the varying degree of symptom sets leads to prognosis and therapeutic response variability which makes it difficult to stratify patient populations. This was further exacerbated by the changing pathophysiology caused by newer variants, which combined with the evolving self-medication landscape, resulted in inconsistent trial data for some agents and ultimately unreliable outcome results (Watson, 2022). Prohibitive costs of newer drugs, as well as antibody therapies, have generated worldwide interest in trying a variety of agents to reduce the severity of COVID-19 infection. For instance, preliminary evidence suggested that hydroxychloroquine (HQ) therapy can reduce viral load (Gautret et al., 2020). However, a recent meta-analysis of multiple trial data has now concluded

that although HQ therapy is safe at the trial doses used, it remains ineffective in reducing mortality and severity of disease (T. Gupta et al., 2022). Conversely, other trials have shown more promising results, such as the use of Oseltamivir (Theraflu), which statistically demonstrated to reduce mortality in COVID-19 patients (Zendehdel et al., 2022). Additionally, various comorbidities like old age, diabetes, obesity, hypertension, and the immunocompromised state contribute to COVID-19 mortality, their associations are still not enough to stratify patients and take universal prophylactic measures (Gentile and Schiano Moriello, 2022) and as a result, new therapeutic interventions remain in high demand.

Computational structural biology is a interdisciplinary field performed on computer or via computer simulation that encompasses the theory and application of approaches to model, predict, and explain biological function at the molecular level, well-known as *in silico* experiment. Proteins are flexible molecules that undergo conformational changes (such as folding and unfolding or domain motions) as part of their interactions with other biopolymers as partners or drug molecules. Conformational changes of the proteins might reflect a closed, open, or intermediate states and this dynamical aspect plays a critical role in drug discovery. Nowadays, molecular dynamics makes it possible to simulate these conformational changes with a timescale ranging from nanoseconds to microseconds of time. Molecular dynamics simulations is a computer (*in silico*) technique that makes it possible to predict how a system will evolve over time and, consequently, to predict the movement of the molecules in the system. *In silico* methods (molecular modeling, molecular docking or screening, molecular dynamics, etc) could be used to efficiently identify and design drug candidates, to study their interactions with their targets. The Nobel Prize in Chemistry 2013 has been awarded to Martin Karplus, Michael Levitt and Arieh Warshel for development of

multiscale models of complex chemical systems as computational techniques for structural biology (https://www.nobelprize.org).

In silico drug discovery has proved to be instrumental in suggesting numerous agents and many of the predicted agents have been used to manage COVID-19. It has been a long-standing principle that the fixed 3D structure of protein dictated by amino acid composition is the basis for assigning function. There have been exceptions to this principle in multiple instances when proteins have multiple structures owing to disordered regions (Anjum et al., 2022; Prateek Kumar et al., 2022a; J. Zhang et al., 2022). This is more evident in RNA viral proteomes due to a higher rate of mutations and a protein often has more than one function. For instance, PLpro is a protease and a deubiquitinase and ion channel 3a, all of which are important for viral envelope formation, and their functional activities are associated with inflammasome formation in infected cells (Lewis et al., 2022; J. Zhang et al., 2022). Such redundancy, size limitations, and genetic instabilities call for highly flexible proteins which are generally seen in the experimentally solved crystal structure, their variabilities in viral proteins in the form of multiple 'states' and confirmations (Fornasier et al., 2022; Siragusa et al., 2022). As starting crystal structure is the bottleneck of any virtual screening effort, this variability led to numerous 'false' hits that had no agreement between binding prediction and biological activity (Martin et al., 2020). Like all the other fields, the field of computational biology methods also had multiple breakthroughs which now have more applications than just COVID-19 drug discovery research. Additionally, we now have AI predictions for the shape of nearly every known protein, which can be structurally complementary to drug discovery (Callaway, 2022). Many laboratories have been pioneering novel technologies in the machine learning, AI, and conformational dynamics space (Caulfield and Medina-Franco,

2011; Coban et al., 2021b, 2021a, 2020; Hines et al., 2019b, 2019a; Kayode et al., 2016; Puschmann et al., 2017; Savytskyi et al., 2013).

Recently, the anti-cancer drug Pralatrexate was discovered to have in vitro EC50 values of 0.008µM. While being a strong immunosuppressant it's usability in COVID-19 is highly debatable the pipeline that delivered this compound comprised of deep learning models and force field dynamics simulations (Zhang et al., 2020). With newer and faster methods made available there are multiple methods producing a similar pipeline (Rapicavoli, Alaimo, Ferro, & Pulvirenti, 2022; Zhang et al., 2022). Free energy perturbation calculations enabled Zhang et.al in 2022 to improve main protease Triarylpyridinone inhibitors to have EC50 values as low as 0.080 µM (Ramos, Zeze, Velut, & Jan, 1987).

In this review, we try to boil down protein-inhibitor relationships that have been exploited as anti-COVID-19 therapeutics or have a high validated potential for the same. Such information should be used to steer the computational learning approaches through AI to understand why these work and others don't despite having positive classic predicted interactions. Additionally, we provide a comprehensive analysis of existing, approved, and experimental therapeutics with their mechanism of action against either the viral or host protein targets.

Drugging COVID-19: what constitutes a "good" drug?

There have been some controversial agents that have undergone trials against SARS-CoV-2 due to some *in vitro* reports or proposed mechanisms of action (Ivanova et al., 2022). Many of these agents did not have a consistent effect and had surprising side effects such as QT prolongations (abnormal heart rhythms and sudden cardiac arrest) e.g Chloroquine and Hydroxychloroquine (Deng et al., 2022). While others were not fully effective at tolerable doses

e.g. Ivermectin (Hariyanto et al., 2022), some were mildly effective even though they had no interaction with SARS-CoV-2 targets, e.g. oseltamivir (Zendehdel et al., 2022). Some were highly dangerous, especially with the misinformation inspired panicked patient self-medications e.g. Chlorine Dioxide (Chejfec-Ciociano et al., 2022). Since the beginning of the pandemic, Ibuprofen was contraindicated as it is known to increase ACE2 receptor expression in the cells exacerbating viral infectiousness. However, there was widespread use of nebulized ibuprofen (NaIHS) as a wonder cure and reported to be highly effective, had negative correlations and so-called positive effects were probably due to concomitant aggressive corticosteroid therapy (Calonico et al., 2022). As a result, there is a need to understand both classical drug targets and other modalities that may be therapeutic.

Techniques for elucidation of drug-target interaction and efficacy

One of the foundations of drug design is to utilize a molecular model of druggable targets. Today's drug discovery labs can draw from a multitude of techniques for determining experimental structures, yet the different techniques have their strengths and weaknesses. For example, membrane proteins are notoriously difficult to crystallize, so the gold standard x-ray crystallography is generally not successful. Typically, cryo-EM is utilized for large proteins/complexes, such as membrane proteins. The caveat here is that cryo-EM is in general a lower resolution technique and may bias conformations because of the air-water interface. A relatively new structural technique is x-ray free-electron laser (XFEL), coupled with lipid-cubic phase crystallization (Ono et al., 2022). Essentially, this consists of growing small crystals in a lipidic environment that is more amenable for membrane proteins, which are then injected at

random orientations and illuminated with extremely brilliant x-ray photons to generate diffraction patterns. This has been successfully applied to a variety of membrane proteins recently, though not as yet any COVID-19-related target; however, this technique has potential application in the field as shown with other viruses (Townsend et al., 2021). Proteases and kinase inhibitors have traditionally held roles as drugs of choice for inhibiting virion production (Bain et al., 2003; Mahdi et al., 2020; Pearlman, 2012; "Protein Kinase Inhibitors," 2012; Zhou et al., 2015), however, in recent times the shift to virus centric proteins has made progress (Chakraborty et al., 2021; Dai et al., 2020; Narayanan et al., 2022; Prajapat et al., 2020; Y.-X. Zheng et al., 2021). Added to these new targets has been the implementation of new computational tools to more quickly address the urgency of the need (Callaway, 2022; Coban et al., 2021b).

Enter the era of the machine: learning to use algorithm-guided drug design

The complex multivariate approaches to drug modeling on a molecular structure are well suited to the application of machine learning (ML) techniques. Generative chemistry is at the forefront of new medicinal chemistry design workflows, where the implementation of layered data with context to various data sources allows us to integrate complex datasets into the framework of a deep learning or machine-based intelligence that can find associations otherwise not possible. Both ML and artificial intelligence (AI) are being applied to many areas of biological research. With respect to COVID-19, ML has been used to help screen drug targets, druggable sites on the targets, drugs, and drug-target interactions (El-Behery et al., 2021). This has led to the repurposing of drugs that are already FDA-approved for COVID-19 therapy, the discovery of novel molecules as potential drugs, and the identification of cryptic binding pockets introduced by virus/host protein-protein interaction (Dang and Song, 2022). In addition, ML has been used to mine bioinformatics data and

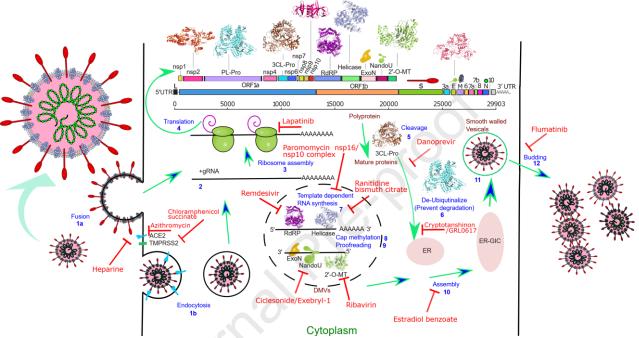
analyze biological pathways to identify novel pathways that can lead to a greater understanding of the disease mechanism, as well as detect additional points of intervention (Auwul et al., 2021). AI has assisted in the analysis of samples to help make rapid diagnoses with a less expensive assay that is highly sensitive, selective, and accurate (Jaroenram et al., 2022; Lai et al., 2022). The method works by employing two pH-dependent dyes and a reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay; the colorimetric readout data was used to train an algorithm for classification i.e. diagnosis of positive or negative infection status. Other uses of ML related to COVID-19 are the large-scale screening for anti-COVID-19 biomolecules in foods (Laponogov et al., 2021). The study used a similar approach to standard drug screening but started with a database of food-based bioactive molecules; they identified 52 molecules predicted to disrupt the COVID-19-host interactome. Engaging in multiple treatment paradigms is beneficial in that it increases the likelihood of therapeutic benefit to the patient, decreases the chance of the virus developing resistance, and can reduce dosing to limit adverse side effects. Interruption of COVID-19 progression with multi-drug therapy looking for synergetic effect with computational biology for high-throughput screening has been successful (Coban et al., 2021b), which has the capability of using mixed algorithms to examine the impact of structural changes. As a result, the application of ML and AI techniques is expected to yield rapid progress in the discovery of new candidates for antiviral use.

In silico deduced target-specific leads that reached clinical trials

Favipiravir is a purine analog that is a potent RNA-dependent RNA polymerase (RdRp) inhibitor initially selected on basis of similarities with known target EBOLA RdRp (da Silva et al., 2022; Mashayekhi-Sardoo and Hosseinjani, 2022). Favipiravir showed a 62.8% viral clearance in 4 days compared to untreated (Ivashchenko et al., 2021). While favipiravir has little effect on

nonhospitalized patients, its use among hospitalized patients has led to faster viral clearance and better radiological imaging endpoints in multiple trials (Hung et al., 2022). With upcoming reports of long-term lung damage in both hospitalized and nonhospitalized patients (C. Wang et al., 2022; J. Yu et al., 2022), there is a need for a retrospective follow-up trial needed to assess favipiravir's long-term benefits. Icatibant is a known bradykinin type 2 receptor antagonist that was computationally predicted to target the SARS-CoV-2 main protease (Liu and Wang, 2020). However, the clinical trial (NCT04978051) results were inconclusive (Malchair et al., 2022) and there is no target-specific inhibition data available. Lopinavir & Ritonavir are other predicted inhibitors of 3CLpro (Reina and Iglesias, 2022), however, numerous clinical trials have failed to establish their clinical usefulness as anti-COVID-19 medications (Cao et al., 2020; Sheahan et al., 2020). PF-07321332 (nirmatrelvir) a rationally improved second-generation frontrunning drug from Pfizer is in the Phase3 clinical trial, It targets 3CLpro and thereby inhibits viral replication (Vandyck and Deval, 2021). Ciclosporin/Cyclosporine immunomodulatory drug is a calcineurin inhibitor that was discovered through computational host interactome modeling for the SARS virus (SARS-CoV) (Pfefferle et al., 2011) and was predicted to have a positive effect on COVID-19 through immunosuppression (Ellinger et al., 2021). Further, it was found to have antiviral activity in vitro (Dittmar et al., 2021). Later HR (hazard ratio) improvement value of 2.15 was observed in a combination trial with a low dose of steroid (Galvez-Romero et al., 2021) and was an efficacious treatment option in the COQUIMA cohort (Schuurmans and Hage, 2021) and multiple variants (Fenizia et al., 2022). Another 3CLpro inhibitor, found through in silico screenings was Cepharanthine (CEP), a small phyto-alkaloid obtained from the Stephania cepharantha. CEP had IC₅₀ of 1.90 µm (Hijikata et al., 2022) against the Wuhan strain (wild type) and consistent activity against three other VOCs (Prabhakaran Kumar et al., 2022). It's a promising anti-COVID-19

candidate in animal testing offering significant protection from lung fibrosis in bleomycin (BLM)challenged rats (Li et al., 2022).


Cytotherapy

Cellular therapies have been proven to protect immunosuppressed patients (>20% mortality rate) by providing anti-viral cellular immunity and immune modulation for vulnerable patient populations (Farhangnia et al., 2022; Verma et al., 2022). Different trials with SARS-CoV-2 specific T-cell trials (allogeneic CSTs familial or HLA matched), Natural killer (NK) cell (e.g. FT516 cells), Tregs (T regulatory cell), and Mesenchymal Stem Cell Infusion or Stem Cell Products have shown therapeutic potential comparable to available antiviral therapies (Conway et al., 2022). With a longer lifespan of T-cells, there is longer-lasting protection than humoral immunity.

Biological activities of SARS-CoV-2 components as potential therapeutic targets

A wide variety of targets are addressable for attenuating the infection progression of SARS-CoV-2 as depicted in Figure 1. As previously mentioned, therapeutics active on some of these targets are now in clinical trials. Yet many more Non-Structural Protein (NSP) targets have been identified and are in various stages of development (Table 1). In this review, we will address both classical drug targets (enzymatic vs non-enzymatic) and new modalities for possible use as COVID therapies.

Figure 1. Schematic depiction of different SARS-CoV-2 proteome (ORF map) coded targets(3D ribbons or cartoons) involved in different steps of viral replication (labeled blue) and various example inhibitors (labeled red). The infection cycle starts when the SARS-CoV-2 Spike protein binds to a Human receptor followed by either viral-host cell fusion (1a) or endocytosis

(1b). Fusion directly allows the viral RNA to enter the host cell (2), The large viral script is known to encode 29 viral proteins (3), A viral-specific translation yields two replicase polyproteins, pp1a and pp1ab, and many small ORFs(4). The two major polyproteins are processed by two proteases, PLpro and 3CLpro(5), generating 16 NSPs. ExoN possesses a viral exoribonuclease activity (9). Viral Helicase plays a critical role in viral replication by unwinding dsRNA formed during replication as well as tertiary structures of genomic RNA. (7). The enzyme 2'-O-MT methylates the viral 2' end which is important for selective translation and protection from host RNA degradation (8). RdRP along with different NSPs is involved in viral-host cell replication through catalyzing template synthesis of polynucleotides in the 5' to 3' direction (7). NendoU is an Mn²⁺ dependent hexamer (dimer of trimer) enzyme responsible for protein interference with the innate immune system. For viral assembly of structural proteins (S, E, and M) in the endoplasmic reticulum, along with the N protein is combined with the (+) gRNA to become a compact helical nucleoprotein complex(10). They assemble to form a virus particle in the endoplasmic reticulum-Golgi apparatus compartment

and are then excreted from the cell through budding mediated by the fusion of smooth-walled vesicles to the plasma membrane (11–12).

Agent name &	Kind of agent	Assay/	IC50	Previously known	Mechanism	Reference
SARS-CoV-2		validation	(μΜ)	target?	of action of	
target		with SARS-	If		approved	
		CoV-2	available	Ň	use	
		-				
Darunavir	Protease	It was	5.55	Target decreasing	Works	(Costa
<u>NSP</u>	inhibitors	done using the		the risk of HIV	by	nzo et al.,
enzymatic -	(synthetic	High-	0	transmission to other	decreasing	2020)
Main	compound)	performance		people.	HIV amount	
peptidase		liquid	$\langle \cdot \rangle$		in the blood.	
peptidase		chromatograph				
		y (HPLC)				
		method.				
Teicoplani	Glycopepti	It was	8.78	Target various	It	(F. Yu
n	de antibiotic	done using the		infections caused by	inhibits	et al., 2022)
		ultra-high		gram-positive bacteria.	peptidoglyca	
		performance			n	
<u>NSP</u>		liquid			polymerizati	
<u>enzymatic -</u>		chromatograph			on, leading to	
Main		y–high-			the inhibition	
peptidase		resolution mass			of bacterial	
		spectrometry			cell wall	
		method.			synthesis and	
					cell death.	
					con douin.	

Table 1. In vitro validated anti-SARS-CoV-2 agents reported with a known target

Journal Pre-proof
14

Nelfinavir	A viral	Done	37	Targets HIV in	Works	(Foo
NCD	protease	using in vitro		adults and children.	by	et al., 2021;
<u>NSP</u>	inhibitor	and <i>in vivo</i>			preventing	Ohashi et
<u>enzymatic -</u>		genetic			HIV virion	al., 2021)
Main		toxicology			from fully	
peptidase		assays.			maturing and	
		assays			becoming	
					infective.	
					infective.	
Bortezomi	А	Done	1.39	Targets multiple	Works	(Shen
b	proteasome	using HPLC-		myeloma, or mantle	by	et al., 2022)
NSP	inhibitor	UV Method		cell lymphoma in	preventing	
<u>enzymatic</u>				patients.	uncontrolled	
			. 0		degradation	
Main					of IĸB, an	
peptidase			X İ		inhibitory	
					protein of	
					NF-κB.	
α-	Protease	It was	0.67	Targets M pro of	Works	(Zhan
ketoamide	inhibitor	done using MD	± 0.18	α -and β -coronaviruses	by inhibiting	g et al.,
inhibitor)	simulation.		in addition to 3C	the	2020)
compound 13b				proteases of	replication of	
				enterovirus.	SARS-CoV-	
					2 in human	
<u>NSP</u>					Calu3 lung	
<u>enzymatic -</u>					cells.	
Main						
peptidase						

Telaprevir	An	It was	11.54	Targets chronic	Works	(Mah
	NS3/4A viral	done using in-		Hepatitis C Virus	by inhibiting	moud et al.,
	protease	<i>vitro</i> analysis.		infections.	viral HCV	2021).
<u>NSP enzy</u>	inhibitor				genotype 1	
matic -					replication.	
Main						
peptidase						
peptidase						
Boceprevir	Protease	It was	1.95±	Targets chronic	Works	(Ma et
<u>NSP</u>	inhibitor.	done through	1.62	Hepatitis C, an	by binding	al., 2020b)
enzymatic -		molecular	(EC5	infectious liver disease	the serine	
Main		docking and	0)	caused by infection	(S139)	
peptidase		subsequent	•)	with Hepatitis C Virus	residue in the	
Population		experimental v		(HCV).	active site	
		alidation.	\circ		via an (α)-	
			X		ketoamide	
		0			functional	
					group,	
					inhibiting the	
					proteolytic	
	5				activity of	
					the HCV 1a	
					and 1b	
					encoded	
					enzyme.	
	A (* * 1	T.	4.67	T (M)	337 1	(I ')
Ebselen	Antioxida	It was	4.67	Targets Meniere's	Works	(Jin et
<u>NSP</u>	nt drug	done using in		Disease, Type 2	by	al., 2020)
<u>enzymatic -</u>		vitro and in		Diabetes Mellitus, and	modulating	
Main		vivo studies.		Type 1 Diabetes	metalloprotei	
peptidase				Mellitus.	ns,	
					enzymatic	

Journal Pre-proof
10

					cofactors,	
					gene	
					expression,	
					epigenetics,	
					antioxidant	
					defenses, and	
					immune	
					systems.	
				۵.		
Dactolisib	An	It was	0.225	Targets Cancer,	Works	(Garci
	imidazoquinoli	done using in		Solid Tumor, Renal	by inhibiting	a et al.,
NCD	ne derivative.	vitro and in		Cancer, Breast Cancer,	PI3K kinase	2021)
<u>NSP</u>		vivo studies.		and Cowden	and mTOR	
<u>enzymatic</u>				Syndrome, among	kinase in the	
Main			\circ	others.	PI3K/AKT/	
peptidase					mTOR	
		0			kinase	
					signaling	
					pathway,	
					which may	
					result in	
					tumor cell	
					apoptosis	
					and growth	
					inhibition in	
					PI3K/mTOR	
					-	
					overexpressi	
					ng tumor	
					cells.	

Alvocidib	А	It was		Targets cancer.	Works	(Fong,
NCD	synthetic	done using			by inhibiting	2020)
<u>NSP</u>	flavonoid	bioanalytical			cyclin-	
<u>enzymatic -</u>		methods.			dependent	
Main					kinases,	
peptidase					arresting cell	
					division, and	
					causing	
				6	apoptosis in	
				Ó	non-small	
					lung cancer	
					cells.	
						(9)
Methotrex	Antimetab	It was		It targets severe	Works	(Steg
ate	olites	done using the	\diamond	psoriasis, certain types	by slowing	mann et al.,
		HPLC-SRM-		of cancer including	the growth of	2021)
<u>NSP</u>		MS plasma		uterine, breast, and	cancer cells.	
<u>enzymatic</u>		analysis.		lung cancer, certain	Equally, it	
<u>enzymunc </u>				types of lymphoma,	decreases the	
				certain cancers of the	activity of	
peptidase	5			head and neck, and	the immune	
				leukemia.	systems to	
					treat	
					rheumatoid	
					arthritis.	
Carmofur	Antineopla	It was	28.2	Targets colorectal	Works	(Ma et
	stic drug or	done using In	± 9.5	and breast cancer.	by	al., 2020a)
	chemotherapeut	Vitro and in			controlling	
<u>NSP</u>	ic agent.	Vivo biological			cancer cell	
<u>enzymatic -</u>		evaluations.			proliferation,	
					suppressing	
					11	

Journal Pre-proof	
10	

Main					N-	
peptidase					acylethanola	
					mine acid	
					amidase	
					(NAAA)	
					activity.	
Conivapta	An	Done	12.2	Target euvolemic	Works	(Yang
n	antidiuretic	using bio-	± 4.20	or hypervolemic	by raising	et al., 2020)
	hormone	analytical		hyponatremia in	serum levels.	
	inhibitor.	HPLC-MS/MS		hospitalized patients.		
<u>NSP</u>		method				
<u>enzymatic -</u>				O		
Main						
peptidase			0			
Atovaquon	An	It was	6.78 ±	Targets	Works	(Yang
e	antiprotozoal	done using a	0.73	Pneumocystis	by stopping	et al., 2020)
	agent.	spectrophotom		pneumonia in adults	specific	
		etric method.		and teenagers.	protozoa	
<u>NSP</u>					from causing	
<u>enzymatic -</u>	5				pneumonia.	
Main						
peptidase						
Vilazodon	An	It was	belo	Targets	Works	(Ghas
e	antidepressant	done using the	w 15	depression in adults.	by raising the	emiyeh et
		Spectrofluorim			serotonin	al., 2021)
		etric Detection			activity in	
<u>NSP</u>		method.			the brain.	
<u>enzymatic -</u>						

Main						
peptidase						
Michael	Protease	It was	16.77	Targets SARS-	Works	(Jin et
acceptor	inhibitor.	done using	(EC5	CoV-2.	by inhibiting	al., 2020)
inhibitor N3		QM/MM	0)		SARS-CoV-	
		simulations.	0)		2 3CLpro.	
<u>NSP</u>						
<u>enzymatic -</u>				S.		
Main				_0`		
peptidase						
Raloxifene	A selective	It was	4.50 -	Turgets	Works	(1
Kaloxitene				Targets		(Imam
<u>NSP</u>	estrogen	done using	7.99	osteoporosis and breast	by promoting	ura et al.,
<u>enzymatic -</u>	receptor	competitive	$\langle \rangle$	cancer in high-risk	estrogen-like	2021)
Main	modulator.	binding assays.		postmenopausal	effects on	
peptidase		20		women.	lipid	
					metabolism.	
Ouabain	А	It was	0.030	It targets atrial	Works	(Farag
	cardioactive	done through	μ M -	fibrillation and flutter,	by inhibiting	et al., 2020)
	glycoside.	cell biological	0.075	and heart failure.	the Na-K-	et al., 2020)
<u>NSP</u>	Sijeoside.	studies.	0.075	und nourt fundio.	ATPase	
enzymatic -		studies.			membrane	
Main						
peptidase					pump.	
pepiduse						
GC373	Feline	It was	0.40	Targets SARS-	Works	(Vuon
<u>NSP</u>	drug	done using	± 0.05	CoV-2.	by inhibiting	g et al.,
<u>enzymatic</u>		downstream			SARS-CoV-	2020)
<u>enzymanc -</u> Main		biochemical			2 M ^{pro} .	
		assays.				
peptidase						

GC376	Prodrug	It	was	0.19	Targets S	SARS-	Works	(Vuon
		done us	ing a	± 0.04	CoV-2.		by inhibiting	g et al.,
		fluoresce	nce				SARS-CoV-	2020)
<u>NSP</u>		resonance	e				2 M ^{pro} .	
<u>enzymatic</u> -		energy ti						
Main		(FRET)-						
peptidase		cleavage						
		cleavage	assay.					
Imatinib	A tyrosine	It	was	0.17	Targets		Works	(Han
	kinase inhibitor	done	using		gastrointestinal	X	by inhibiting	et al., 2021)
		UPLC-M	S/MS		stromal tu	umors,	the Bcr-Abl	
<u>NSP</u>		assay	and		leukemias, sy	stemic	tyrosine	
<u>enzymatic -</u>		ultrafiltra	tion		mastocytosis,		kinase and	
Main		method.		. (myelodysplastic/	myel	proliferation	
peptidase				2	oproliferative di	isease,	of cells and	
				X i	dermatofibrosarc	coma	induces	
					protuberans,	and	apoptosis in	
				P	hypereosinophili	с	fresh	
					syndrome.		leukemia	
							cells and	
							Bcr-Abl	
							positive cell	
							lines.	
Triclabend	An	It	was	70	Targets		Works	(Gao
azole	anthelmintic	done usi	ing in		fascioliasis in liv	estock	by reducing	et al., 2020)
	drug.	Vitro	and		and humans.		resting	
		animal st	udies.				membraned	
<u>NSP</u>							and	
<u>enzymatic -</u>							inhibiting	
Main							tubulin	
peptidase							function and	

					enzyme and	
					protein	
					necessary for	
					Fasciola	
					species	
					survival.	
Emedastin	A selective	It was	82 ±	Targets allergic	Works	(Gao
	H1-receptor	done using an	7	conjunctivitis.	by managing	et al., 2020)
e	_		1	conjunctivitis.		et al., 2020)
	antagonist.	in Vitro study.			symptoms of	
<u>NSP</u>					allergic	
enzymatic -					conjunctiviti	
				X	s.	
Main				6		
peptidase						
			$\langle \rangle$			
Bendamus	An	It was	26 ±	Targets chronic	Workin	(Gao
	An antineoplastic	It was done using an	26 ±	Targets chronic	Workin g by causing	(Gao et al., 2020)
Bendamus						
Bendamus	antineoplastic	done using an		lymphocytic leukemia	g by causing	
Bendamus	antineoplastic	done using an		lymphocytic leukemia (CLL) and indolent B-	g by causing intra- and	
Bendamus	antineoplastic	done using an		lymphocytic leukemia (CLL) and indolent B- cell non-Hodgkin	g by causing intra- and inter-strand	
Bendamus tine <u>NSP</u>	antineoplastic	done using an		lymphocytic leukemia (CLL) and indolent B- cell non-Hodgkin	g by causing intra- and inter-strand crosslinks	
Bendamus tine <u>NSP</u>	antineoplastic	done using an		lymphocytic leukemia (CLL) and indolent B- cell non-Hodgkin	g by causing intra- and inter-strand crosslinks between	
Bendamus tine <u>NSP</u>	antineoplastic	done using an		lymphocytic leukemia (CLL) and indolent B- cell non-Hodgkin	g by causing intra- and inter-strand crosslinks between DNA bases	
Bendamus tine <u>NSP</u> <u>enzymatic</u>	antineoplastic agent	done using an <i>in-vitro</i> study.	1	lymphocytic leukemia (CLL) and indolent B- cell non-Hodgkin lymphoma.	g by causing intra- and inter-strand crosslinks between DNA bases resulting in cell death.	et al., 2020)
Bendamus tine <u>NSP</u> <u>enzymatic</u>	antineoplastic agent	done using an <i>in-vitro</i> study. It was	0.25-	lymphocytic leukemia (CLL) and indolent B- cell non-Hodgkin lymphoma. Targets infections	g by causing intra- and inter-strand crosslinks between DNA bases resulting in cell death. Works	et al., 2020) (Ahme
Bendamus tine <u>NSP</u> <u>enzymatic</u>	antineoplastic agent An anthelmintic or	done using an <i>in-vitro</i> study. It was done using a	1	lymphocytic leukemia (CLL) and indolent B- cell non-Hodgkin lymphoma. Targets infections caused by hookworm,	g by causing intra- and inter-strand crosslinks between DNA bases resulting in cell death. Works by	et al., 2020) (Ahme d et al.,
Bendamus tine <u>NSP</u> <u>enzymatic</u>	antineoplastic agent	done using an <i>in-vitro</i> study. It was	0.25-	lymphocytic leukemia (CLL) and indolent B- cell non-Hodgkin lymphoma. Targets infections	g by causing intra- and inter-strand crosslinks between DNA bases resulting in cell death. Works	et al., 2020) (Ahme
Bendamus tine <u>NSP</u> enzymatic Mebendaz ole	antineoplastic agent An anthelmintic or	done using an <i>in-vitro</i> study. It was done using a	0.25-	lymphocytic leukemia (CLL) and indolent B- cell non-Hodgkin lymphoma. Targets infections caused by hookworm,	g by causing intra- and inter-strand crosslinks between DNA bases resulting in cell death. Works by	et al., 2020) (Ahme d et al.,
Bendamus tine <u>NSP</u> <u>enzymatic</u>	antineoplastic agent An anthelmintic or anti-worm	done using an <i>in-vitro</i> study. It was done using a spectrophotom	0.25-	lymphocytic leukemia (CLL) and indolent B- cell non-Hodgkin lymphoma. Targets infections caused by hookworm, pinworm, whipworm,	g by causing intra- and inter-strand crosslinks between DNA bases resulting in cell death. Works by preventing	et al., 2020) (Ahme d et al.,

(worms)

Journal Pre-proof

Main					from	
peptidase					growing or	
					multiplying	
					in your body.	
Carprofen	А	It was	3.97	Targets arthritic	Works	(Gime
<u>NSP</u>	nonsteroidal	done using an	$\pm 0.60\%$	symptoms in geriatric	by inhibiting	no et al.,
enzymatic -	anti-	in vitro Study.		dogs.	cyclooxygen	2020)
	inflammatory				ase activity.	
Main	drug			X		
peptidase				\circ		
Lapatinib	An anti-	It was	31.1	Targets solid	Works	(Lau
Lupuinio			51.1			
	cancer drug	done using in		tumors such as breast	by binding to	et al., 2021)
NCD		Vitro and	- 0	and lung cancer.	the	
<u>NSP</u>		animal studies.	\sim		intracellular	
<u>enzymatic -</u>					phosphorylat	
Main					ion domain	
peptidase		0			to prevent	
					receptor	
					autophospho	
	5				rylation upon	
					ligand	
					binding.	
Celecoxib	А	It was	13.02	Targets mild to	Works	(Most
	nonsteroidal	done using a		moderate pain and	by	afa et al.,
	anti-	validated		symptoms of arthritis.	suppressing	2020)
<u>NSP</u>	inflammatory	HPLC		- J	hormones	,
enzymatic -						
Main	drug.	analytical			causing	
		method.			inflammatio	
peptidase					n and pain.	

Retapamul	A topical	It was		Targets impetigo.	Works	
in	antibiotic agent.	done through In			by inhibiting	
		Vitro studies.			the initiation	
					of protein	
<u>NSP</u>					synthesis by	
<u>enzymatic -</u>					binding to a	
Main					specific site	
peptidase					on the 50S	
				C.	subunit of	
				0	the bacterial	
				0,	ribosome.	
Bafetinib	Antineopla	It was	0.79	Targets Adult	Works	(Meye
Durching	stic drug	done through a	0.1.2	Gliosarcoma, Adult	by inhibiting	r et al.,
	stie drug	quantitative		Mixed Glioma, Adult	the Bcr/Abl	2021)
<u>NSP</u>		readout	$\langle \rangle$	Glioblastoma, Chronic	fusion	2021)
enzymatic -		performed by		Myeloid Leukemia,		
Main					protein	
peptidase		mass			tyrosine	
		spectrometry.		Lymphocytic	kinase.	
				Leukemia, among		
)			others.		
Masitinib	Antineopla	It was	3.8	Targets cell	Works	(Dray
	stic and	done using		tumors in dogs.	by inhibiting	man et al.,
	immunomodula	randomized,			tyrosine-	2021)
<u>NSP</u>	ting agents.	placebo-			kinase.	
<u>enzymatic</u> -		controlled				
Main		phase trial				
peptidase		studies.				

~		-	0.4			
Simeprevir	A direct-	It was	9.6 ±	Targets chronic	Works	(Lo et
<u>NSP</u>	acting antiviral	done using	2.3	hepatitis C viral	by inhibiting	al., 2021)
<u>enzymatic</u> -	agent	HPLC with		infection in adults with	HCV	
Main		Fluorescence		HCV genotype 1 or 4.	NS3/4A	
peptidase		Detection.			protease.	
peptidase						
Comment	A	T4		Transfer handidia	Works	(11:4:
Grazoprev	An	It was		Targets hepatitis		(Abidi
ir	antiviral and	done using the		C infections.	by inhibiting	et al., 2021)
<u>NSP</u>	NS3/4A	RP-HPLC			viral HCV	
<u>enzymatic</u> -	protease	method.			replication.	
Main	inhibitor			0		
peptidase			0			
pepulase				0		
Ciluprevir	An orally	It was	20.77	Targets hepatitis	Works	(Baker
NSP	active inhibitor	done using a		treatment.	by blocking	et al., 2021)
	of the HCV	randomized,			NS3	
<u>enzymatic</u>	NS3 protease.	multiple-dose,			protease-	
Main		double-blind,			dependent	
peptidase		placebo-			polyprotein	
	5	controlled pilot			processing in	
		study.			HCV	
					replicon-	
					containing	
					cells.	
Narlaprevi	An	It was	1.10	Targets chronic	Works	(Bai et
r	antiviral drug	done using In		hepatitis.	by inhibiting	al., 2021;
	and protease	Vivo and In			hepatitis C	Baker et al.,
	and proteinase	Vitro studies.			protease,	2021)
<u>NSP</u>	inhibitor.				SARS	
<u>enzymatic -</u>						

Main					coronavirus	
peptidase					main	
F -F					proteinase,	
					-	
					and	
					coronavirus.	
Silibinin	An	It was		Targets toxic liver	Works	(Hamd
	antioxidant and	done using in		damage and cancer.	by altering	y et al.,
	antineoplastic	Vitro and			cell	2022)
<u>NSP</u>	agent.	anima research		X	proliferation,	
<u>enzymatic</u> -		studies.			metastasis,	
Main					invasion,	
peptidase				Q`	apoptosis,	
			.0		and	
			\circ		angiogenesis	
			X			
Suramin &	Protease	It was	6.3 ±	Targets SARS-	Works	(Eberl
Quinacrine	inhibitor	done using in	1.4	CoV-2.	by inhibiting	e et al.,
、		Vitro studies.			ARS-CoV-2	2021)
<u>NSP</u>	. C	vitio studios.			main	2021)
<u>enzymatic</u> -						
Main					protease	
peptidase					(3CL ^{pro}).	
Bisindolm	An	It was	113.7	Targets chronic	Works	(Gupta
aleimide-IX	enzyme	done using a	± 5.2	lymphocytic leukemia.	by inhibiting	et al.,
	inhibitor.	virtual			protein	2021b)
<u>NSP</u>		screening			kinase C and	
<u>enzymatic</u> -		pipeline and in-			inducing	
Main		vitro validation			apoptosis.	
peptidase					upopiosis.	
		assays.				

NSP Enzymatic targets

Main Peptidase

The 3CLpro/Mpro gene is the Main Peptidase of SARS coronavirus and is responsible for ~11 cleavage sites in viral propeptide. As a result, it is an essential target for both viral replicase as well as structural assembly for completing the viral cycle (Gupta et al., 2021b). This 306 amino acid long protease has a catalytic core with C145 and H41 and is highly conserved among variants to preserve essential function (Gupta et al., 2021a) but also has multiple conformation states making drug targeting difficult (Savytskyi and Kornelyuk, 2022). The most recent PF-07321332 (nirmatrelvir) is a Pfizer anti-SARS-CoV-2 compound targeting 3CLpro (Reina and Iglesias, 2022). In combination with ritonavir, a xenobiotic degradation reducing agent for PF-07321332 (Lamb, 2022), the drug combination has shown a strong efficacy across multiple SARS-CoV-2 variants (Ullrich et al., 2022). Additional research on combinations with other antiviral agents targeting different components (e.g. Monupiravir/remdesivir for RdRp) is ongoing (Table 1). Earlier, in silico predictions discovered a 3CLpro inhibitor, Atazanavir, that was later shown to block viral replication (Fintelman-Rodrigues et al., 2020) and showed positive outcomes in various trials (Kalantari et al., 2021). However, due to many side effects such as hepatotoxicity, Atazanavir failed to be a drug of choice in the long run (Mazaherpour et al., 2021). Daclatasvir is a wellaccepted HCV therapeutic and its combination with sofosbuvir is well tolerated and efficacious (Merat, 2020). While both Daclatasvir and sofosbuvir had anti-SARS-CoV-2 activity, the combination showed inconsistent results in different trials but had an overall positive effect (Chan

et al., 2021, p. 2). Another anti-HCV protease inhibitor Danoprevir showed some efficacy in initial trials (H. Chen et al., 2020) but was abandoned in Phase 4 trials (NCT04345276).

Papain-like proteinases

Papain-like viral protease (Plpro) is named NSP 3 and is a versatile enzyme that processes the viral polypeptide into functional proteins similar to 3CLpro but has Catalytic triad C111, H272, and D286 which is also highly conserved (Fu et al., 2021). While activating it also protects viral peptides being attacked by host proteasome machinery and de-ubiqutinylase Lys-linked polyUb chains (Lewis et al., 2022). Although a potential therapeutic target, drugs blocking Plpro have yet to be identified.

RNA-dependent RNA polymerase

Viral RNA-dependent RNA polymerase (RdRp) is identified in the SARS-CoV-2 genome as the NSP 12, It's part of a large replicase complex carrying out RNA replication. This protein class has been a highly exploited target in several RNA viruses and the resulting inhibitors have served as a rich pool for many repurposable antivirals (Abolhassani et al., 2021). While all the natural variants in SARS-CoV-2 are highly susceptible to remdesivir (Pitts et al., 2022), studies have shown the possibility of mutational resistance which is contraindicated for monotherapy (Stevens et al., 2022). Azvudine is a 4'-Modified Nucleoside and a potent anti-HIV drug candidate (Chang, 2022). Early trials showed Azvudine as a promising anti-COVID-19 agent with evident shortening of nucleic acid negative conversion (Ren et al., 2020), but it has only been regionally approved as an anti-HIV therapeutic in China and has not been trialed elsewhere. AT527 (RO-7496998) *a.k.a.* bemnifosbuvir is an oral purine nucleotide prodrug that has potent *in vitro* antiviral activity SARS-CoV-2 (Shannon et al., 2022) and has also shown a shortening of disease tenure in early trials (Good et al., 2021). Clevudine a pyrimidine analog is an anti-HBV drug that underwent a trial in the Korean republic but was grossly ineffective (Song et al., 2021). Sofosbuvir (PSI-7977), an approved anti-HCV phosphoramidite prodrug (Messina et al., 2022), is a treatment that has been shown to reduce mortality and improve associated clinical outcomes in patients with COVID-19 (Hsu et al., 2022). Molnupiravir is a prodrug and it is hydrolyzed by esterases to form intermediate ribonucleoside N-hydroxycytidine (NHC) which is further phosphorylated intracellularly yielding active agent NHC triphosphate (NHC-TP) (Cox et al., 2021; Wahl et al., 2021). It is a well-tolerated and highly effective anti-COVID-19 treatment owing to its high bioavailability (Table.2) (Caraco et al., 2022; Jayk Bernal et al., 2022; Whitley, 2022).

Helicase

NSP 13 is an ATP-dependent Helicase with a 5'to 3' polarity acting on either double-stranded RNA/DNA (Shu et al., 2020). Among all SARS-CoV-2 NSPs, Helicase is the most conserved among different beta coronavirus species (Jang et al., 2020). There are reports of helicase forming a complex with RdRp/replicase complex suggesting a role in proofreading during RNA replication (J. Chen et al., 2020). Also, there are isolated reports of helicase affecting infected cell interferon (IFN) signaling to neighboring healthy cells by altering JAK1 phosphorylation of SAT1 (Fung et al., 2022). While there were multiple helicase inhibitors discovered against SARS and MERS there were not many interesting leads for SARS-CoV-2 despite high sequence similarity (Cimolai, 2020) except amantadine or memantine that have been shown in isolated reports to be effective in COVID-19 with neurological symptoms (Rejdak and Grieb, 2020). Ranitidine bismuth citrate also targets helicases and was initially shown to be highly effective in protecting Syrian hamster COVID-19 animal models (Yuan et al., 2020). While SARS-CoV-2 helicase is highly susceptible to bismuth salts, which are accepted to be the primary mechanism (Shu et al., 2020), zinc chelation (Zamai, 2021, p. 20) and allosteric main protease inhibition (Tao et al., 2021) additional

mechanisms in play. A pilot study showed that 50% of patients receiving Bismuth Subsalicylate (BSS) became RT-PCR negative, however, authors state issues with dosage and bioavailability.

NendoU

NSP 15 is a uridylate-specific endoribonuclease (NendoU) that exists as a homo hexamer (Tran et al., 2022). While NendoU is highly conserved among most of the nidoviruses, especially vertebrates infecting coronaviruses, its knockouts are known to replicate at par with wild types (Grellet et al., 2022). The role of NendoU is to protect viral RNA from host intracellular defenses (Boodhoo et al., 2022). A few of the known corticosteroids can inhibit SARS/MERS in vitro and were also reported to have potent activity against SARS-CoV-2 with IC₅₀s niclosamide (0.28 μ M), ciclesonide (4.33 μ M), and tilorone (4 μ M) (Ko et al., 2021). Ciclesonide has been shown to lose antiviral activity on MERS-Nendou mutants (Matsuyama et al., 2020). While Ciclesonide has been part of many therapeutic combinations, there have been a few focused monotherapy randomized trials with inhaled formulations that have resulted in lower hospitalizations and reduced respiratory symptoms in treated patients (Clemency et al., 2022; Ezer et al., 2021). Ciclesonide is of particular interest for long-haul patient management for preventing severe lung damage (Ruggiero et al., 2022). Exebryl-1 a known ß-amyloid anti-aggregation molecule (Alzheimer's therapy) was shown to have consistent antiviral activity between 10 to 66 μ M, in various cell lines and was discovered through high throughput screens (Choi et al., 2021). Exebryl-1 has been shown to disturb hexamerization of NendoU critical for its activity (Tran et al., 2022). So far there are no trials with Exebryl-1 against COVID-19, but negative drug interactions with COVID-19 medications with Alzheimer's disease does suggest a utility for this repurposable agent (Balli et al., 2020).

Other targets

ADP ribose phosphatase (NSP3) is another interesting target playing a role in cellular immune evasion by SARS-CoV-2 by resisting ADP-ribosylation of host proteins induced by IFN (Russo et al., 2021). Exoribonuclease (ExoN, NSP14) is a 5'-to-3' exonuclease and has been the focus of many computational drug screening pipelines (Castillo-Garit et al., 2021; Gupta et al., 2021b). ExoN is inhibited by S-adenosylhomocysteine (Riccio et al., 2022) which is a marker for severe COVID-19 (Ponti et al., 2021) and its abundance may have been protecting liver cholangiocytes expressing ACE-2. NSP16 is another critical target which is an Mn²⁺ dependant putative 2'-Omethyl transferase that forms a heterodimer with NSP10 (Minasov et al., 2021).

Non-enzymatic targets

3a Ion channel

ORF3a encodes an accessory protein that forms K+ channels that trigger NLRP3 activation resulting in the maturation of IL-1 β and cleavage/activation of Gasdermin via NF κ B (Kern et al., n.d.; J. Zhang et al., 2022). ORF3a is susceptible to amantadine (Toft-Bertelsen et al., 2021) which has been shown to improve patient conditions suffering from COVID-19-Related Diffuse Leukoencephalopathy (Lam et al., 2022). In a larger trial with co-morbidities in Parkinson's and multiple sclerosis patients already receiving amantadine, there was significant prevention of COVID-19 infection (Kamel et al., 2021). A larger trial is in progress and its results are awaited (Rejdak and Grieb, 2020). Tomar et.al. 2021 reported many more FDA-approved drugs with significant *in vitro* activity against heterologously expressed 3a Ion channel; Plerixafor, Kasugamycin, Capreomycin, Pentamidine, Spectinomycin, Flumatinib, Darapladib, Floxuridine, and Fludarabine (Tomar et al., 2021). Non-structural protein 1

NSP-1 is the host shutoff factor that halts the translational machinery of SARS-CoV-2 infected cells by binding with the mRNA channel within the ribosome (Simeoni et al., 2021). The main c-terminal domain playing a role in the ribosome binding can be blocked by Mitoxantrone hydrochloride (Novantrone) (Prateek Kumar et al., 2022b). Notably, Mitoxantrone HCL also blocks viral entry through perturbing spike-heparan sulfate interactions (Q. Zhang et al., 2022).

Other SARS-CoV-2 targets

NTD-N-protein or N terminal domain of Nucleocapsid protein is responsible for binding and thereby assembling the RNA genome of SARS-CoV-2 (Ye et al., 2020). Recently multiple *in vitro* anti-*SARS-CoV-2* molecules were discovered as interacting with the NTD-N-protein through isothermal titration calorimetry with EC₅₀s: Telmisartan (1.02 μ M), Bictegravir (8.11 μ M), Bisdemethoxycurcumin (1.64 μ M), and MCC-555 (4.26 μ M) (Dhaka et al., 2022). Additional targets have been proposed and investigated as drug targets *in silico*. NSP2 is involved in host signaling interferences, NSP3 mediates a bipartite shift of host translational machinery to translate viral RNA only, NSP4 plays a role in the replicase complex assembly, and NSP18 is critical for replication (Yan et al., 2022).

Structural protein targets

Envelope protein

The E protein is a transmembrane cation-selective viroporin with Ca²⁺ and/or K⁺ selectivity (Hong et al., 2020; Mandala et al., 2020). Similar to previous reports with SARS/MERS, SARS-CoV-2, the E protein also forms an inflammasome by TLR2 or NRLP5 activation through NF-kB due to K⁺ influx (Yalcinkaya et al., 2021; M. Zheng et al., 2021). β -boswellic acid and glycyrrhizic

acid natural product combinations have been shown to shorten the recovery time (Gomaa et al., 2022), and in a suggestion of a possible mechanism, they have shown positive binding with the E protein *in vitro* (Fatima et al., 2022). There are a few phytochemicals i.e. proanthocyanidins (PAC), wortmannin, and veliparib reported to block E protein *in vitro* (Y. Wang et al., 2022).

Spike glycoprotein

Spike protein, (S1, S2, S3) is the largest protein coded by the SARS-CoV-2 genome. It has various domains including transmembrane, S1 & S2 domains. S1 binds to different receptors (ACE2, CD147, B0AT1, and NRP1) and interacts with heparan sulfate and the S2 domain is a viral fusion domain. S1 domain has open and closed states to maintain the receptor-binding domain (RBD) specificity (Gupta et al., 2021c; Jackson et al., 2022). The fusion inhibitors are discussed in detail in later RBD-ACE-2 interaction inhibition. S2 activation requires cleavage of spike protein mediated by furin and TMPRSS2 (Y. Gupta et al., 2022). Itraconazole and Estradiol Benzoate were found to be interacting with the S2 domain of spike protein and had in vitro activities of IC50 0.45 (µM) and 1.02 (µM) respectively (Yang et al., 2021). Itraconazole synergistically improved the remdesivir efficacy in vitro (Schloer et al., 2021). Pan-CoV fusion inhibitor EK1 (fusion domain S2) is efficacious against all variants suggesting high target conservancy despite the high degree of amino acid mutations in SARS-CoV-2 variants (Lan et al., 2021). Further, a designer peptide mimicking the HR2 sub-domain of the S2 fusion domain (VVNIQKEIDRLNEVAKNLNESLID) was designed in silico and validated both by MD simulations and *in vitro* testing (Kandeel et al., 2021; Manna et al., 2020).

Pre-proof
33

Table 2. Descriptions of anti-viral agents from clinical trials

;	Name of the agent	The total	No of days of	Outcome	Contraindication	Reference(s)
		no of	treatment	(Negativ	S	
		patients		e SARS-		
		and trials		CoV-2 test		
				conversions		
				(NSTC))	C	
					$\hat{\mathbf{O}}$	
	Remdesivir	13	Dosing was	Found	D	(Angamo
1		studies	usually 200 mg	significant		et al., 2022;
		>1000	on day 1	greater		Barratt-Due et
		00 patients	followed by 100	improvement		al., 2021;
			mg for 5 days or	in mortality,		Beckerman et
			up to 10 days	hospitalizatio		al., 2022;
				n, symptoms,		Beigel et al.,
			~	and ICU		2020;
		5		dependency		Costanzo et al.,
				incidence of		2020)
				mechanical		
				ventilation, in		
				patients with		
				no oxygen or		
				low oxygen		
				(efficacy		
				74% - 87%)		
				however, did		

						1
				not lower any		
				kind of risk in		
				patients		
				receiving		
				high-flow		
				oxygen		
	Lopinavir/Rit	38	Dosing was	Found no		(Bahman
2	onavir	studies	-	reductions in	X	
Ζ	onavir		usually		\mathbf{O}	Amani et al.,
		12352	Lopinavir/ritona	mortality,	5	2021;
		patients	vir	hospitalizatio		Costanzo et al.,
			400mg/100mg	n, symptoms		2020;
			BID for 5-	and ICU		Kalantari et al.,
			10days. Along	dependency		2021;
			with standard-of-	incidence of		Mazaherpour
			care	mechanical		et al., 2021)
				ventilation,		
				and NSTC		
		2		(MD: 1.09)		
	Oseltamivir	5	Dosing was	Found no	increased	(Zendehde
3		studies	usually	reductions in	severity of disease	l et al., 2022)
		>1000	30mg,45mg,75m	mortality,	and risk of	
		00 patients	g, and BID for 5	hospitalizatio	mortality OR=	
			days. Along with	n, symptoms	4.20,	
			standard-of-care	and ICU		
				dependency		

				incidence of		
				mechanical		
				ventilation,		
				and NSTC		
				(SMD of 1.65		
				days)		
	Umifenovir(a	16	Dosing was	Found no	associated	(Behnam
4	rbidol)	studies and	usually	reductions in	with higher	Amani et al.,
		1 phase 3	Umifenovir 800	mortality,	adverse events	2021; Y. Lin et
		trails	mg BID,	hospitalizatio	RR: 2.24	al., 2021;
			maximum 14	n, symptoms,		Ramachandran
			days, along with	and ICU		et al., 2022)
			standard-of-care	dependency		
				incidence of		
			0.	mechanical		
				ventilation,		
				and NSTC		
		5		RR=1.1		
	Sofosbuvir-	8	Dosing was	Found		(Chan et
5	based	articles and	usually	lower		al., 2021; Hsu
	(Daclatasvir,	11 trials	400 mg	mortality		et al., 2022;
	ledipasvir,	and 4	Sofosbuvir and	OR= 0.49 to		Kow et al.,
	velpatasvir,	studies	60 mg	0.59		2022; Merat,
	ravidasvir)	3079	Daclatasvir	RR=0.31,		2020; Messina
		patients		ICU		et al., 2022; A.
				dependency		

				incidence of		F. M. Z. Zein
				mechanical		et al., 2022)
				ventilation		
				(RR=1.20,		
				P=0.011),		
				and some		
				certainty of		
				the evidence	8	
				for clinical	0	
				recovery with	5	
				combination		
				with		
			0	Sofosbuvir/		
				Daclatasvir.		
			2			
		-				
	Molnupiravir	1	Dosing was	initiated	there is a	(Caraco et
6		Phase 3	usually	within 5 days	theoretical risk	al., 2022; Jayk
		trial	800 mg	after the onset	that molnupiravir	Bernal et al.,
		1433	orally BID daily	of symptoms	will be	2022; Wong et
		patients	for 5 days only	found	metabolized by	al., 2022)
				reductions in	the human host	
				mortality,	cell and	
				hospitalizatio	incorporated into	
				n, symptoms	the host DNA,	
				and ICU	leading to	
				dependency	mutations	
				incidence of		

				mechanical		
				ventilation,		
				and NSTC		
	Nirmatrelvir	1	Dosing was	Found		(Hammon
7	based	Phase 2-3	usually	reductions in		d et al., 2022;
		trial	300 mg of	progression	C .	Lamb, 2022;
		2246	nirmatrelvir plus	to severe RR	Å	Reina and
		patients	100 mg of	reduction	5	Iglesias, 2022;
			ritonavir BID for	88.9%, along		Wong et al.,
			5 days	with		2022)
			5	reductions in		
				mortality,		
				hospitalizatio		
			\sim	n, symptoms		
				and ICU		
				dependency		
		2		incidence of		
				mechanical		
				ventilation,		
				and viral load		
				was lower at		
				day 5 of		
				treatment		

	GIAPREZ	1 study	Dosing was	Found		(Serpa
8		132	usually One-time	faster decrease		Neto et al.,
0	Α	patients	inclusion	in Fio2 and		
	(Angiotensin II			positive effect		2022)
	receptor blocker)			on BP in the		
				first 12H of		
				infusion and		
				later no	<u>^</u>	
				reductions in	X	
				mortality,		
				hospitalization,)	
				symptoms and		
				ICU		
				dependency		
				incidence of		
				mechanical		
				ventilation, and		
				NSTC		
	Losartan	2	Dosing was	Found		(Puskarich
9	(Angiotensin II	studies	usually	losartan has a		et al., 2022)
	receptor blocker)	1683	Max 50 mg	protective role		
	,	patients	orally twice daily	against		
			for 10 days	COVID-19		
				mortality in		
				hypertensive		
				patients only.		
				No reductions		
				in mortality,		
				hospitalization,		
				symptoms and		

Journal Pre-proof	
39	

0	Famotidine (Selective histamine H2- receptor (H2R) antagonist)	9 studies 39745 patients	Dosing was usually 20 or 40 mg oral or IV median of 5 to 6 days	ICU dependency incidence of mechanical ventilation, and NSTC in non- hypertensive patients Found no reductions in mortality, hospitalization, symptoms and ICU dependency incidence of mechanical ventilation, and	(Freedber g et al., 2020)
1	Plitidepsin	1 phase 1 trial 46 patients	Dosing was usually 1.5 mg (n = 15), 2.0 mg (n = 16), or 2.5 mg (n = 15) OD for 3 days.	Found reductions in viral load concerning their baseline value, and	(Varona et al., 2022)
				improvement of biomarkers	

				associated with inflammatory processes. There were reports of prompt clearance of pneumonia infiltrates in some participants with available chest imaging	50	
		2	No final data	medical reasons Found		
	Heparin	3 Trials, 33	No fixed does was used	Found		(Giossi et
2	(Standard heparin, and low molecular weight heparin)	studies 25768 patients	was used	reduction in mortality, invasive mechanical ventilation, and any thrombotic event in moderately ill patients and found no		al., 2021; Thachil, 2020)
				reductions in mortality,		

Г				[r
			hospitalization,		
			symptoms and		
			ICU		
			dependency		
			incidence of		
			mechanical		
			ventilation, and		
			NSTC		
				X	

Journal Prevent

Homo sapiens (Host) COVID-19 therapeutic targets

In addition to targeting SARS-CoV-2 proteins, another therapeutic approach is to target host proteins that enable viral infection, replication, and spread (Figure 2). The interventions range from interfering with the host receptors for SARS-CoV-2 (e.g. ACE2), to blocking the proteolytic processing needed for viral particle internalization (e.g. Cathepsin L),

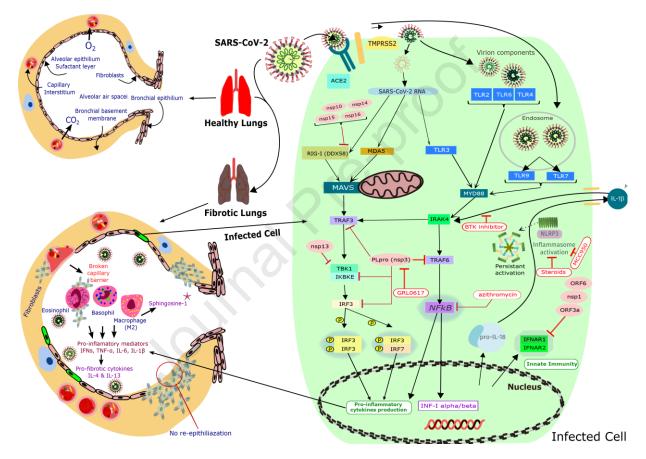


Figure 2. Host proteome targets involved in COVID-19 hyperimmune and their inhibitors. Cartoon representation of molecular components involved in hyperimmune reaction leading to the severe clinical presentation (ARDS) among COVID-19 patients. The lung fibrosis observed in COVID-19 patients and resulting hypoxia is the main reason for mortality in severe cases along with immunosuppressed conditions and concomitant infections. Classic pathways are hijacked in COVID-19-associated lung fibrosis by various proteins coded by SARS-CoV-2.In COVID-19 patients due to inflammation mediators such as IL-6 and cytokine storm or increased release from damaged/dying cells, there is a loss of lung surface area to fibrosis. There is an aggravation of the infection cycle due to hypoxia-induced ACE2, TMPRSS2 overexpression, and furin cell surface localization. Multiple immune

suppressants and modulators have been effective in reducing the severity and mortality as seen in large trials. However, the mechanism for which is still not well established. There are many other agents known to modulate many members of this cascade, especially the NLRP3 pathway responsible for characteristic COVID-19 storm but not yet exploited due to a rather recent elucidation.

Viral receptors targets of human host

Table 3. Drugs targeting different viral/host proteins with in vitro validations

Name &	Туре		Indication	Mechanism	IC50	Refs
discovered target			Ő	of Action (Gener al)		
Haloperid ol <i>Peptides</i>	Conventional antipsychotic agent: Haloperidol works by inhibiting the SARS-CoV-2.	Psychoti c patients	It is administered in the treatment of mental disorders such as schizophrenia.	It works by inducing a high potency suppression of undesired mental reactions in schizophreni a patients.	6.5μ Μ	(Daniel et al., 2015; Pandey et al., 2020)
PD- 144418 <i>Peptides</i>	Sigma 1 agent works by exerting antiviral effects on SARS-CoV-2 protein.	Psychoti c activities of patients	It is the highest selective sigma receptor ligand.	It works through selecting the stimuli that are insignificant	0.08 Mm	(Vela , 2020)

				to ion channels or enzyme actions in patients.		
Clemastin e <i>Peptides</i>	Antihistamine agent Works by blocking interactions between SARS- CoV-2 nonstructural protein NSP6 and host sigma-1 receptor.	Rhinitis, allergic skin, or pruritus patients.	It is a significant histamine H1 remedy for treating rhinitis, skin allergy, and pruritus.	It works by inducing sedative and anticholiner gic reactions in patients.	8.32µ M	(Rezniko v et al., 2021)
ne Cloperasti ne <i>Peptides</i>	Antitussive agent Works by blocking interactions between SARS- CoV-2 nonstructural protein NSP6 and host sigma-1 receptor	Bronchu s infections	It cures coughs associated with bronchus infection.	It acts through an antihistamin ic activity that causes mild broncho relaxant. effect on patients	0.08µ M	(Rez nikov et al., 2021; Vela, 2020)
Progester one	Steroid hormone Works by inhibiting the SARS-CoV-2	Ovaries and adrenal cortices.	It is produced by the corpus	It works by regulating	173- 196µМ.	(Sha h, 2021;

Peptides	priming protease TMPRSS2.		luteum in the second half of the menstrual	the inner lining of the uterus.		Vela, 2020)
			cycle.			
Aprotinin Spike processing enzymatic - Serine protease 10	It is a fibrinolytic agent that Works by controlling SARS- CoV-2 replication	It occurs in the bovine lung	It is a naturally occurring inhibitor which is a polypeptide of 58 amino acids.	It functions by inhibiting the action of certain serine proteases such as trypsin, plasmin, and	20µ M	(Boj kova et al., 2020; da Silva et al., 2022)
				chymotrypsi n.		
MI-1900 Spike processing enzymatic - Serine protease 10	It is an antithrombin agent that works by reducing 25-fold virus titer in SARS- CoV-2 Calu-3 infected cells.	Myocard ial patients	It is applied to restore coronary patency in myocardial patients	This drug acts by reducing the size of the infarct on patients' heart structure.	10µ М	(Lin et al., 2022; Russo et al., 2021)
MI-432	It is an antiviral agent	Used by patients	It reduces the rate of	It is applied as a	$\begin{array}{c} 1.30 \\ \pm \ 0.14 \ \mu M \end{array}$	(Lin et al.,

atproteasewith inflammatoryalongsideperforms by inhibitingμMmam etSpikeWorksby reactions.reactions.anticoagulantinhibitingμMmam etprocessing enzymatic - CoV-2 infection of Serine protease 10blockingSARS- Calu-3 cells.inflammatory effects.of proteases effects.such as plasmin, and trypsin.mam etE-64dProdrug esterPatientsIt is onlyIt(Spikeinflammatory ofoinflammatory ofIt is onlyIt(Spikeinflammatory ofoinflammatory ofoinflammatory ofIt is onlyIt(Spike		suffering	virus growth	cream on		2022)
Serine protease TMPRSS2. and therefore patients to protease 10 protease TMPRSS2. and therefore patients to suppresses relieve pain and survival of the irritations Nafamost Synthetic serine Patients It acts It 0.010 ((at protease with alongside performs by µM mam Spike Works by reactions. and anti- the activities 2020 processing blocking SARS- effects. such as plasmin, and trypsin. 2020 E-64d Prodrug ethyl Patients It is only It (ott e Spike inhibiting inflammatory effects. such as plasmin, and trypsin. 2020 enzymatic - Calu-3 cells. inflammatory active in its hydrolyzed ott e 2021 processing coronaviral entry in reactions. ifflammatory active in its hydrolyzed ott e Spike inhibibiting <td< td=""><td>processing</td><td>Works by</td><td>from herpes</td><td>and</td><td>herpes</td><td></td><td></td></td<>	processing	Works by	from herpes	and	herpes		
protease 10 protease TMPRSS2. and therefore patients to suppresses prelieve pain and survival of the irritations Nafamost Synthetic serine at Patients It acts It out out out out out out out out out ou	enzymatic -	inhibiting the	simplex virus	development	simplex		
suppressesrelieve pain any potential and survival of the irritationsNafamostSynthetic serine proteasePatientsIt actsIt acts0.010 (mam anticoagulant inhibitingSpikeWorksby proteasePatientsIt actsand anticoagulant inhibitingIt acts0.010 (mam etSpikeWorksby reactions.It anticoagulant inflammatoryon performs by anticoagulant inhibiting0.010 (mam etSpikeWorksby reactions.on anti- anticoagulant inflammatoryof proteases performs by and anti- inflammatory0SpikeblockingSARS- Calu-3 cells.CoV-2 inflammatorysuch as plasmin, kallikrein, and trypsin.0E-64dProdrugethyl with inflammatoryIt is onlyIt active in its hydrolyzedott e 2021Spikeinhibiting inflammatory coronaviral entry in eractions.It is onlyIt active in its hydrolyzedott e 2021Spikeinhibiting inflammatory coronaviral entry in certain cell types. Serine protease 10certain cell types.(E64c).toE64c in the gut to inhibiti	Serine	protease TMPRSS2.		and therefore	patients to		
Nafamost atSynthetic serine proteasePatientsIt actsIt actsIt performs by phM0.010 (mam mam etSpike processing protease 10Worksby by coversingPatientsIt actsIt acts0.010 (mam etSpike processing protease 10Worksby coversingreactions.and anticoagulantinhibiting inflammatory anticoagulantmam etSpike processing enzymatic - CoV-2 infection of Calu-3 cells.CoV-2 infection of Calu-3 cells.Such as plasmin, kallikrein, and trypsin.Such as plasmin, kallikrein, and trypsin.It (mam etE-64d Spike processing coronaviral entry in erstrine process 10Prodrug ethylPatientsIt is onlyIt processing(mam coronaviral entry in reactions.Fracess 10coronaviral entry in certain cell types. Serine protease 10coronaviral entry in reactions.It is onlyIt inflammatory2021 inhibit	protease 10			suppresses	relieve pain		
NafamostSynthetic serine atPatientsIt actsIt actsIt biting0.010 ((atatproteasewith inflammatory reactions.alongside and anticoagulant inflammatory of proteasesperforms by µMµM mam et 2020SpikeWorksby reactions.and anticoagulant inflammatory effects.the activities such as plasmin, kallikrein, and trypsin.2020E-64dProdrug ethylPatientsIt is only active in its hydrolyzedIt ((ott e and trypsin.E-64dProdrug ethylPatientsIt is only active in its hydrolyzedIt ((ott e 2021)Spike processing coronaviral entry in errer Serine protease 10inflammatory inflammatoryIt inflammatory((ott e 2021)Forderse 10inflammatory inflammatoryinflammatory active in itsIt is only((ott e 2021)Spike processing coronaviral entry in errer serine protease 10(E64c).to inhibit((ott e 2021)				any potential	and		
Nafamost Synthetic serine Patients It acts It 0.010 (() at protease with alongside performs by µM mam Spike Works by reactions. and anti- the activities 2020 processing blocking SARS- and anti- the activities 2020 enzymatic - CoV-2 infection of and anti- the activities 2020 procease 10 Calu-3 cells. plasmin, kallikrein, and and trypsin. and				survival of the	irritations		
Nafamost Synthetic serine Patients It acts It 0.010 (() at protease with alongside performs by µM mam spike Works by reactions. and anti- the activities 2020 processing blocking SARS- and anti- the activities 2020 enzymatic - CoV-2 infection of such as plasmin, kallikrein, and and trypsin. 1t () E-64d Prodrug ethy Patients It is only It () () spike inhibiting inflammatory active in its hydrolyzed ott e 2021 processing coronaviral entry in reactions. It is only It () () () Spike inhibiting inflammatory active in its hydrolyzed 2021 processing coronaviral entry in reactions. (E64c). to E64d 2021 protease 10 inhibit inhibit inhibit in				virus.	that cause		
at protease with inflammatory anticoagulant inhibiting et 2020 Spike Works by reactions. and anti- the activities blocking SARS- enzymatic - CoV-2 infection of Calu-3 cells. Calu-3 c					sores.		
Spike Works by inflammatory anticoagulant inhibiting et Spike Works by reactions. and anti- the activities 2020 processing blocking SARS- inflammatory of proteases 2020 enzymatic - CoV-2 infection of inflammatory of proteases gene protease 10 Calu-3 cells. Patients It is only It of of E-64d Prodrug ethyl Patients It is only It of of Spike inhibiting inflammatory active in its hydrolyzed of	Nafamost	Synthetic serine	Patients	It acts	It	0.010	(Ya
SpikeWorksby blockingreactions.and anti- inflammatorythe activities of proteases effects.2020processingblockingSARS- CoV-2 infection of 	at	protease	with	alongside	performs by	μΜ	mamoto
processing enzymatic - Serine protease 10blocking SARS- CoV-2 infection of Calu-3 cells.SARS- effects.inflammatory effects.of proteases such as plasmin, kallikrein, and trypsin.2020E-64dProdrug esterPatientsIt is onlyIt(d)E-64dProdrug esterWith inflammatory active in itsIt hydrolyzed from E64d(d)Spike processing coronaviral entry in enzymatic - Serine protease 10Coronaviral entry in reactions.(E64c).toE64c in the gut to inhibit2021			inflammatory	anticoagulant	inhibiting		et al.,
processing enzymatic - Serine protease 10blocking SARS- CoV-2 infection of Calu-3 cells.inflammatory effects.of proteases such as plasmin, kallikrein, and trypsin.E-64dProdrug ester Works inhibiting processing coronaviral entry in enzymatic - Serine protease 10PatientsIt is onlyIt((E-64dProdrug esterWith inflammatory active in itsIt is onlyIt((E-64dProdrug ester Works byPatientsIt is onlyIt((ester Spike inhibiting coronaviral entry in certain cell types.reactions.(E64c).to E64c in inhibit2021protease 10inflammatory inhibitinflammatoryinhibitinhibit(Spike	Works by	reactions.	and anti-	the activities		· ·
Serine protease 10Calu-3 cells.enection of calu-3 cells.enection plasmin, kallikrein, and trypsin.E-64dProdrug ethyl ester Works by inhibiting coronaviral entry in enzymatic - serine protease 10PatientsIt is only active in its hydrolyzed acidic form (E64c).It to E64d to to E64c in the gut to inhibit	processing	blocking SARS-		inflammatory	of proteases		2020)
protease 10Calu-3 cells.plasmin, kallikrein, and trypsin.E-64dProdrug ethylPatientsIt is onlyItE-64dProdrug ethylPatientsIt is onlyItesterWorksbywithactive in itshydrolyzedspikeinhibitinginflammatoryacidic formfrom E64d2021processingcoronaviral entry in certain cell types.reactions.(E64c).to E64c in the gut to inhibitthe gut to	enzymatic -	CoV-2 infection of	\sim	effects.	such as		
E-64d Prodrug ethyl Patients It is only It (() E-64d Prodrug ethyl Patients It is only It (() ester Works by with active in its hydrolyzed ott e Spike inhibiting inflammatory acidic form fform E64d 2021 processing coronaviral entry in reactions. (E64c). to E64c 2021 protease 10 inhibit inhibit inhibit inhibit inhibit inhibit	Serine	Calu-3 cells.			plasmin,		
E-64dProdrug ethylPatientsIt is onlyItesterWorks bywithactive in itshydrolyzedott espikeinhibitinginflammatoryacidic formfrom E64d2021processingcoronaviral entry inreactions.(E64c).to E64c inthe gut toenzymatic -certain cell types.the gut toinhibit	protease 10				kallikrein,		
spikeester Works bywithactive in itshydrolyzedott eSpikeinhibitinginflammatoryacidic formfrom E64d2021processingcoronaviral entry inreactions.(E64c).to E64c in1000000000000000000000000000000000000		2			and trypsin.		
SpikeinhibitinginflammatoryacidicformE64d2021processingcoronaviral entry in certain cell types.reactions.(E64c).toE64c in the gut to inhibit2021	E-64d	Prodrug ethyl	Patients	It is only	It		(Mell
processing coronaviral entry in reactions. (E64c). to E64c in enzymatic - certain cell types. the gut to inhibit protease 10 inhibit inhibit inhibit		ester Works by	with	active in its	hydrolyzed		ott et al.,
processing coronaviral entry in reactions. (E64c). to E64c in enzymatic - certain cell types. the gut to inhibit protease 10 Image: Coronaviral entry in reactions. (E64c). to E64c in	Spike	inhibiting	inflammatory	acidic form	from E64d		2021)
Serine inhibit	processing	coronaviral entry in	reactions.	(E64c).	to E64c in		,
protease 10	enzymatic -	certain cell types.			the gut to		
					inhibit		
	protease 10				cysteine		
proteases.					proteases.		

PCI-	Selective	It is	It inhibits	It	1.41	(Sun
27483	inhibitor	administered	tumor	performs by	$\pm \ 0.04 \mu M$	et al.,
		on TF-	invasiveness	inhibiting		2021, p.
Spike	Works by	expressive	in cancer	cell		2)
processing	inhibiting TMPRSS2	cancer	patients	migration		
enzymatic -	in biochemical	patients		and		
Serine protease 10	and cell infection ass			angiogenesi		
proteuse 10	ays.			s reactions		
				that cause		
				tumor		
			<u>Q</u>	invasiveness		
			<u>(</u> 0'``			
Otamixab	FXa agent	Patients	This is an	It acts		(He
an	Works by	with acute	activated	through a		mpel et
	suppressing	coronary	factor X (FXa)	high		al., 2021)
Spike	TMPRSS2 activity	diseases	inhibitor	selection of		
processing	and SARS-CoV-2		involved	FXa		
enzymatic -	infection.		applied in	compounds		
Serine			acute	to inhibit the		
protease 10			coronary	generation		
			syndrome	of thrombin.		
			patients			
MI-1851	Novel furin	SARS-	It	It acts	10µM	(Dev
	inhibitor agent	Cov-2	prevents	by inhibiting		i et al.,
		patients	proteolytic	the		2022)
	Works by		processing of	conversion		

Spike	inhibiting furin to		S-protein	of furin in		
processing	prevent the spread of			HEK293		
enzymatic -	SARS-CoV-2			cells to S		
Furin				protein.		
Terifumid	Malononitilamid	Beta-1a	It inhibits	It acts	67µM	(Rabi
e	e agent	patients	the	by blocking		e, 2021)
			proliferation	the		
Spike	Works by		of both T and	mitochondri		
processing	inhibiting SARS-		B cells.	al enzyme		
enzymatic -	CoV-2 replication.			hydro-		
Cathepsin			R	orotate		
			0	dehydrogen		
				ase		
Leflunom	Immunomodulat	Rheumat	It	It	200µ	(Dahi
						(Rabi
ide	ory agent	oid arthritis.	decreases	performs by	М	e, 2021)
	Works by		inflammation	inhibiting		
Spike	inhibiting SARS-		and slows the	the action of		
processing	CoV-2 replication.		rate of arthritis	pyrimidines		
enzymatic -			inflammation.	in synthesis.		
Cathepsin						
Favipiravi	Therapeutic	Influenza	It is used	It works	200µ	(Cost
r	agent	patients	to cure	as a chain	М	anzo et
Spike			influenza.	terminator		al., 2020)
processing	Works by			during the		
enzymatic -	inhibiting SARS-			incorporatio		
Cathepsin	CoV-2 infections.			n of viral		

Amantadi ne Spike processing enzymatic - Cathepsin	Antiviral agent Works by inhibiting SARS- CoV-2 replication.	Influenza patients	It is used to treat patients with advanced influenza symptoms.	RNA and hence reducing the viral load. It works by reducing dopamine release and blocking dopamine reuptake.	83- 119μΜ.	(Fink et al., 2021; Rejdak and Grieb, 2020)
Sulfated	Sulfate agent	adipocyt	Induces	It acts	512~	(Yim
polysaccharid		es	the extraction	by reducing	289μΜ	et al.,
es	Works by		of algae type	inflammator		2021)
	binding to the viral		called	y reactions.		
Homo	spike glycoprotein,		sargassum			
Sapien Targets	preventing virus		Hymenophyll			
	entry into the host		um			
	cell					
Teicoplan	Bacteriostatic	Bacterial	It inhibits	It acts	2.038	(F.
in	agent Works by	infection	the synthesis	by binding	μΜ	Yu et al.,
Structural	preventing entry		of bacterial	to the d-		2022)
protein targets	of SARS-CoV-2 into		peptidoglycan	alanyl-d-		
	the cellular			alanine		
	cytoplasm.			moiety.		

Nelfinavir	Anticancer	Cancer	It induces	It acts	3.3µ	(Foo
Structural	agent	patients	stress in the	through HIV	М	et al.,
protein targets			endoplasmic.	protease		2021)
	Works by			inhibition.		ŕ
	inhibiting SARS-					
	CoV-2 replication					
Cepharant	Antiviral agent	Covid-19	It is used	It acts	2.8μ	(Hiji
hine		patients	to derail the	by blocking	М	kata et
Structural	Works by		entry of the	target cells		al., 2022)
protein targets	inhibiting SARS-		COVID-19	of viral		
	CoV-2 entry into the		virus into a	binding.		
	host cell.	0	host			
Trimipra	Antiviral agent	Influenza	It is used	It works	1.5µ	(Xia
mine		patients	to treat	by reducing	М	ng et al.,
	Works to inhibit		patients with	dopamine		2022)
Structural	SARS-CoV-2 by		advanced	release and		
protein targets	targeting viral		influenza	blocking		
	proteins.		symptoms.	dopamine		
				reuptake.		
Osimertin	Selective	It is	It inhibits	It	3.98µ	(Xia
ib	inhibitor	administered	tumor	performs by	М	ng et al.,
		to patients	invasiveness	inhibiting		2022)
Structural	Works by		in cancer	cell		<i>,</i>
protein targets	preventing SARS-		patients	migration		
	CoV-2 entry into			and		
	host cells.			angiogenesi		

				s reactions that cause tumor invasiveness		
Abemacic	Sensitizing	Cancer	It inhibits	The	3.16µ	(Xia
lib\	agent	patients	the	drug blocks	М	ng et al.,
			conversions of	the spread of		2022)
Structural	Works by		2-anilino-2, 4-	cancer		,
protein targets	preventing SARS-		pyrimidine	infections by		
	CoV-2 entry into		from	inhibiting		
	host cells.		palbociclib	the		
				replication		
				of associated		
		0.0.		cells.		
Ingenol	Mebutate agent	Keratosis	It cures	It is	0.06µ	(Xia
		patients	skin	applied to	М	ng et al.,
Structural	Works by		conditions.	the skin to		2022)
protein targets	preventing SARS-			kill cells		- /
	CoV-2 entry into			causing		
	host cells.			scaly skin		
				patches.		
Imatinib	Fusion agent	Leukemi	It is an	It	5.32µ	(Xia
		a patient	inhibitor of	functions by	М	ng et al.,
Structural	Works by		the fusion	inhibiting		2022)
protein targets	preventing SARS-		process	protein		/

	CoV-2 entry into			fusion of		
	host cells.			Bcr-Abl		
Itraconaz	Antiviral agent	Covid-19	It is used	It acts	0.45	(Yan
ole		patients	to derail the	by blocking	μΜ	g et al.,
	Works by		entry of the	target cells		2021)
Structural	preventing SARS-		COVID-19	of viral		
protein targets	CoV-2 S protein-		virus into a	binding.		
	mediated		host			
	intercellular fusion			0		
Estradiol	Ester agent	Adult	It is a	It acts	1.02	(Yan
benzoate		human	steroid sex	by	μΜ	g et al.,
	Works by		hormone	maintaining		2021)
Structural	preventing SARS-			fertility and		
protein targets	CoV-2 protein-			secondary		
	mediated			behaviors.		
	intercellular fusion.					
Fluoxetin	Serotonin agent	Mentally	It is used	It acts	0.8 μ	(Zim
e		disorder	to treat	by	М	niak et
	Works by	patients	depression	preventing		al., 2021)
Structural	inhibiting cytokine			serotonin		
protein targets	release to prevent			reuptake.		
	SARS-CoV-2 in					
	human lung tissue.					
Citalopra	Serotonin agent	Mentally	It helps to	Its acts	27.51	(Fred
m		disorder	maintain	by	μΜ	et al.,

			increasing		2022)
reducing viral		balance.	the amount		
infection by SARS-			of serotonin.		
CoV-2.					
Antidepressant	-		It acts	17.69	(Fred
agent	disorder	panic disorder	by reducing	μΜ	et al.,
Work by	patients	and attention	norepinephri		2022)
reducing viral		deficit	ne reuptake		
infection by SARS-		hyperactivity.	inhibitor		
CoV-2.		0			
Antitussive	Bronchu	It cures	It works	0.972	(Fred
agent	s infections	coughs	by reducing	μΜ	et al.,
Work by		associated	dopamine		2022)
reducing viral	0	with a	release and		
infection by SARS-		bronchial	blocking		
CoV-2.	*	infection.	dopamine		
			reuptake.		
Antiviral agent	Covid 10	It is used	It works	1.072	(Eno.d
Antiviral agent					(Fred
	patients			μM	et al.,
•		-	_		2022)
reducing viral		advanced	release and		
infection by SARS-		influenza	blocking		
CoV-2.		symptoms.	dopamine		
			reuptake.		
Oral	Butyroph	It induces	It acts	4.539	(Fred
	CoV-2. Antidepressant agent Work by reducing viral infection by Antitussive agent Work by reducing viral infection by SARS- CoV-2. Antiviral agent Work by reducing viral infection by SARS- CoV-2. Antiviral agent Work by reducing viral infection by SARS- CoV-2.	CoV-2. Antidepressant Mentally disorder patients reducing viral infection by SARS- CoV-2. Bronchu agent by reducing viral infection by SARS- CoV-2. Bronchu s infections SARS- CoV-2. CoV-2. CoV-2. CoV-2. CoV-2. CoV-2.	CoV-2.MentallyIt reducesAntidepressantMentallyIt reducesagentdisorderpanic disorderWorkbypatientsand attentionreducingviraldeficithyperactivity.coV-2.BronchuIt curesagents infectionscoughsagents infectionscoughsagents infectionscoughsworkbyassociatedWorkbybronchialinfection by SARS-covid-19It is usedcoV-2.Covid-19It is usedMorkbypatientstoMorkbypatientsinfection.WorkbypatientstoKorkbypatientssinfluenzaCoV-2.Covid-19It is usedinfection by SARS-patientsinfluenzaCoV-2.SARS-symptoms.	CoV-2.Image: Cov-2.	CoV-2.Mentally disorderIt reduces panic disorderIt acts by reducing µMagentdisorderpanic disorderby reducing patientsµMworkby patientsand attention deficitnorepinephri ne reuptakeµMinfection by SARS- CoV-2.Bronchu s infectionsIf cures coughsIt works0.972 µMAntitussive agentBronchu s infectionsIf cures coughsIt works0.972 µMMorkby reducing viral infection by SARS- CoV-2.Bronchu s infectionsIf cures coughsIt works0.972 µMAntitussive agentBronchu s infectionsIf cures coughsIt works0.972 µMMorkby reducing viral infection by SARS- CoV-2.Docident patientsIt works1.072 µMMorkby patientsIt is usedIt works1.072 µMWorkby patientsIt is usedIt works1.072 µMWorkby patientsinfluenza symptoms.blocking

	dinhanulhutulninarid	anonaa	stragg in the	through UUV	uМ	at al
	diphenylbutylpiperid	enones	stress in the	through HIV	μM	et al.,
Structural	ine antipsychotic	patients	endoplasmic.	protease		2022)
protein targets	agent			inhibition		
	Work by					
	reducing viral					
	_					
	infection by SARS-					
	CoV-2.			Ň		
Mitoxantr	Bacteriostatic	Bacterial	It inhibits	It acts	2.99	
one	agent	infection	the synthesis	by binding	\pm .608 μM	
hydrochloride	Works by		of bacterial	to the d-		
	inhibiting ROS1		peptidoglycan	alanyl-d-		
non-	fusion protein and its			alanine		
enzymatic	downstream			moiety.		
targets	signaling minimizing	~0				
	cell apoptosis.					
	cen apoptosis.	•				
Capreomy	Selective	It is	It inhibits	It	1 µM	(Ku
cin	inhibitor	administered	tumor	performs		mar et
		to patients	invasiveness	through		al., 2021)
non-	Works by		in cancer	inhibiting		. ,
enzymatic	inhibiting SARS-		patients	cell		
targets	CoV2 protease.			migration		
				and		
				angiogenesi		
				s reactions		
				that cause		
	1	1		1		

				tumor		
				invasiveness		
Pentamidi	Anti-infective	Pneumon	It treats	It acts	7.5 μ	(And
ne	agent Works by	ia patients	pneumonia	by blocking	M.	reana et
	blocking the SARS-		caused by	the spread of		al., 2022)
non-	CoV-2 3a-channel.		organisms.	cold in the		
enzymatic				host body.		
targets						
Spectino	Ester agent	Adult	It is a	It acts	50 μ	(Tom
mycin	Works by	human	steroid sex	by	М.	ar et al.,
	blocking the SARS-		hormone	maintaining		2021,
non-	CoV-2 3a-channel.		KO I	fertility and		2021)
enzymatic				secondary		
targets		2		behaviors.		
Kasugam	Serotonin agent	Mentally	It is used	It acts	50 μ	(Tom
ycin		disorder	to treat	by	М.	ar et al.,
	Works by	patients	depression	preventing		2021,
non-	blocking the SARS-			serotonin		2021)
enzymatic	CoV-2 3a-channel.			reuptake.		
targets						
Plerixafor	Mebutate agent	Keratosis	It cures	It is	50 μ	(Tom
		patients	skin	applied to	M.	ar et al.,
non-	Works by		conditions.	the skin to		2021,
enzymatic	blocking the SARS-			kill cells		2021)
targets	CoV-2 3a-channel.			causing		-
				scaly skin		

				patches.		
Flumatini b	Antiviral agent	Covid-19 patients	It is used to derail the	It acts by blocking	50 μ Μ.	(Tom ar et al.,
	Works by		entry of the	target cells		2021,
non-	blocking the SARS-		COVID-19	of viral		2021)
enzymatic targets	CoV-2 3a-channel.		virus into a	binding		
			host	Ś.		
Darapladi	Fusion agent	Leukemi	It is an	It	50 μ	(Tom
b		a patient	inhibitor of	functions by	M.	ar et al.,
	Works by		the fusion	inhibiting		2021,
non-	blocking the SARS-		process	protein		2021)
enzymatic targets	CoV-2 3a-channel.			fusion of		
				Bcr-Abl		
Floxuridi	Therapeutic	Influenza	It is used	It works	50 μ	(Tom
ne	agent	patients	to cure	as a chain	M.	ar et al.,
			influenza.	terminator		2021,
non-	Works by			during the		2021)
enzymatic targets	blocking the SARS-			incorporatio		
	CoV-2 3a-channel.			n of viral		
				RNA and		
				hence		
				reducing the		
				viral load.		
Fludarabi	Antidepressant	Mentally	It reduces	It acts	50 μ	(Tom
ne	agent	disorder	panic disorder	by reducing	M.	ar et al.,

		patients	and attention	norepinephri		2021,
non-	Works by		deficit	ne reuptake		2021)
enzymatic	blocking the SARS-		hyperactivity	inhibitor		
targets	CoV-2 3a-channel.					
Ciclesoni	Antitussive	Bronchu	It cures	It	5.1 μ	(Mat
de	agent	s infections	coughs	performs	М.	suyama
			associated	through		et al.,
RNA-	Works by		with a	inhibiting		2020)
dependent RNA polymerase	suppressing the		bronchial	cell		
F	replication of SARS-		infection.	migration		
	CoV-2 in cultured		X	and		
	cells.		S	angiogenesi		
				s reactions		
				that cause		
		<u>, 0</u> .		tumor		
				invasiveness		
Exebryl-1	Mebutate agent	Keratosis	It cures	It is	10 to	(Cho
		patients	skin	applied to	66μΜ.	i et al.,
RNA-	Work by		conditions	the skin to		2021)
dependent RNA polymerase	promoting SARS-			kill cells		
	CoV-2 antiviral			causing		
	activity in Vero 76,			scaly skin		
	Caco-2, and Calu-3			patches.		
	cells.					
0.01	0.1	T. ·	T. • • • •	T.	()	(61
Sofosbuvi	Selective	It is	It inhibits	It	6.2 -	(Sha
r	inhibitor	administered	tumor	performs	9.5 μM	bani et

		to potionto	invasiveness	through	(\mathbf{EC})	al 2021)
		to patients		through	(EC ₅₀)	al., 2021)
RNA-	Works by		in cancer	inhibiting		
dependent RNA polymerase	inhibiting SARS-		patients	cell		
	CoV-2 replication in			migration		
	brain and lung cells.			and		
				angiogenesi		
				s reactions		
				that cause		
				tumor		
				invasiveness		
Alovudin	Anticancer	Cancer	It inhibits	It	100	(Ku
e	agent	patients	the	performs by	μΜ	mar et
	Works by		conversions of	inhibiting		al., 2021)
RNA-	terminating RNA		2-anilino-2, 4-	the activities		
dependent RNA polymerase	synthesis of SARS-	\sim	pyrimidine	of proteases		
	CoV-2 virus.		from	such as		
			palbociclib	plasmin,		
	5			kallikrein,		
				and trypsin.		
Tenofovir	FXa agent	Patients	This is an	It acts		(Koc
alafenamide	U U	with acute	activated	through a		abaş and
	Works by	coronary	factor X (FXa)	high		Uslu,
RNA-	blocking the SARS-	diseases	inhibitor	selection of		
dependent RNA	CoV-2 polymerase		involved	FXa		2021;
polymerase	extension.		applied in	compounds		Zanella
	extension.		acute	to inhibit the		et al.,
				to minore the		

			coronary	generation		2021)
			syndrome	of thrombin.		
			patients			
Zidovudin	Prodrug ethyl	Patients	It is only	It		(Mat
e	ester	with	active in its	hydrolyzed		suyama
		inflammatory	acidic form	from E64d		et al.,
RNA-	Can work by	reactions.	(E64c).	to E64c in		2020)
dependent RNA polymerase	inhibiting SARS-			the gut to		
	CoV-2 replication			inhibit		
	and transcription.		0	cysteine		
				proteases		
Suramin	Malononitilamid	Rheumat	It	It acts	20μΜ	(Mos
	e agent	oid arthritis.	decreases	by blocking	(EC ₅₀₎	tafa,
RNA-			inflammation	target cells		2020)
dependent RNA polymerase	Works by		and slows the	of viral		
	inhibiting SARS-		rate of arthritis	binding.		
	CoV-2 replication.		inflammation.			
Atorvastat	Anti-infective	Pneumon	It treats	It	3.9-	(Zap
in	agent	ia patients	pneumonia	performs	15.7 µM	ata-
			caused by	through		Cardona
RNA-	Works by		organisms.	inhibiting		et al.,
dependent RNA polymerase	inhibiting SARS-			cell		2021)
	CoV-2 replication.			migration		,
				and		
				angiogenesi		
				s reactions		

Flupenthi xol RNA- dependent RNA polymerase	Novel furin inhibitor agent Works by preventing SARS- CoV-2 spike protein pseudovirus cell entry in the host cell.	It is administered to patients	It inhibits the synthesis of bacterial peptidoglycan	that cause tumor invasiveness It acts by inhibiting the conversion of furin.	0.56µ M	(Dev i et al., 2022)
Raloxifen e RNA- dependent RNA polymerase	Mebutate agent Works by modulating SARS- CoV-2 replication.	Keratosis patients	It cures skin conditions	It is applied to the skin to kill cells causing scaly skin patches.	40 μM to 0.31 μM	(Nica stri et al., 2022)
Disulfira m Papain- like proteinases	Selective inhibitor Works by inhibiting SARS- CoV-2 papain-like proteases	It is administered to patients	It inhibits tumor invasiveness in cancer patients	It works by reducing dopamine release and blocking dopamine reuptake.	9.35 μM	(Fill more et al., 2021)

GRL0617	Serotonin agent	Mentally	It is used	It acts	2.1	(Fu
		disorder	to treat	by	μΜ	et al.,
Papain-	Works by	patients	depression	preventing		2021, p.
like	inhibiting SARS-			serotonin		202)
proteinases	CoV-2 PL ^{pro} .			reuptake.		,
Maprotili	Antitussive	Bronchu	It cures	It acts	5μΜ	(Car
ne	agent	s infections	coughs	by reducing	to 35µM	pinteiro
			associated	norepinephri		et al.,
Papain-	Works by		with a	ne reuptake		2020)
like	preventing SARS-		bronchial	inhibitor		
proteinases	CoV-2 infection on		infection.			
	Vero cells.	Q				
Reserpine	Anti-infective	Pneumon	It is used	It works	3.4 to	(Xia
	agent	ia patients	to cure	as a chain	6.0µM.	n et al.,
Papain-			influenza.	terminator		2020)
like	Works by			during the		
proteinases	inhibiting SARS-			incorporatio		
	CoV-2 activities.			n of viral		
				RNA and		
				hence		
				reducing the		
				viral load.		
Levothyro	Therapeutic	Influenza	It is used	It works	5.0±1	(Bre
xine	agent	patients	to cure	by reducing	.9 to	witz et
			influenza.	dopamine	$11\pm 3\mu M$	al., 2022)
	Works by			release and		

Papain-	inhibiting SARS-			blocking		
like	CoV-2 PL ^{pro}			dopamine		
				_		
proteinases				reuptake.		
Proanthoc	Antiviral agent	Covid-19	It is used	It acts		(Sug
yanidin		patients	to derail the	by blocking		amoto et
	Works by		entry of	target cells		al., 2022)
Papain-	inhibiting SARS-		COVID-19	of viral		
like	CoV-2.		virus into a	binding.		
proteinases			host.	0		
	Novel furin	It is	It inhibits	It acts		(Dev
Sepantron	inhibitor agent	administered	the synthesis	by inhibiting		i et al.,
ium bromide		to patients	of bacterial	the		2022)
			peptidoglycan	conversion		
Papain-				of furin.		
like						
proteinases						
Cryptotan	Bacteriostatic	Bacterial	It inhibits	It acts	13.6µ	(Zha
shinone	agent	infection	the synthesis	by blocking	М	o et al.,
Papain-			of bacterial	target cells		2021)
like	Works by		peptidoglycan	of viral		
proteinases	inhibiting SARS-			binding.		
	CoV-2 protease					
Tanshino	Anti-infective	Bronchu	It cures	It is	0.7μ	(Eleb
ne I	agent	s infections	coughs	applied to	М	eedy et
			associated	the skin to		

	XX7 1 1		•.1	1 . 11 11		1 2021)
Papain-	Works by		with a	kill cells		al., 2021)
like	inhibiting viral		bronchial	causing		
proteinases	protease, SARS-		infection.	scaly skin		
	CoV-2 3CLpro, and			patches.		
	PLpro					
Ranitidine	Oral	Butyroph	It induces	It acts	0.69µ	(Shu
Bismuth	diphenylbutylpiperid	enones	stress in the	through HIV	М	et al.,
citrate	ine antipsychotic	patients	endoplasmic	protease		2020)
	agent			inhibition		
Helicas						
e	Works by		X	·		
C	suppressing SARS-		S S			
	CoV-2 replication.					

Host receptors

ACE2 is the most abundant and highest affinity receptor of SARS-CoV-2 spike protein and is the first step in viral entry into the host cell. There are multiple reports that ACE2 polymorphisms and Spike protein modulate viral infectivity (Suryamohan et al., 2021). Various known ACE2 inhibitors, as well as expression modulators, have been proposed to be viable anti-COVID-19 therapeutics. There is another novel approach of molecular mimicry where B38-CAP an ACE2 homolog carboxypeptidase of bacterial origin protected patients from lung injury without apparent viral neutralization, but through a mechanism of RAS inactivation and decreased Acute Respiratory Distress Syndrome (ARDS) (Yamaguchi et al., 2021). This is coherent with the previous reports of lung damage protection with recombinant soluble ACE2 in animal models (Imai et al., 2005, p. 20). Also, soluble recombinant human ACE2 has a high SARS-CoV-2 neutralizing potential as shown in vitro (Monteil et al., 2020). Giapreza, the angiotensin II substrate of ACE2, had variable outcomes from different studies. The conclusive multicentric trial concluded a decrease in blood pressure and improved fraction of inspired oxygen (FiO2) levels but there was no apparent benefit in terms of mortality among severe ARDS patients. ACE2 agonists have also shown a decrease in Spike-ACE2 interaction as their binding site is closer to the interface compare to antagonists e.g. Losartan/Valsartan that bind in the catalytic core and have no positive effect as reported in multiple trials (Geriak et al., 2021; Puskarich et al., 2022, 2021). A small randomized trial with 51 patients receiving C21 and an ACE2 agonist showed a significant reduction in the requirement of mechanical ventilation (Tornling et al., 2021). Methylene Blue is a nonspecific ACE2-Spike interaction inhibitor and has been used to inactivate residual viruses in convalescent plasma (Alemany et al., 2022). Ceftazidime is an injectable broad-spectrum betalactam antibiotic that is a third-generation cephalosporin. Ceftazidime was found to effectively block ACE-2 spike interactions in vitro (C. Lin et al., 2021). It was trialed on 136 patients in a study and showed a significant reduction in recovery (PCR negativity) (Eid et al., 2021). On the contrary, Ramipril is highly contraindicated in COVID-19 patients as it is known to highly upregulate ACE2 and increase SARS-CoV-2 virion loads (Theodorakopoulou et al., 2022).

Neuropilin-1 (NRP1) is another host surface receptor mediating SARS-CoV-2 entry (Cantuti-Castelvetri et al., 2020; Kyrou et al., 2021) and has been associated with neurological morbidities seen in COVID-19 (Davies et al., 2020). Apart from protein receptor binding spike protein also interacts with cell surface heparan sulfate and is the basis for antiviral activity of heparin (Gupta et al., 2021c) and sulfated polysaccharides (Kwon et al., 2020) abundant in many natural products. There is a high interest in using sulfated polysaccharides as anti-COVID-19 also due to the

reduction in coagulopathy seen in COVID-19 patients (B. Tu et al., 2022). There is still a possibility of SARS-CoV-2 variants evolving or already evolved to use different receptors like other coronaviruses (Nassar et al., 2021).

Spike processing enzymatic targets

Cathepsin L

Cathepsin L (CTSL) is a transmembrane peptidase/serine subfamily member 2/4 and plays an important role in spike activation in endosomes. The widespread now-dominant mutation in the SARS-CoV-2 Spike glycoprotein D614G is predicted to confer a site loss for CTSL (Gobeil et al., 2020; Y. Gupta et al., 2022). Amantadine acts as a lysosomotropic agent by disturbing Cathepsin L's functional environment(Smieszek et al., 2020). A few reports are showing decreased leukopathy (Lam et al., 2022) and the slowdown of neurodegeneration presentations of COVID-19 by amantadine (Rejdak and Grieb, 2020).

Furin

Furin is a Ca²⁺⁻dependent endopeptidase that processes many secretory proteins as well as protein digestion (Than et al., 2005). During hypoxia, furin can translocate to the cell surface and is thought to be responsible for the rapid worsening of hypoxia patients in COVID-19 by increased spike processing at the cell surface resulting in direct fusion (Arsenault et al., 2012; Y. Gupta et al., 2022). Both Furin is essential for SARS-CoV-2 invasion (Bestle et al., 2020) and known furin inhibitors MI-1851 and E-64d have both shown *in vitro* efficacy against SARS-CoV-2 (Table 3)

TMPRSS2

Transmembrane serine protease 2 (TMPRSS2) is a cell surface activator of spike protein essential to exposing and activating the viral fusion domain (Bestle et al., 2020; Hoffmann et al.,

2020). Nafamostat (CKD-314/Nafabelltan) a TMPRSS2 inhibitor was found to instigate a significantly higher recovery rate among treated patients and was well tolerated (Zhuravel et al., 2021). Another TMPRSS2 inhibitor Camostat mesylate (FOY-305) in contrast didn't show any positive effect in a phase III trial (Kinoshita et al., 2022). One speculation for inconclusive outcome with Camostat is the drug might need a better dosage formulation for effective treatment (Kosinsky et al., 2022). There are additional inhibitors of TMPRSS2 with promising results *in vitro* e.g. Aprotinin, MI-1900, MI-432, E-64d, PCI-27483, and Otamixaban.

Targets associated with host immune response

The TLR 2/6/9 agonist PUL-042 is a phase III investigational compound that can induce epithelial resistance to SARS-CoV-2 in animal models (Evans et al., 2020). Famotidine is a selective histamine H2-receptor (H2R) antagonist (Malone et al., 2021) that also inhibits 3CLpro of SARS-CoV-2 (Loffredo et al., 2021). Famotidine had a positive effect with a reduced risk of clinical deterioration leading to intubation or death when tested in a small retrospective cohort (Freedberg et al., 2020). Currently, famotidine is part of multiple combinations in various trials. There are hypothetical reports of targeting different immune components such as Basigin

CD_antigen: CD147, 5F7, Collagenase stimulatory factor, Leukocyte activation antigen M6, Extracellular matrix metalloproteinase inducer, Tumor cell-derived collagenase stimulatory factor, GCSF-Receptor Signaling Complex CSF3, IL-1 β , leukocytic pyrogen, leukocytic endogenous mediator, and mononuclear cell factor, yet discussing all of these is beyond the scope of the current review. Major confounding comorbidity arising in a portion of the SARS-CoV-2 infected populations is the activation of a cytokine storm leading to the development of ARDS. To block the cytokine storm from activating in COVID-19 patients, various antibody cocktails blocking these factors have been used in ongoing trials (Elahi et al., 2022; Harrison, 2020; Harrison

et al., 2021). Many recombinant proteins e.g. Recombinant TNF (INB03) and Recombinant human interferon $\alpha 1\beta$ (Novaferon) have also been tried (Drożdżal et al., 2021). Other targets include Peginterferon Lambda-1a, and Chemokine Receptor Type 2 (CCR2) (Hu et al., 2021). The Interleukin-1 receptor-associated Kinase 4 (IRAK4) Inhibitor PF-06650833 is predicted to restore immunological balance (Gupta and Chun, 2021) and is under trial (Franchin, 2021). Sigma-1 receptor (sigma non-opioid intracellular receptor 1) is an important factor associated with the mortality of COVID-19 patients (Lehrer and Rheinstein, 2021) several inhibitors have been predicted to be anti-COVID-19 e.g. Haloperidol, PD-144418, clemastine, Cloperastine, and progesterone. Naringenin, targeting the endo-lysosomal Two-Pore Channels (TPCs) has been shown as having anti-SARS-CoV-2 activity (Clementi et al., 2021)

Mechanistic targets

Dihydroorotate dehydrogenase

Dihydroorotate dehydrogenase (mitochondrial DHODH), is a Dihydroorotate oxidase involved in pyrimidine synthesis within cells. DHODH inhibition has been shown to decrease viral replication/turnover rates (Kaur et al., 2021) as well as increase the incorporation of nucleoside analog antivirals such as N4-hydroxycytidine (NHC) which is an activated metabolite of Molnupiravir (Stegmann et al., 2021). Brequinar (DUP 785, NSC 368390) in combination with nucleoside analog Dipyridamole has shown high *in vitro* efficacy (Demarest et al., 2022; Xiong et al., 2020) and is in Phase II trials. There are many more DHODH inhibitors showing high anti-SARS-CoV-2 activities e.g. PTC299 (Luban et al., 2021), Teriflunomide (Maghzi et al., 2020), and Leflunomide (Hu et al., 2020). Leflunomide also showed faster PCR negativity in COVID-19 patients in a small trial (Hu et al., 2020).

Cathepsin B

Cathepsin B (APP secretase/Cathepsin B1) is an important enzyme overexpressed in hyperimmune inflammatory disorders and hence can be a target for ARDS mitigation (Ding et al., 2022).

Caspase

COVID-19 inflammasome causes cell death through caspase pathways, specifically caspase 8 (Li et al., 2020). Belnacasan and Emricasan are Caspase inhibitors that showed inhibition of inflammasome *in vitro* (Jeong et al., 2022).

Calpain

Calpain inhibitor BLD-2660 is an anti-fibrotic and part of many ongoing trials shown to mitigate lung fibrosis in combinations with antivirals (Djordje et al., 2021).

Ferroportin

Multiple reports point to SARS-CoV-2 mediated lung injury being mediated by ferroptosis with a portion of spike protein mimicking hepcidin hormone (Y. Gupta et al., 2022). Vitamin D is known to induce ferroportin overexpression which effluxes out the excess iron thereby preventing ferroptosis to reduce lung injury (Moran-Lev et al., 2018). Low levels of vitamin D were associated with higher COVID-19 mortality and it has been part of various combinations as an inexpensive therapeutic supplement for COVID-19 patients (Z. Wang et al., 2022).

Eukaryotic Elongation Factor 1A2 (eEF1A2)

Nitazoxanide is a thiazolide chemical compound that induces $eIF2\alpha$ (eukaryotic translation initiation factor-2) overexpression and PKR (double-stranded-RNA-activated protein kinase) phosphorylation, which has been used clinically to control Japanese encephalitis virus replication

(Elazor et al., 2008; Shi et al., 2014). Nitazoxanide has been part of various combinations for SARS-CoV-2 infections and has shown depression in disease trajectory if started early on (Mendieta Zerón et al., 2021; Miorin et al., n.d.; Rocco et al., 2021). Paradoxically, Plitidepsin (dehydrodidemnin B/ Aplidin) is a marine-derived cyclic depsipeptide inhibiting eEF1A2 that is authorized in a few countries for treating refractory multiple myeloma. Preclinical and randomized phase-I trials showed Plitidepsin to be well tolerated and block the SARS-CoV-2 virus at the nanomolar range (Varona et al., 2022). Both eEF1A2 inhibition and overexpression seem to be detrimental to SARS-CoV-2 pathogenesis.

Inosine-5'-monophosphate dehydrogenase (IMPDH)

Merimepodib (MMPD) is a IMPDH inhibitor that showed 2.5-log decrease in viral titers (p-value = 0.0004) with 4hr pretreatment (Bukreyeva et al., 2020). When used in combination with Remdesivir, there was a rapid undetected level of achievement of viral load *in vitro*; a trial with the same combination is ongoing (Wimmer and Keestra, 2022).

Target independent drugs

NSAIDs

Indomethacin is an NSAID that inhibits prostaglandin E synthase 2 (PGES-2) (Lucas, 2016). Its mechanism of action is still an enigma, while its primary target is IL6 suppression through PGES-2 inhibition, it is also proposed to block multiple factors for severe COVID-19 e.g. suppressing ACE2, TMPRSS2, cytokines, and inflammation in general (Alkotaji and Al-Zidan, 2021). Indomethacin has shown 100% protection from the development of hypoxia/desaturation with SpO2 \leq 93 compared to 16-22% in the untreated pool of patients (Ravichandran et al., 2022).

	Name of the Agent	Total	No of days	Outcome	Contraindications	Refs
		no of	of	(Negative		
		patients	treatment	SARS-CoV-2 test		
		and		conversions		
		trials		(NSTC))		
					6	
	Chloroquine	50	dosing	Found no	Significant	(Barratt-
1	and	trials	was usually	reductions in	increased odds of	Due et al.,
	Hydroxychloroquin	619	400 mg	mortality,	QT prolongations	2021; Deng et
	e	91	orally BID	hospitalization,	(rates 0.39 vs 0.29	al., 2022;
		patients	on day 1	symptoms, and	treated vs. 0.13 vs	Kalantari et
			and 200 mg	ICU dependency	0.09 control)	al., 2021;
			BID on	incidence of		_
			days 2–5.	mechanical		
				ventilation, and		al., 2020)
		S		NSTC OR= 0.97.		
	T	19	Dosing	Found no		(Hariyant
2	Ivermectin	studies	was usually	reductions in		o et al., 2022;
		432	400 µg per	mortality,		Reis et al.,
		8	kilogram	hospitalization,		2022; Shafiee
		Patients	for 3 days	symptoms and		et al., 2022)
			or placebo	ICU dependency,		et un, 2022)
				incidence of		
				mechanical		

Table 4. Descriptions of anti-COVID-19 agents (non-virus-specific) with data from clinical trials

				ventilation, and		
				NSTC OR= 0.25		
	Steroids	62	Dosing	Found great	could slightly	(Ebrahim
3	(Methylprednis	studies,	was usually	reductions in	prolong the	i Chaharom et
	olone and	5 trials,7	(1–2	mortality up to	duration of viral	al., 2022;
	Glucocorticoid)	works of	mg/kg/day	20% (RR=73 TO	shedding (MD	Hong et al.,
	Glucocor ficolu)	literatur	for \leq 7	77),	1.03)	2022;
		e	days).	hospitalization,	0	Salvarani et
		235		symptoms and		al., 2022; J.
		97		ICU dependency,		
		patients		the incidence of		Tu et al.,
				mechanical		2022; J. G.
				ventilation (RR		Zein et al.,
				0.77, increased 28-		2022)
				day ventilator-free		
		0		days (MD= 0.5 TO		
	4			2.81)		
				low-dose		
				(≤2mg/kg/day)		
				methylprednisolon		
				e treatment for ≤ 7		
				days was		
				associated with		
				relatively better		
				clinical outcomes,		
				without increasing		

				the duration of viral shedding		
	Clevudine	1	Dosing	Found no		(Song et
4		study	was usually	reductions in		al., 2021)
		61	120 mg	mortality,		
		patients	orally per	hospitalization,		
			day for 14	symptoms and	6	
			days	ICU dependency	0	
				incidence of	0	
				mechanical		
				ventilation, and		
				NSTC		
	Methylene Blue	1	Dosing	Found no		(Aleman
5		study	was usually	reductions in		y et al., 2022;
		63	Methyl	mortality,		Patidar et al.,
		patients	ene blue 0.5	hospitalization,		2022)
		5	mg via	symptoms and		
			nebulizatio n TID	ICU dependency incidence of		
				mechanical		
				ventilation, and		
				NSTC		
		4	Dosing	Found		(Blum et al.,
6	Nitazoxanide	studies	was usually	improvement in		2021;
				the inflammatory		Mendieta

		192	500 to	outcome but no		Zerón et al.,
		6	600 mg	reductions in		2021; Miorin
		patients	TID for 5 -	mortality,		et al., n.d.;
			7 days	hospitalization,		Rocco et al.,
				symptoms and		2021;
				ICU dependency		Rossignol et
				incidence of		-
				mechanical	X	al., 2022)
				ventilation, and	0	
				NSTC	O	
				Q.		
	C21	1	Dosing	Found marked		(Tornling
7		phase 2	was usually	reduction of		et al., 2021)
		trial	100 mg	requirement for O2		et all, 2021)
		106	C21 BID	on day 14. along		
		patients	7 days	with no reductions		
			in addition	in mortality,		
		5	to standard	hospitalization,		
			of care	symptoms, and		
				ICU dependency		
				incidence of		
				mechanical		
				ventilation, and		
				NSTC		
	Nielesemide	1	Dosing	Found no		(Cairns et al.,
	Niclosamide	phase 2	was usually 2	reductions in		
8		trial		mortality,		2022)

		73	g orally daily	hospitalization,		
		patients	for 7 days	symptoms and ICU		
				dependency		
				incidence of		
				mechanical		
				ventilation, and		
				NSTC		
					<u>_</u>	
	Nafamostat	1	Dosing	Found a shorter	\mathbf{O}	(Zhuravel
9		Pase 2	was usually	median time to	0	et al., 2021)
	(Nafabelltan)	trial	4.8	clinical improvement		
		104	mg/kg/day	in a small group of		
		patients	plus	high-risk patients		
			standard-of-	requiring O2		
			care	treatment and no		
			0	reductions in		
				mortality,		
				hospitalization,		
		0		symptoms and ICU		
		0		dependency		
				incidence of		
				mechanical		
				ventilation, and		
				NSTC in other		
				patient groups		
	Indomethaci	1	Dosing	Found		(Ravicha
0	n	study	was usually	significant		ndran et al.,
		210	75 mg (OD	symptomatic relief		2022)
		patients	for $BMI < 30$	and improved		

			75		
	(N=	and BID for	oxygen saturation		
	103)	BMI > 30)	level, none in the		
		For 5	indomethacin group		
		days	was desaturated. The		
			median days for the		
			resolution of fever is		
			less than 7 days, and		
			cough and myalgia		
			are significantly	<u> </u>	
			reduced	\mathbf{O}	

Newer approaches to drugging targets

A variety of novel targets are being investigated with non-standard drug targeting. Ensovibep (MP0420) is a DARPins derivative that is an emerging class of novel therapeutics. This molecule's three distinct DARPin domains are designed to simultaneously target the receptor binding ridge on each RBD of the spike trimer (Chonira et al., 2022). MP0420 had an IC50 of an average of 2.3ng/ml except for the mutation F486V, it was twice as effective as neutralizing antibodies; REGN10933 and REGN10987, and had a better efficacy against variants of concern (Reichen et al., n.d.).

A novel therapeutic paradigm is a proteolysis-targeting chimera (PROTAC), an application of targeted protein degradation, which has successfully been applied toward COVID-19 targets (Shaheer et al., 2021). Essentially, PROTACs have a region that binds the viral target and the same region that binds a ubiquitin ligase, thereby positioning it to traffic the target for degradation. Since the virus must enter the cell, it is thereafter susceptible to PROTACs. Viral proteins are also

exogenous, making them good targets from a standpoint of specificity. Furthermore, fragments generated from degradation can result in novel antigens that stimulate the host immune response. MPRO in particular has been selected as a viable candidate for PROTACs (Shaheer et al., 2021). Other potential targets include viral envelope proteins, PLpro, and RNA-dependent RNA polymerase (RdRp). PROTACs use a ligand as the basis for targeted protein degradation, novel therapeutics can be based on existing drugs or those in development, for the appropriate intracellular targets. For example, indomethacin has gained attention after drug repurposing studies identified its antiviral capabilities (Shekhar et al., 2022; Zeng et al., 2020). A recent study investigated the effectiveness of indomethacin-based PROTACs in pan anti-coronavirus therapy (Desantis et al., 2021). Their findings indicated the indomethacin-PROTAC was more potent at inhibiting coronavirus, as well as was able to be effective against multiple strains of coronavirus.

A major limitation of PROTACs is that they are only usable for intracellular targets, or at least ones with an intracellular component; this limitation precludes a vast range of potential targets of high importance. A very recent technique called molecular degraders of extracellular proteins through the asialoglycoprotein receptor (MoDE-As) addresses the glaring weakness of targeted protein degradation. MoDE-As can target extracellular proteins for degradation (Caianiello et al., 2021). This is accomplished via the formation of a ternary complex between a target protein, the ligand, and hepatocyte ASGPRs; this complex is then endocytosed, trafficked to the lysosome and the target protein is degraded by the host machinery. While MoDE-As has not yet been applied to COVID-19 therapy, it is a viable technique to intervene with viral protein targets before they enter the cells. Furthermore, there is evidence that the SARS-CoV-2 spike protein interacts with the ASGPR in hepatocytes through a lesser-known mechanism of entry (Collins and Steer, 2021; Gu et al., 2022).

Conclusion

COVID-19 disease can be safely called a virus-induced hyper-immune disorder. There are thus numerous factors still being discovered from the host point of view which can be mitigated by various therapeutics to reduce the severe clinical presentations (W. Zhang et al., 2022). Also with new roles assigned to various viral components essential in pathogenesis and severe disease progression, numerous virus-coded proteins have been proposed as drug targets albeit only a few have bioactive inhibitors (Martin et al., 2020). Although there are numerous agents with known *in vitro* activity, there is an urgent need to form suitable combinations based on the synergy of the agents, a stratified patient population taking into consideration important pathways leading to either ARDS or Long-haul disorders. Also, various *trialed* agents with borderline protection or a population-specific activity can be used to fortify newly discovered strong antivirals like Nirmatrelvir or Molnopiravir. As there is no single pathway in this COVID-19 sequela, there is an urgent need for utilizing personalized medicine combinations composed of the most tolerated and active agent combinations.

Intriguingly, when viewing from a drug discovery perspective, there is a learning phase we must endeavor to better understand the druggability of identified viral targets with known and potential inhibitors to continue developing new antivirals to be better prepared for the emergence of drug resistance to current candidates and therapeutics (Gandhi et al., 2022), especially when it's now known as immunocompromised patients are the source of new resistant variant emergence (Chen et al., 2021; Gandhi et al., 2022; Leung et al., 2022).

Within this realm of rapidly advancing, technology is a convergent race between computational and experimental methods, which furthers the acceleration of drug discovery(Dara et al., 2022; Hinton, 2007; Jiménez-Luna et al., 2021; Lima et al., 2016; Patel et al., 2020; Sherrington and

Kirkpatrick, 1975; Talevi et al., 2020). We are using ML increasingly in multiple areas of science and even in other areas (e.g. social science), whilst we are making stronger strides in computational design techniques. ML is now commonplace in digital pathology, search engines, recognition (voice, facial, pattern), market and financial predictions, astronomy, cryptography, agriculture, and more. The use of AL, ML, and deep learning techniques is to better find and rapidly identify data from multiple sources, extract valuable insights, visualize the data meaningfully, and give context. Within drug discovery, there is an ongoing explosion of the use of ML with molecular modeling for protein structure prediction and drug-protein interaction analyses. For example, the pioneering of Boltzmann machines using decision trees and then adaptive rules for protein structures was a crucial development that allowed the generation of predetermined global variables on molecular structures to dictate conformational searches in directions under the reinforced learning pattern dictated (Caulfield and Devkota, 2012; Caulfield, 2011; Caulfield et al., 2011; Coban et al., 2021b; Kayode et al., 2016; von Roemeling et al., 2018). The particularly useful application of this allowed such things as cryo-EM fitting and rapid space searches (Caulfield and Devkota, 2012; Caulfield et al., 2011) using entropy as the controller.

Particularly of note is the emergence of AI and ML to the forefront of protein structural modeling, conformational dynamics exploratory mission of many labs to find key druggable states, and the determination of the human genomic variance as a contributing factor to the way viruses capitalize on variation. Virus exploitation of human genetic variance is also being tackled by computationalists to better understand how genetics plays a role in virus proliferation, which will allow better tools to predict potential virus offshoots in the future. One can imagine a day when there will be a virtual medicine cabinet pre-stocked with the needed antivirals specific to the patient's genetic predispositions and particular cell pathways. In such a scenario, we will have AI-

based medicine that has the genetic profile, molecular structures for the targets needed, rapidly available custom chemistry, and rapid safety-profiling needed for the new chemical entities to be used in humans on-demand with acceptable safety tolerances. While this particular view of AI and ML is not anytime soon, the palatability of this particular star trek viewpoint is very realizable and within our horizon.

Journal Pression

Bibliography

- Abidi, S.H., Almansour, N.M., Amerzhanov, D., Allemailem, K.S., Rafaqat, W., Ibrahim, M.A., la Fleur, P., Lukac, M., Ali, S., 2021. Repurposing potential of posaconazole and grazoprevir as inhibitors of SARS-CoV-2 helicase. Scientific reports 11, 1–11. https://doi.org/10.1038/s41598-021-89724-0
- Abolhassani, H., Bashiri, G., Montazeri, M., Kouchakzadeh, H., Shojaosadati, S.A., Siadat, S.E.R., 2021. Ongoing Clinical Trials and the Potential Therapeutics for COVID-19 Treatment, in: COVID-19. Springer, pp. 27–89.
- Ahmed, M., Farag, A., Boys, I.N., Wang, P., L. Eitson, J., Ohlson, M.B., Fan, W., McDougal, M.B., Menendez-Montez, I., Uyen Nhi Nguyen, N.U.N.N., Mar, K., Ortiz, F., Young Kim, S., Williams, N., lemoff, A.L., DeBerardinis, R., W. Schoggins, J., Sadek, H., 2021. Identification of Atovaquone and Mebendazole as Repurposed Drugs with Antiviral Activity against SARS-CoV-2 (Version 6) (preprint). Chemistry. https://doi.org/10.26434/chemrxiv-2021-b3fv1-v7
- Alemany, A., Millat-Martinez, P., Corbacho-Monné, M., Malchair, P., Ouchi, D., Ruiz-Comellas, A., Ramírez-Morros, A., Codina, J.R., Simon, R.A., Videla, S., others, 2022. High-titre methylene blue-treated convalescent plasma as an early treatment for outpatients with COVID-19: a randomised, placebocontrolled trial. The Lancet Respiratory Medicine 10, 278–288. https://doi.org/10.1016/S2213-2600(21)00545-2
- Alkotaji, M., Al-Zidan, R.N., 2021. Indomethacin: can it counteract bradykinin effects in COVID-19 patients? Current Pharmacology Reports 7, 102–106. https://doi.org/10.1007/s40495-021-00257-6
- Amani, Bahman, Khanijahani, A., Amani, Behnam, Hashemi, P., 2021. Lopinavir/Ritonavir for COVID-19: a Systematic Review and Meta-Analysis. J Pharm Pharm Sci 24, 246–257. https://doi.org/10.18433/jpps31668
- Amani, Behnam, Amani, Bahman, Zareei, S., Zareei, M., 2021. Efficacy and safety of arbidol (umifenovir) in patients with COVID-19: A systematic review and meta-analysis. Immun Inflamm Dis 9, 1197–1208. https://doi.org/10.1002/iid3.502
- Andreana, I., Bincoletto, V., Milla, P., Dosio, F., Stella, B., Arpicco, S., 2022. Nanotechnological approaches for pentamidine delivery. Drug Deliv. and Transl. Res. 12, 1911–1927. https://doi.org/10.1007/s13346-022-01127-4
- Angamo, M.T., Mohammed, M.A., Peterson, G.M., 2022. Efficacy and safety of remdesivir in hospitalised COVID-19 patients: a systematic review and meta-analysis. Infection 50, 27–41. https://doi.org/10.1007/s15010-021-01671-0
- Anjum, F., Mohammad, T., Asrani, P., Shafie, A., Singh, S., Yadav, D.K., Uversky, V.N., Hassan, M.I., 2022. Identification of intrinsically disorder regions in non-structural proteins of SARS-CoV-2: New insights into drug and vaccine resistance. Molecular and Cellular Biochemistry 477, 1607–1619. https://doi.org/10.1007/s11010-022-04393-5
- Arsenault, D., Lucien, F., Dubois, C.M., 2012. Hypoxia enhances cancer cell invasion through relocalization of the proprotein convertase furin from the trans-golgi network to the cell surface. Journal of cellular physiology 227, 789–800. https://doi.org/10.1002/jcp.22792
- Auwul, M.R., Rahman, M.R., Gov, E., Shahjaman, M., Moni, M.A., 2021. Bioinformatics and machine learning approach identifies potential drug targets and pathways in COVID-19. Brief Bioinform 22, bbab120. https://doi.org/10.1093/bib/bbab120
- Bai, Y., Ye, F., Feng, Y., Liao, H., Song, H., Qi, J., Gao, G.F., Tan, W., Fu, L., Shi, Y., 2021. Structural basis for the inhibition of the SARS-CoV-2 main protease by the anti-HCV drug narlaprevir. Signal transduction and targeted therapy 6, 1–3. https://doi.org/10.1038/s41392-021-00468-9
- Bain, J., McLauchlan, H., Elliott, M., Cohen, P., 2003. The specificities of protein kinase inhibitors: an update. Biochem J 371, 199–204. https://doi.org/10.1042/BJ20021535

- Baker, J.D., Uhrich, R.L., Kraemer, G.C., Love, J.E., Kraemer, B.C., 2021. A drug repurposing screen identifies hepatitis C antivirals as inhibitors of the SARS-CoV2 main protease. PloS one 16, e0245962. https://doi.org/10.1371/journal.pone.0245962
- Balli, F., Kara, E., Demirkan, S.K., 2020. The another side of COVID-19 in Alzheimer's disease patients: drugdrug interactions. Authorea Preprints.
- Barratt-Due, A., Olsen, I.C., Henriksen, K.N., K\aasine, T., Lund-Johansen, F., Hoel, H., Holten, A.R., Tveita, A., Mathiessen, A., Haugli, M., others, 2021. Evaluation of Remdesivir and Hydroxychloroquine on Viral Clearance in COVID-19 Patients: Results from the NOR-Solidarity Randomised Trial.
- Beckerman, R., Gori, A., Jeyakumar, S., Malin, J.J., Paredes, R., Póvoa, P., Smith, N.J., Teixeira-Pinto, A., 2022. Remdesivir for the treatment of patients hospitalized with COVID-19 receiving supplemental oxygen: a targeted literature review and meta-analysis. Sci Rep 12, 9622. https://doi.org/10.1038/s41598-022-13680-6
- Beigel, J.H., Tomashek, K.M., Dodd, L.E., Mehta, A.K., Zingman, B.S., Kalil, A.C., Hohmann, E., Chu, H.Y., Luetkemeyer, A., Kline, S., others, 2020. Remdesivir for the treatment of Covid-19. New England Journal of Medicine. https://doi.org/10.1056/NEJMoa2007764
- Bestle, D., Heindl, M.R., Limburg, H., Pilgram, O., Moulton, H., Stein, D.A., Hardes, K., Eickmann, M., Dolnik,
 O., Rohde, C., others, 2020. TMPRSS2 and furin are both essential for proteolytic activation of SARS-CoV-2 in human airway cells. Life science alliance 3. https://doi.org/10.26508/lsa.202000786
- Bloch, A., 2003. Murphy's law. Penguin.
- Blum, V.F., Cimerman, S., Hunter, J.R., Tierno, P., Lacerda, A., Soeiro, A., Cardoso, F., Bellei, N.C., Maricato, J., Mantovani, N., Vassao, M., Dias, D., Galinskas, J., Janini, L.M.R., Santos-Oliveira, J.R., Da-Cruz, A.M., Diaz, R.S., 2021. Nitazoxanide superiority to placebo to treat moderate COVID-19 A Pilot prove of concept randomized double-blind clinical trial. eClinicalMedicine 37, 100981. https://doi.org/10.1016/j.eclinm.2021.100981
- Bojkova, D., Bechtel, M., McLaughlin, K.-M., McGreig, J.E., Klann, K., Bellinghausen, C., Rohde, G., Jonigk, D., Braubach, P., Ciesek, S., Münch, C., Wass, M.N., Michaelis, M., Cinatl, J., 2020. Aprotinin Inhibits SARS-CoV-2 Replication. Cells 9, 2377. https://doi.org/10.3390/cells9112377
- Boodhoo, N., Matsuyama-Kato, A., Shojadoost, B., Behboudi, S., Sharif, S., 2022. The severe acute respiratory syndrome coronavirus 2 non-structural proteins 1 and 15 proteins mediate antiviral immune evasion. Current Research in Virological Science 3, 100021. https://doi.org/10.1016/j.crviro.2022.100021
- Brewitz, L., Kamps, J.J.A.G., Lukacik, P., Strain-Damerell, C., Zhao, Y., Tumber, A., Malla, T.R., Orville, A.M.,
 Walsh, M.A., Schofield, C.J., 2022. Mass Spectrometric Assays Reveal Discrepancies in Inhibition
 Profiles for the SARS-CoV-2 Papain-Like Protease. ChemMedChem 17.
 https://doi.org/10.1002/cmdc.202200016
- Bukreyeva, N., Mantlo, E.K., Sattler, R.A., Huang, C., Paessler, S., Zeldis, J., 2020. The IMPDH inhibitor merimepodib suppresses SARS-CoV-2 replication in vitro. BioRxiv.
- Caianiello, D.F., Zhang, M., Ray, J.D., Howell, R.A., Swartzel, J.C., Branham, E.M.J., Chirkin, E., Sabbasani, V.R., Gong, A.Z., McDonald, D.M., Muthusamy, V., Spiegel, D.A., 2021. Bifunctional small molecules that mediate the degradation of extracellular proteins. Nat Chem Biol 17, 947–953. https://doi.org/10.1038/s41589-021-00851-1
- Cairns, D.M., Dulko, D., Griffiths, J.K., Golan, Y., Cohen, T., Trinquart, L., Price, L.L., Beaulac, K.R., Selker, H.P., 2022. Efficacy of Niclosamide vs Placebo in SARS-CoV-2 Respiratory Viral Clearance, Viral Shedding, and Duration of Symptoms Among Patients With Mild to Moderate COVID-19: A Phase 2 Randomized Clinical Trial. JAMA Netw Open 5, e2144942. https://doi.org/10.1001/jamanetworkopen.2021.44942
- Callaway, E., 2022. 'The entire protein universe': AI predicts shape of nearly every known protein. nature news article.

- Calonico, S., Di Tella, R., Del Valle, J.C.L., 2022. Causal Inference During a Pandemic: Evidence on the Effectiveness of Nebulized Ibuprofen as an Unproven Treatment for COVID-19 in Argentina. National Bureau of Economic Research.
- Cantuti-Castelvetri, L., Ojha, R., Pedro, L.D., Djannatian, M., Franz, J., Kuivanen, S., van der Meer, F., Kallio, K., Kaya, T., Anastasina, M., others, 2020. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science 370, 856–860. https://doi.org/10.1126/science.abd2985
- Cao, B., Wang, Y., Wen, D., Liu, W., Wang, J., Fan, G., Ruan, L., Song, B., Cai, Y., Wei, M., others, 2020. A trial of lopinavir–ritonavir in adults hospitalized with severe Covid-19. New England Journal of Medicine. https://doi.org/10.1056/NEJMoa2001282
- Caraco, Y., Crofoot, G.E., Moncada, P.A., Galustyan, A.N., Musungaie, D.B., Payne, B., Kovalchuk, E., Gonzalez, A., Brown, M.L., Williams-Diaz, A., others, 2022. Phase 2/3 trial of molnupiravir for treatment of Covid-19 in nonhospitalized adults. NEJM Evidence 1, EVIDoa2100043. https://doi.org/10.1056/EVIDoa2100043
- Carpinteiro, A., Edwards, M.J., Hoffmann, M., Kochs, G., Gripp, B., Weigang, S., Adams, C., Carpinteiro, E., Gulbins, A., Keitsch, S., Sehl, C., Soddemann, M., Wilker, B., Kamler, M., Bertsch, T., Lang, K.S., Patel, S., Wilson, G.C., Walter, S., Hengel, H., Pöhlmann, S., Lang, P.A., Kornhuber, J., Becker, K.A., Ahmad, S.A., Fassbender, K., Gulbins, E., 2020. Pharmacological Inhibition of Acid Sphingomyelinase Prevents Uptake of SARS-CoV-2 by Epithelial Cells. Cell Reports Medicine 1, 100142. https://doi.org/10.1016/j.xcrm.2020.100142
- Castillo-Garit, J.A., Cañizares-Carmenate, Y., Pérez-Giménez, F., 2021. Biosynthetic enzymes of the SARS-CoV-2 as potential targets for the discovery of new antiviral drugs. Nereis. Interdisciplinary Ibero-American Journal of Methods, Modelling and Simulation. 17–23. https://doi.org/10.46583/nereis_2021.13.844
- Caulfield, T., Devkota, B., 2012. Motion of transfer RNA from the A/T state into the A-site using docking and simulations. Proteins 80, 2489–2500. https://doi.org/10.1002/prot.24131
- Caulfield, T., Medina-Franco, J.L., 2011. Molecular dynamics simulations of human DNA methyltransferase 3B with selective inhibitor nanaomycin A. J Struct Biol 176, 185–191. https://doi.org/10.1016/j.jsb.2011.07.015
- Caulfield, T.R., 2011. Inter-ring rotation of apolipoprotein A-I protein monomers for the double-belt model using biased molecular dynamics. J Mol Graph Model 29, 1006–1014. https://doi.org/10.1016/j.jmgm.2011.04.005
- Caulfield, T.R., Devkota, B., Rollins, G.C., 2011. Examinations of tRNA Range of Motion Using Simulations of Cryo-EM Microscopy and X-Ray Data. J Biophys 2011, 219515. https://doi.org/10.1155/2011/219515
- Chakraborty, C., Bhattacharya, M., Mallick, B., Sharma, A.R., Lee, S.-S., Agoramoorthy, G., 2021. SARS-CoV-2 protein drug targets landscape: a potential pharmacological insight view for the new drug development. Expert Rev Clin Pharmacol 14, 225–238. https://doi.org/10.1080/17512433.2021.1874348
- Chan, H.-T., Chao, C.-M., Lai, C.-C., 2021. Sofosbuvir/daclatasvir in the treatment of COVID-19 infection: a meta-analysis. Journal of Infection 82, e34–e35. https://doi.org/10.1016/j.jinf.2020.12.021
- Chang, J., 2022. 4'-Modified Nucleosides for Antiviral Drug Discovery: Achievements and Perspectives. Accounts of Chemical Research 55, 565–578. https://doi.org/10.1021/acs.accounts.1c00697
- Chejfec-Ciociano, J.M., Martínez-Herrera, J.P., Parra-Guerra, A.D., Chejfec, R., Barbosa-Camacho, F.J., Ibarrola-Peña, J.C., Cervantes-Guevara, G., Cervantes-Cardona, G.A., Fuentes-Orozco, C., Cervantes-Pérez, E., others, 2022. Misinformation About and Interest in Chlorine Dioxide During the COVID-19 Pandemic in Mexico Identified Using Google Trends Data: Infodemiology Study. JMIR Infodemiology 2, e29894. https://doi.org/10.2196/29894

- Chen, H., Zhang, Z., Wang, L., Huang, Z., Gong, F., Li, X., Chen, Y., Wu, J.J., 2020. First clinical study using HCV protease inhibitor danoprevir to treat COVID-19 patients. Medicine 99. https://doi.org/10.1097/MD.00000000023357
- Chen, J., Malone, B., Llewellyn, E., Grasso, M., Shelton, P.M., Olinares, P.D.B., Maruthi, K., Eng, E.T., Vatandaslar, H., Chait, B.T., others, 2020. Structural basis for helicase-polymerase coupling in the SARS-CoV-2 replication-transcription complex. Cell 182, 1560–1573. https://doi.org/10.1016/j.cell.2020.07.033
- Chen, L., Zody, M.C., Di Germanio, C., Martinelli, R., Mediavilla, J.R., Cunningham, M.H., Composto, K., Chow, K.F., Kordalewska, M., Corvelo, A., others, 2021. Emergence of multiple SARS-CoV-2 antibody escape variants in an immunocompromised host undergoing convalescent plasma treatment. Msphere 6, e00480-21. https://doi.org/10.1128/mSphere.00480-21
- Choi, R., Zhou, M., Shek, R., Wilson, J.W., Tillery, L., Craig, J.K., Salukhe, I.A., Hickson, S.E., Kumar, N., James, R.M., others, 2021. High-throughput screening of the ReFRAME, Pandemic Box, and COVID Box drug repurposing libraries against SARS-CoV-2 nsp15 endoribonuclease to identify small-molecule inhibitors of viral activity. PLoS One 16, e0250019. https://doi.org/10.1371/journal.pone.0250019
- Chonira, V.K., Kwon, Y.-D., Gorman, J., Case, J.B., Ku, Z., Simeon, R., Casner, R.G., Harris, D.R., Olia, A.S., Stevens, T., others, 2022. Potent and pan-neutralization of SARS-CoV-2 variants of concern by DARPins. bioRxiv.
- Cimolai, N., 2020. Potentially repurposing adamantanes for COVID-19. Journal of Medical Virology 92, 531–532. https://doi.org/10.1002/jmv.25752
- Clemency, B.M., Varughese, R., Gonzalez-Rojas, Y., Morse, C.G., Phipatanakul, W., Koster, D.J., Blaiss, M.S., 2022. Efficacy of inhaled ciclesonide for outpatient treatment of adolescents and adults with symptomatic COVID-19: a randomized clinical trial. JAMA internal medicine 182, 42–49. https://doi.org/10.1001/jamainternmed.2021.6759
- Clementi, N., Scagnolari, C., D'Amore, A., Palombi, F., Criscuolo, E., Frasca, F., Pierangeli, A., Mancini, N., Antonelli, G., Clementi, M., others, 2021. Naringenin is a powerful inhibitor of SARS-CoV-2 infection in vitro. Pharmacological research 163, 105255. https://doi.org/10.1016/j.phrs.2020.105255
- Coban, M.A., Blackburn, P.R., Whitelaw, M.L., Haelst, M.M. van, Atwal, P.S., Caulfield, T.R., 2020. Structural Models for the Dynamic Effects of Loss-of-Function Variants in the Human SIM1 Protein Transcriptional Activation Domain. Biomolecules 10, E1314. https://doi.org/10.3390/biom10091314
- Coban, M.A., Fraga, S., Caulfield, T.R., 2021a. Structural And Computational Perspectives of Selectively Targeting Mutant Proteins. Curr Drug Discov Technol 18, 365–378. https://doi.org/10.2174/1570163817666200311114819
- Coban, M.A., Morrison, J., Maharjan, S., Hernandez Medina, D.H., Li, W., Zhang, Y.S., Freeman, W.D., Radisky, E.S., Le Roch, K.G., Weisend, C.M., Ebihara, H., Caulfield, T.R., 2021b. Attacking COVID-19 Progression Using Multi-Drug Therapy for Synergetic Target Engagement. Biomolecules 11, 787. https://doi.org/10.3390/biom11060787
- Collins, D.P., Steer, C.J., 2021. Binding of the SARS-CoV-2 Spike Protein to the Asialoglycoprotein Receptor on Human Primary Hepatocytes and Immortalized Hepatocyte-Like Cells by Confocal Analysis. Hepat Med 13, 37–44. https://doi.org/10.2147/HMER.S301979
- Conway, S.R., Keller, M.D., Bollard, C.M., 2022. Cellular therapies for the treatment and prevention of SARS-CoV-2 infection. Blood. https://doi.org/10.1182/blood.2021012249
- Costanzo, M., De Giglio, M.A.R., Roviello, G.N., 2020. SARS-CoV-2: recent reports on antiviral therapies based on lopinavir/ritonavir, darunavir/umifenovir, hydroxychloroquine, remdesivir, favipiravir and other drugs for the treatment of the new coronavirus. Current medicinal chemistry. https://doi.org/10.2174/0929867327666200416131117

- Cox, R.M., Wolf, J.D., Plemper, R.K., 2021. Therapeutically administered ribonucleoside analogue MK-4482/EIDD-2801 blocks SARS-CoV-2 transmission in ferrets. Nature microbiology 6, 11–18. https://doi.org/10.1038/s41564-020-00835-2
- da Silva, M.F., de Araújo-Júnior, J.X., da Silva-Júnior, E.F., Heimfarth, L., Martins-Filho, P.R., Quintans, J. de S.S., Quintans-Júnior, L.J., 2022. Bradykinin-target therapies in SARS-CoV-2 infection: current evidence and perspectives. Naunyn-Schmiedeberg's Archives of Pharmacology 1–9.
- Dai, W., Zhang, B., Jiang, X.-M., Su, H., Li, J., Zhao, Y., Xie, X., Jin, Z., Peng, J., Liu, F., Li, C., Li, Y., Bai, F., Wang, H., Cheng, X., Cen, X., Hu, S., Yang, X., Wang, J., Liu, X., Xiao, G., Jiang, H., Rao, Z., Zhang, L.-K., Xu, Y., Yang, H., Liu, H., 2020. Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease. Science 368, 1331–1335. https://doi.org/10.1126/science.abb4489
- Dang, M., Song, J., 2022. A review of the effects of ATP and hydroxychloroquine on the phase separation of the SARS-CoV-2 nucleocapsid protein. Biophysical Reviews 1–7.
- Daniel, J.A., Chau, N., Abdel-Hamid, M.K., Hu, L., von Kleist, L., Whiting, A., Krishnan, S., Maamary, P., Joseph, S.R., Simpson, F., Haucke, V., McCluskey, A., Robinson, P.J., 2015. Phenothiazine-Derived Antipsychotic Drugs Inhibit Dynamin and Clathrin-Mediated Endocytosis: Antipsychotic Drugs Inhibit Dynamin. Traffic 16, 635–654. https://doi.org/10.1111/tra.12272
- Dara, S., Dhamercherla, S., Jadav, S.S., Babu, C.M., Ahsan, M.J., 2022. Machine Learning in Drug Discovery: A Review. Artif Intell Rev 55, 1947–1999. https://doi.org/10.1007/s10462-021-10058-4
- Davies, J., Randeva, H.S., Chatha, K., Hall, M., Spandidos, D.A., Karteris, E., Kyrou, I., 2020. Neuropilin-1 as a new potential SARS-CoV-2 infection mediator implicated in the neurologic features and central nervous system involvement of COVID-19. Molecular medicine reports 22, 4221–4226.
- Demarest, J.F., Kienle, M., Boytz, R., Ayres, M., Kim, E., Chung, D., Gandhi, V., Davey, R.A., Sykes, D.B., Shohdy, N., others, 2022. Brequinar and Dipyridamole in Combination Exhibits Synergistic Antiviral Activity Against SARS-CoV-2 in vitro: Rationale for a host-acting antiviral treatment strategy for COVID-19. bioRxiv.
- Deng, J., Zhou, F., Heybati, K., Ali, S., Zuo, Q.K., Hou, W., Dhivagaran, T., Ramaraju, H.B., Chang, O., Wong, C.Y., others, 2022. Efficacy of chloroquine and hydroxychloroquine for the treatment of hospitalized COVID-19 patients: a meta-analysis. Future virology 17, 95–118. https://doi.org/10.2217/fvl-2021-0119
- Desantis, J., Mercorelli, B., Celegato, M., Croci, F., Bazzacco, A., Baroni, M., Siragusa, L., Cruciani, G., Loregian, A., Goracci, L., 2021. Indomethacin-based PROTACs as pan-coronavirus antiviral agents. Eur J Med Chem 226, 113814. https://doi.org/10.1016/j.ejmech.2021.113814
- Devi, K.P., Pourkarim, M.R., Thijssen, M., Sureda, A., Khayatkashani, M., Cismaru, C.A., Neagoe, I.B., Habtemariam, S., Razmjouei, S., Khayat Kashani, H.R., 2022. A perspective on the applications of furin inhibitors for the treatment of SARS-CoV-2. Pharmacol. Rep 74, 425–430. https://doi.org/10.1007/s43440-021-00344-x
- Dhaka, P., Singh, A., Choudhary, S., Kumar, P., Sharma, G.K., Tomar, S., 2022. Discovery of anti-SARS-CoV-2 molecules using structure-assisted repurposing approach targeting N-protein. bioRxiv.
- Ding, X., Ye, N., Qiu, M., Guo, H., Li, J., Zhou, X., Yang, M., Xi, J., Liang, Y., Gong, Y., others, 2022. Cathepsin B is a potential therapeutic target for coronavirus disease 2019 patients with lung adenocarcinoma. Chemico-biological interactions 353, 109796. https://doi.org/10.1016/j.cbi.2022.109796
- Dittmar, M., Lee, J.S., Whig, K., Segrist, E., Li, M., Kamalia, B., Castellana, L., Ayyanathan, K., Cardenas-Diaz, F.L., Morrisey, E.E., others, 2021. Drug repurposing screens reveal cell-type-specific entry pathways and FDA-approved drugs active against SARS-Cov-2. Cell reports 35, 108959. https://doi.org/10.1016/j.celrep.2021.108959
- Djordje, A., Avila, S.V., Forat, L., Xiaoxuan, F., Sanchez-Petitto, G., Siglin, J., Baddley, J., Mannuel, H.D., Hanan, A., Hankey, K.G., others, 2021. Deep dissection of the antiviral immune profile of patients with COVID-19. Communications Biology 4.

- Dong, E., Du, H., Gardner, L., 2020. An interactive web-based dashboard to track COVID-19 in real time. The Lancet infectious diseases 20, 533–534. https://doi.org/10.1016/S1473-3099(20)30120-1
- Drayman, N., DeMarco, J.K., Jones, K.A., Azizi, S.-A., Froggatt, H.M., Tan, K., Maltseva, N.I., Chen, S., Nicolaescu, V., Dvorkin, S., others, 2021. Masitinib is a broad coronavirus 3CL inhibitor that blocks replication of SARS-CoV-2. Science 373, 931–936. https://doi.org/10.1126/science.abg5827
- Drożdżal, S., Rosik, J., Lechowicz, K., Machaj, F., Szostak, B., Przybyciński, J., Lorzadeh, S., Kotfis, K., Ghavami, S., \Los, M.J., 2021. An update on drugs with therapeutic potential for SARS-CoV-2 (COVID-19) treatment. Drug Resistance Updates 59, 100794. https://doi.org/10.1016/j.drup.2021.100794
- Eberle, R.J., Olivier, D.S., Amaral, M.S., Gering, I., Willbold, D., Arni, R.K., Coronado, M.A., 2021. The repurposed drugs suramin and quinacrine cooperatively inhibit SARS-CoV-2 3CLpro in vitro. Viruses 13, 873. https://doi.org/10.3390/v13050873
- Ebrahimi Chaharom, F., Pourafkari, L., Ebrahimi Chaharom, A.A., Nader, N.D., 2022. Effects of corticosteroids on Covid-19 patients: A systematic review and meta-analysis on clinical outcomes. Pulmonary Pharmacology & Therapeutics 72, 102107. https://doi.org/10.1016/j.pupt.2021.102107
- Eid, R.A., Elgendy, M.O., El-Gendy, A.O., Elgendy, S.O., Belbahri, L., Sayed, A.M., Rateb, M.E., 2021. Efficacy of Ceftazidime and Cefepime in the Management of COVID-19 Patients: Single Center Report from Egypt. Antibiotics 10, 1278. https://doi.org/10.3390/antibiotics10111278
- Elahi, R., Karami, P., Heidary, A.H., Esmaeilzadeh, A., 2022. An updated overview of recent advances, challenges, and clinical considerations of IL-6 signaling blockade in severe coronavirus disease 2019 (COVID-19). International Immunopharmacology 108536. https://doi.org/10.1016/j.intimp.2022.108536
- Elazor, M., Liu, M., McKenna, S., Liu, P., Gehrig, E.A., Elfert, A., Puglisi, J., Rossignol, J.-F., Glenn, J.S., 2008. Nitazoxanide (Ntz) is an inducer Eif2A and Pkr phosphorylation, in: Hepatology. JOHN WILEY & SONS INC 111 RIVER ST, HOBOKEN, NJ 07030 USA, pp. 1151A-1151A.
- El-Behery, H., Attia, A.-F., El-Feshawy, N., Torkey, H., 2021. Efficient machine learning model for predicting drug-target interactions with case study for Covid-19. Comput Biol Chem 93, 107536. https://doi.org/10.1016/j.compbiolchem.2021.107536
- Elebeedy, D., Elkhatib, W.F., Kandeil, A., Ghanem, A., Kutkat, O., Alnajjar, R., Saleh, M.A., Abd El Maksoud, A.I., Badawy, I., Al-Karmalawy, A.A., 2021. Anti-SARS-CoV-2 activities of tanshinone IIA, carnosic acid, rosmarinic acid, salvianolic acid, baicalein, and glycyrrhetinic acid between computational and in vitro insights. RSC advances 11, 29267–29286. https://doi.org/10.1039/D1RA05268C
- Ellinger, B., Bojkova, D., Zaliani, A., Cinatl, J., Claussen, C., Westhaus, S., Keminer, O., Reinshagen, J., Kuzikov, M., Wolf, M., others, 2021. A SARS-CoV-2 cytopathicity dataset generated by high-content screening of a large drug repurposing collection. Scientific data 8, 1–10. https://doi.org/10.1038/s41597-021-00848-4
- Evans, S.E., Tseng, C.-T.K., Scott, B.L., Höök, A.M., Dickey, B.F., 2020. Inducible epithelial resistance against coronavirus pneumonia in mice. American journal of respiratory cell and molecular biology 63, 540– 541. https://doi.org/10.1165/rcmb.2020-0247LE
- Ezer, N., Belga, S., Daneman, N., Chan, A., Smith, B.M., Daniels, S.-A., Moran, K., Besson, C., Smyth, L.Y., Bartlett, S.J., others, 2021. Inhaled and intranasal ciclesonide for the treatment of covid-19 in adult outpatients: CONTAIN phase II randomised controlled trial. bmj 375.
- Farag, A., Wang, P., Boys, I.N., L. Eitson, J., Ohlson, M.B., Fan, W., McDougal, M.B., Ahmed, M., W. Schoggins, J., Sadek, H., 2020. Identification of Atovaquone, Ouabain and Mebendazole as FDA Approved Drugs Tar-geting SARS-CoV-2 (Version 4) (preprint). Chemistry. https://doi.org/10.26434/chemrxiv.12003930.v4
- Farhangnia, P., Dehrouyeh, S., Safdarian, A.R., Farahani, S.V., Gorgani, M., Rezaei, N., Akbarpour, M., Delbandi, A.-A., 2022. Recent advances in passive immunotherapies for COVID-19: The Evidence-

Based approaches and clinical trials. International Immunopharmacology 108786. https://doi.org/10.1016/j.intimp.2022.108786

- Fatima, S.W., Alam, S., Khare, S.K., 2022. Molecular and structural insights of β-boswellic acid and glycyrrhizic acid as potent SARS-CoV-2 Envelope protein inhibitors. Phytomedicine Plus 2, 100241. https://doi.org/10.1016/j.phyplu.2022.100241
- Fenizia, C., Galbiati, S., Vanetti, C., Vago, R., Clerici, M., Tacchetti, C., Daniele, T., 2022. Cyclosporine A Inhibits Viral Infection and Release as Well as Cytokine Production in Lung Cells by Three SARS-CoV-2 Variants. Microbiology spectrum 10, e01504-21. https://doi.org/10.1128/spectrum.01504-21
- Fillmore, N., Bell, S., Shen, C., Nguyen, V., La, J., Dubreuil, M., Strymish, J., Brophy, M., Mehta, G., Wu, H., Lieberman, J., Do, N., Sander, C., 2021. Disulfiram associated with lower risk of Covid-19: a retrospective cohort study (preprint). Epidemiology. https://doi.org/10.1101/2021.03.10.21253331
- Fink, K., Nitsche, A., Neumann, M., Grossegesse, M., Eisele, K.-H., Danysz, W., 2021. Amantadine Inhibits SARS-CoV-2 In Vitro. Viruses 13, 539. https://doi.org/10.3390/v13040539
- Fintelman-Rodrigues, N., Sacramento, C.Q., Ribeiro Lima, C., Souza da Silva, F., Ferreira, A.C., Mattos, M., de Freitas, C.S., Cardoso Soares, V., da Silva Gomes Dias, S., Temerozo, J.R., others, 2020. Atazanavir, alone or in combination with ritonavir, inhibits SARS-CoV-2 replication and proinflammatory cytokine production. Antimicrobial agents and chemotherapy 64, e00825-20. https://doi.org/10.1128/AAC.00825-20
- Fong, C., 2020. Covid-19: Predicting inhibition of SARS-CoV-2 in Caco-2 cells: viral cellular entry (PhD Thesis). Eigenenergy, Adelaide, Australia.
- Foo, C.S., Abdelnabi, R., Kaptein, S.J., Zhang, X., ter Horst, S., Mols, R., Delang, L., Rocha-Pereira, J., Coelmont, L., Leyssen, P., others, 2021. Nelfinavir markedly improves lung pathology in SARS-CoV-2infected Syrian hamsters despite a lack of an antiviral effect. bioRxiv.
- Fornasier, E., Macchia, M.L., Giachin, G., Sosic, A., Pavan, M., Sturlese, M., Salata, C., Moro, S., Gatto, B., Bellanda, M., others, 2022. A new inactive conformation of SARS-CoV-2 main protease. Acta Crystallographica Section D: Structural Biology 78. https://doi.org/10.1107/S2059798322000948
- Franchin, G., 2021. IRAK 4 Inhibitor (PF-06650833) in Hospitalized Patients With COVID-19 Pneumonia and Exuberant Inflammation.
- Fred, S.M., Kuivanen, S., Ugurlu, H., Casarotto, P.C., Levanov, L., Saksela, K., Vapalahti, O., Castrén, E., 2022. Antidepressant and Antipsychotic Drugs Reduce Viral Infection by SARS-CoV-2 and Fluoxetine Shows Antiviral Activity Against the Novel Variants in vitro. Front. Pharmacol. 12, 755600. https://doi.org/10.3389/fphar.2021.755600
- Freedberg, D.E., Conigliaro, J., Wang, T.C., Tracey, K.J., Callahan, M.V., Abrams, J.A., Sobieszczyk, M.E., Markowitz, D.D., Gupta, A., O'Donnell, M.R., others, 2020. Famotidine use is associated with improved clinical outcomes in hospitalized COVID-19 patients: a propensity score matched retrospective cohort study. Gastroenterology 159, 1129–1131. https://doi.org/10.1053/j.gastro.2020.05.053
- Fu, Z., Huang, B., Tang, J., Liu, S., Liu, M., Ye, Y., Liu, Z., Xiong, Y., Zhu, W., Cao, D., others, 2021. The complex structure of GRL0617 and SARS-CoV-2 PLpro reveals a hot spot for antiviral drug discovery. Nature communications 12, 1–12. https://doi.org/10.1038/s41467-020-20718-8
- Fung, S.-Y., Siu, K.-L., Lin, H., Chan, C.-P., Yeung, M.L., Jin, D.-Y., 2022. SARS-CoV-2 NSP13 helicase suppresses interferon signaling by perturbing JAK1 phosphorylation of STAT1. Cell & Bioscience 12, 1–12. https://doi.org/10.1186/s13578-022-00770-1
- Galvez-Romero, J.L., Palmeros-Rojas, O., Real-Ramírez, F.A., Sánchez-Romero, S., Tome-Maxil, R., Ramírez-Sandoval, M.P., Olivos-Rodríguez, R., Flores-Encarnación, S.E., Cabrera-Estrada, A.A., Ávila-Morales, J., others, 2021. Cyclosporine A plus low-dose steroid treatment in COVID-19 improves clinical outcomes in patients with moderate to severe disease: A pilot study. Journal of internal medicine 289, 906–920. https://doi.org/10.1111/joim.13223

- Gandhi, S., Klein, J., Robertson, A.J., Peña-Hernández, M.A., Lin, M.J., Roychoudhury, P., Lu, P., Fournier, J., Ferguson, D., Mohamed Bakhash, S.A., others, 2022. De novo emergence of a remdesivir resistance mutation during treatment of persistent SARS-CoV-2 infection in an immunocompromised patient: a case report. Nature communications 13, 1–8. https://doi.org/10.1038/s41467-022-29104-y
- Gao, J., Zhang, L., Liu, X., Li, F., Ma, R., Zhu, Z., Zhang, J., Wu, J., Shi, Y., Pan, Y., Ge, Y., Ruan, K., 2020.
 Repurposing Low-Molecular-Weight Drugs against the Main Protease of Severe Acute Respiratory
 Syndrome Coronavirus 2. J. Phys. Chem. Lett. 11, 7267–7272.
 https://doi.org/10.1021/acs.jpclett.0c01894
- Garcia, G., Sharma, A., Ramaiah, A., Sen, C., Purkayastha, A., Kohn, D.B., Parcells, M.S., Beck, S., Kim, H., Bakowski, M.A., Kirkpatrick, M.G., Riva, L., Wolff, K.C., Han, B., Yuen, C., Ulmert, D., Purbey, P.K., Scumpia, P., Beutler, N., Rogers, T.F., Chatterjee, A.K., Gabriel, G., Bartenschlager, R., Gomperts, B., Svendsen, C.N., Betz, U.A.K., Damoiseaux, R.D., Arumugaswami, V., 2021. Antiviral drug screen identifies DNA-damage response inhibitor as potent blocker of SARS-CoV-2 replication. Cell Reports 35, 108940. https://doi.org/10.1016/j.celrep.2021.108940
- Gautret, P., Lagier, J.-C., Parola, P., Hoang, V.T., Meddeb, L., Mailhe, M., Doudier, B., Courjon, J., Giordanengo, V., Vieira, V.E., Tissot Dupont, H., Honoré, S., Colson, P., Chabrière, E., La Scola, B., Rolain, J.-M., Brouqui, P., Raoult, D., 2020. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents 56, 105949. https://doi.org/10.1016/j.ijantimicag.2020.105949
- Gentile, I., Schiano Moriello, N., 2022. COVID-19 prophylaxis in immunosuppressed patients: Beyond vaccination. PLoS Medicine 19, e1003917. https://doi.org/10.1371/journal.pmed.1003917
- Geriak, M., Haddad, F., Kullar, R., Greenwood, K.L., Habib, M., Habib, C., Willms, D., Sakoulas, G., 2021. Randomized prospective open label study shows no impact on clinical outcome of adding losartan to hospitalized COVID-19 patients with mild hypoxemia. Infectious diseases and therapy 10, 1323– 1330. https://doi.org/10.1007/s40121-021-00453-3
- Ghasemiyeh, P., Mortazavi, N., Karimzadeh, I., Vazin, A., Mahmoudi, L., Moghimi Sarani, E., MohammadSadeghi, A., Shahisavandi, M., Kheradmand, A., Mohammadi-Samani, S., 2021.
 Psychiatric Adverse Drug Reactions and Potential Anti-COVID-19 Drug Interactions with Psychotropic Medications. IJPR 20. https://doi.org/10.22037/ijpr.2021.114717.15007
- Gimeno, A., Mestres-Truyol, J., Ojeda-Montes, M.J., Macip, G., Saldivar-Espinoza, B., Cereto-Massagué, A., Pujadas, G., Garcia-Vallvé, S., 2020. Prediction of Novel Inhibitors of the Main Protease (M-pro) of SARS-CoV-2 through Consensus Docking and Drug Reposition. IJMS 21, 3793. https://doi.org/10.3390/ijms21113793
- Giossi, R., Menichelli, D., Pani, A., Tratta, E., Romandini, A., Roncato, R., Nani, A., Schenardi, P., Diani, E.,
 Fittipaldo, V.A., Farcomeni, A., Scaglione, F., Pastori, D., 2021. A Systematic Review and a Meta-Analysis Comparing Prophylactic and Therapeutic Low Molecular Weight Heparins for Mortality Reduction in 32,688 COVID-19 Patients. Front Pharmacol 12, 698008. https://doi.org/10.3389/fphar.2021.698008
- Gobeil, S., Janowska, K., McDowell, S., Mansouri, K., Parks, R., Manne, K., Stalls, V., Kopp, M., Henderson, R., Edwards, R.J., others, 2020. D614G mutation alters SARS-CoV-2 spike conformational dynamics and protease cleavage susceptibility at the S1/S2 junction. bioRxiv.
- Gomaa, A.A., Mohamed, H.S., Abd-Ellatief, R.B., Gomaa, M.A., Hammam, D.S., 2022. Advancing combination treatment with glycyrrhizin and boswellic acids for hospitalized patients with moderate COVID-19 infection: a randomized clinical trial. Inflammopharmacology 30, 477–486. https://doi.org/10.1007/s10787-022-00939-7
- Good, S.S., Westover, J., Jung, K.H., Zhou, X.-J., Moussa, A., La Colla, P., Collu, G., Canard, B., Sommadossi, J.-P., 2021. AT-527, a double prodrug of a guanosine nucleotide analog, is a potent inhibitor of SARS-

CoV-2 in vitro and a promising oral antiviral for treatment of COVID-19. Antimicrobial Agents and Chemotherapy 65, e02479-20. https://doi.org/10.1128/AAC.02479-20

- Grellet, E., Goulet, A., Imbert, I., 2022. Replication of the coronavirus genome: a paradox among positivestrand RNA viruses. Journal of Biological Chemistry 101923. https://doi.org/10.1016/j.jbc.2022.101923
- Gu, Y., Cao, J., Zhang, X., Gao, H., Wang, Y., Wang, J., He, J., Jiang, X., Zhang, J., Shen, G., Yang, J., Zheng, X., Hu, G., Zhu, Yuanfei, Du, S., Zhu, Yunkai, Zhang, R., Xu, J., Lan, F., Qu, D., Xu, G., Zhao, Y., Gao, D., Xie, Y., Luo, M., Lu, Z., 2022. Receptome profiling identifies KREMEN1 and ASGR1 as alternative functional receptors of SARS-CoV-2. Cell Res 32, 24–37. https://doi.org/10.1038/s41422-021-00595-6
- Gupta, A., Chun, H.J., 2021. Interleukin-1-Receptor Kinase 4 Inhibition: Achieving Immunomodulatory Synergy to Mitigate the Impact of COVID-19. Frontiers in Immunology 2483. https://doi.org/10.3389/fimmu.2021.693085
- Gupta, T., Thakkar, P., Kalra, B., Kannan, S., 2022. Hydroxychloroquine in the treatment of coronavirus disease 2019: Rapid updated systematic review and meta-analysis. Rev Med Virol 32, e2276. https://doi.org/10.1002/rmv.2276
- Gupta, Y., Kumar, S., Zak, S.E., Jones, K.A., Upadhyay, C., Sharma, N., Azizi, S.-A., Kathayat, R.S., Herbert, A.S., Durvasula, R., others, 2021a. Antiviral evaluation of hydroxyethylamine analogs: Inhibitors of SARS-CoV-2 main protease (3CLpro), a virtual screening and simulation approach. Bioorganic & medicinal chemistry 116393. https://doi.org/10.1016/j.bmc.2021.116393
- Gupta, Y., Maciorowski, D., Medernach, B., Becker, D.P., Durvasula, R., Libertin, C.R., Kempaiah, P., 2022. Iron dysregulation in COVID-19 and reciprocal evolution of SARS-CoV-2: Natura nihil frustra facit. Journal of cellular biochemistry. https://doi.org/10.1002/jcb.30207
- Gupta, Y., Maciorowski, D., Zak, S.E., Jones, K.A., Kathayat, R.S., Azizi, S.-A., Mathur, R., Pearce, C.M., Ilc, D.J., Husein, H., others, 2021b. Bisindolylmaleimide IX: A novel anti-SARS-CoV2 agent targeting viral main protease 3CLpro demonstrated by virtual screening pipeline and in-vitro validation assays. Methods. https://doi.org/10.1016/j.ymeth.2021.01.003
- Gupta, Y., Maciorowski, D., Zak, S.E., Kulkarni, C.V., Herbert, A.S., Durvasula, R., Fareed, J., Dye, J.M., Kempaiah, P., 2021c. Heparin: A simplistic repurposing to prevent SARS-CoV-2 transmission in light of its in-vitro nanomolar efficacy. International Journal of Biological Macromolecules 183, 203–212. https://doi.org/10.1016/j.ijbiomac.2021.04.148
- Hamdy, R., Mostafa, A., Abo Shama, N.M., Soliman, S.S., Fayed, B., 2022. Comparative evaluation of flavonoids reveals the superiority and promising inhibition activity of silibinin against SARS-CoV-2. Phytotherapy Research. https://doi.org/10.1002/ptr.7486
- Hammond, J., Leister-Tebbe, H., Gardner, A., Abreu, P., Bao, W., Wisemandle, W., Baniecki, M., Hendrick, V.M., Damle, B., Simón-Campos, A., Pypstra, R., Rusnak, J.M., 2022. Oral Nirmatrelvir for High-Risk, Nonhospitalized Adults with Covid-19. N Engl J Med 386, 1397–1408. https://doi.org/10.1056/NEJMoa2118542
- Han, Y., Duan, X., Yang, L., Nilsson-Payant, B.E., Wang, P., Duan, F., Tang, X., Yaron, T.M., Zhang, T., Uhl, S., Bram, Y., Richardson, C., Zhu, J., Zhao, Z., Redmond, D., Houghton, S., Nguyen, D.-H.T., Xu, D., Wang, X., Jessurun, J., Borczuk, A., Huang, Y., Johnson, J.L., Liu, Y., Xiang, J., Wang, H., Cantley, L.C., tenOever, B.R., Ho, D.D., Pan, F.C., Evans, T., Chen, H.J., Schwartz, R.E., Chen, S., 2021. Identification of SARS-CoV-2 inhibitors using lung and colonic organoids. Nature 589, 270–275. https://doi.org/10.1038/s41586-020-2901-9
- Hariyanto, T.I., Halim, D.A., Rosalind, J., Gunawan, C., Kurniawan, A., 2022. Ivermectin and outcomes from Covid-19 pneumonia: a systematic review and meta-analysis of randomized clinical trial studies. Reviews in Medical Virology 32, e2265.

- Harrison, C., 2020. Focus shifts to antibody cocktails for COVID-19 cytokine storm. Nature biotechnology 38, 905–909. https://doi.org/10.1038/s41587-020-0634-9
- Harrison, S., Thumm, L., Nash, T.E., Nutman, T.B., O'Connell, E.M., 2021. The Local Inflammatory Profile and Predictors of Treatment Success in Subarachnoid Neurocysticercosis. Clinical Infectious Diseases 72, e326–e333. https://doi.org/10.1093/cid/ciaa1128
- Hempel, T., Elez, K., Krüger, N., Raich, L., Shrimp, J.H., Danov, O., Jonigk, D., Braun, A., Shen, M., Hall, M.D., Pöhlmann, S., Hoffmann, M., Noé, F., 2021. Synergistic inhibition of SARS-CoV-2 cell entry by otamixaban and covalent protease inhibitors: pre-clinical assessment of pharmacological and molecular properties. Chem. Sci. 12, 12600–12609. https://doi.org/10.1039/D1SC01494C
- Hijikata, A., Shionyu-Mitsuyama, C., Nakae, S., Shionyu, M., Ota, M., Kanaya, S., Hirokawa, T., Nakajima, S., Watashi, K., Shirai, T., 2022. Evaluating cepharanthine analogues as natural drugs against SARS-CoV-2. FEBS Open bio 12, 285–294. https://doi.org/10.1002/2211-5463.13337
- Hines, S.L., Mohammad, A.N., Jackson, J., Macklin, S., Caulfield, T.R., 2019a. Integrative data fusion for comprehensive assessment of a novel CHEK2 variant using combined genomics, imaging, and functional-structural assessments via protein informatics. Mol Omics 15, 59–66. https://doi.org/10.1039/c8mo00137e
- Hines, S.L., Richter, J.E., Mohammad, A.N., Mahim, J., Atwal, P.S., Caulfield, T.R., 2019b. Protein informatics combined with multiple data sources enriches the clinical characterization of novel TRPV4 variant causing an intermediate skeletal dysplasia. Mol Genet Genomic Med 7, e566. https://doi.org/10.1002/mgg3.566
- Hinton, G., 2007. Boltzmann machine. Scholarpedia 2, 1668. https://doi.org/10.4249/scholarpedia.1668
- Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T., Erichsen, S., Schiergens, T.S., Herrler, G., Wu, N.-H., Nitsche, A., others, 2020. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. https://doi.org/10.1016/j.cell.2020.02.052
- Hong, M., Mandala, V., McKay, M., Shcherbakov, A., Dregni, A., Kolocouris, A., 2020. Structure and drug binding of the SARS-CoV-2 envelope protein in phospholipid bilayers. https://doi.org/10.21203/rs.3.rs-77124/v1
- Hong, S., Wang, H., Zhang, Z., Qiao, L., 2022. The roles of methylprednisolone treatment in patients with COVID-19: A systematic review and meta-analysis. Steroids 183, 109022. https://doi.org/10.1016/j.steroids.2022.109022
- Hsu, C.-K., Chen, C.-Y., Chen, W.-C., Lai, C.-C., Hung, S.-H., Lin, W.-T., 2022. The effect of sofosbuvir-based treatment on the clinical outcomes of patients with COVID-19: a systematic review and meta-analysis of randomized controlled trials. International journal of antimicrobial agents 106545. https://doi.org/10.1016/j.ijantimicag.2022.106545
- Hu, K., Wang, M., Zhao, Y., Zhang, Y., Wang, T., Zheng, Z., Li, X., Zeng, S., Zhao, D., Li, H., others, 2020. A small-scale medication of leflunomide as a treatment of COVID-19 in an open-label blank-controlled clinical trial. Virologica Sinica 35, 725–733. https://doi.org/10.1007/s12250-020-00258-7
- Hu, Z., van der Ploeg, K., Chakraborty, S., Arunachalam, P., Mori, D., Jacobson, K., Bonilla, H., Parsonnet, J., Andrews, J., Hedlin, H., others, 2021. Early immune responses have long-term associations with clinical, virologic, and immunologic outcomes in patients with COVID-19. Research Square.
- Hung, D.T., Ghula, S., Aziz, J.M.A., Makram, A.M., Tawfik, G.M., Abozaid, A.A.-F., Pancharatnam, R.A., Ibrahim, A.M., Shabouk, M.B., Turnage, M., others, 2022. The efficacy and adverse effects of favipiravir on COVID-19 patients: a systematic review and meta-analysis of published clinical trials and observational studies. International Journal of Infectious Diseases.
- Imai, Y., Kuba, K., Rao, S., Huan, Y., Guo, F., Guan, B., Yang, P., Sarao, R., Wada, T., Leong-Poi, H., others, 2005. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature 436, 112– 116. https://doi.org/10.1038/nature03712

- Imamura, K., Sakurai, Y., Enami, T., Shibukawa, R., Nishi, Y., Ohta, A., Shu, T., Kawaguchi, J., Okada, S., Hoenen, T., Yasuda, J., Inoue, H., 2021. iPSC screening for drug repurposing identifies anti-RNA virus agents modulating host cell susceptibility. FEBS Open Bio 11, 1452–1464. https://doi.org/10.1002/2211-5463.13153
- Ivanova, N., Sotirova, Y., Gavrailov, G., Nikolova, K., Andonova, V., 2022. Advances in the Prophylaxis of Respiratory Infections by the Nasal and the Oromucosal Route: Relevance to the Fight with the SARS-CoV-2 Pandemic. Pharmaceutics 14, 530. https://doi.org/10.3390/pharmaceutics14030530
- Ivashchenko, A.A., Dmitriev, K.A., Vostokova, N.V., Azarova, V.N., Blinow, A.A., Egorova, A.N., Gordeev, I.G., Ilin, A.P., Karapetian, R.N., Kravchenko, D.V., Lomakin, N.V., Merkulova, E.A., Papazova, N.A., Pavlikova, E.P., Savchuk, N.P., Simakina, E.N., Sitdekov, T.A., Smolyarchuk, E.A., Tikhomolova, E.G., Yakubova, E.V., Ivachtchenko, A.V., 2021. AVIFAVIR for Treatment of Patients With Moderate Coronavirus Disease 2019 (COVID-19): Interim Results of a Phase II/III Multicenter Randomized Clinical Trial. Clinical Infectious Diseases 73, 531–534. https://doi.org/10.1093/cid/ciaa1176
- Jackson, C.B., Farzan, M., Chen, B., Choe, H., 2022. Mechanisms of SARS-CoV-2 entry into cells. Nature reviews Molecular cell biology 23, 3–20. https://doi.org/10.1038/s41580-021-00418-x
- Jang, K.-J., Jeong, S., Kang, D.Y., Sp, N., Yang, Y.M., Kim, D.-E., 2020. A high ATP concentration enhances the cooperative translocation of the SARS coronavirus helicase nsP13 in the unwinding of duplex RNA. Scientific reports 10, 1–13. https://doi.org/10.1038/s41598-020-61432-1
- Jaroenram, W., Chatnuntawech, I., Kampeera, J., Pengpanich, S., Leaungwutiwong, P., Tondee, B., Sirithammajak, S., Suvannakad, R., Khumwan, P., Dangtip, S., Arunrut, N., Bantuchai, S., Nguitragool, W., Wongwaroran, S., Khanchaitit, P., Sattabongkot, J., Teerapittayanon, S., Kiatpathomchai, W., 2022. One-step colorimetric isothermal detection of COVID-19 with Al-assisted automated result analysis: A platform model for future emerging point-of-care RNA/DNA disease diagnosis. Talanta 249, 123375. https://doi.org/10.1016/j.talanta.2022.123375
- Jayk Bernal, A., Gomes da Silva, M.M., Musungaie, D.B., Kovalchuk, E., Gonzalez, A., Delos Reyes, V., Martín-Quirós, A., Caraco, Y., Williams-Diaz, A., Brown, M.L., others, 2022. Molnupiravir for oral treatment of Covid-19 in nonhospitalized patients. New England Journal of Medicine 386, 509–520. https://doi.org/10.1056/NEJMoa2116044
- Jeong, G.U., Lyu, J., Kim, K.-D., Chung, Y.C., Yoon, G.Y., Lee, S., Hwang, I., Shin, W.-H., Ko, J., Lee, J.-Y., others, 2022. SARS-CoV-2 Infection of Microglia Elicits Proinflammatory Activation and Apoptotic Cell Death. Microbiology Spectrum e01091-22.
- Jiménez-Luna, J., Grisoni, F., Weskamp, N., Schneider, G., 2021. Artificial intelligence in drug discovery: recent advances and future perspectives. Expert Opin Drug Discov 16, 949–959. https://doi.org/10.1080/17460441.2021.1909567
- Jin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., Zhang, B., Li, X., Zhang, L., Peng, C., Duan, Y., Yu, J., Wang, L., Yang, K., Liu, F., Jiang, R., Yang, Xinglou, You, T., Liu, Xiaoce, Yang, Xiuna, Bai, F., Liu, H., Liu, Xiang, Guddat, L.W., Xu, W., Xiao, G., Qin, C., Shi, Z., Jiang, H., Rao, Z., Yang, H., 2020. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature 582, 289–293. https://doi.org/10.1038/s41586-020-2223-y
- Kalantari, S., Fard, S.R., Maleki, D., Taher, M.T., Yassin, Z., Alimohamadi, Y., Minaeian, S., 2021. Comparing the effectiveness of Atazanavir/Ritonavir/Dolutegravir/Hydroxychloroquine and Lopinavir/Ritonavir/Hydroxychloroquine treatment regimens in COVID-19 patients. Journal of Medical Virology 93, 6557–6565. https://doi.org/10.1002/jmv.27195
- Kamel, W.A., Kamel, M.I., Alhasawi, A., Elmasry, S., AlHamdan, F., Al-Hashel, J.Y., 2021. Effect of preexposure use of amantadine on COVID-19 infection: a hospital-based cohort study in patients with Parkinson's disease or multiple sclerosis. Frontiers in Neurology 12, 704186. https://doi.org/10.3389/fneur.2021.704186

- Kandeel, M., Yamamoto, M., Tani, H., Kobayashi, A., Gohda, J., Kawaguchi, Y., Park, B.K., Kwon, H.-J., Inoue, J., Alkattan, A., 2021. Discovery of new fusion inhibitor peptides against SARS-CoV-2 by targeting the spike S2 subunit. Biomolecules & therapeutics 29, 282. https://doi.org/10.4062/biomolther.2020.201
- Kaur, H., Sarma, P., Bhattacharyya, A., Sharma, S., Chhimpa, N., Prajapat, M., Prakash, A., Kumar, S., Singh, A., Singh, R., others, 2021. Efficacy and safety of dihydroorotate dehydrogenase (DHODH) inhibitors "leflunomide" and "teriflunomide" in Covid-19: A narrative review. European journal of pharmacology 906, 174233. https://doi.org/10.1016/j.ejphar.2021.174233
- Kayode, O., Wang, R., Pendlebury, D.F., Cohen, I., Henin, R.D., Hockla, A., Soares, A.S., Papo, N., Caulfield, T.R., Radisky, E.S., 2016. An Acrobatic Substrate Metamorphosis Reveals a Requirement for Substrate Conformational Dynamics in Trypsin Proteolysis. J Biol Chem 291, 26304–26319. https://doi.org/10.1074/jbc.M116.758417
- Kern, D.M., Sorum, B., Hoel, C.M., Sridharan, S., Remis, J.P., Toso, D.B., Brohawn, S.G., n.d. Cryo-EM structure of the SARS-CoV-2 3a ion channel in lipid nanodiscs. https://doi.org/10.1101/2020.06.17.156554
- Kinoshita, T., Shinoda, M., Nishizaki, Y., Shiraki, K., Hirai, Y., Kichikawa, Y., Tsushima, K., Sinkai, M., Komura, N., Yoshida, K., others, 2022. Phase 3, multicentre, double-blind, randomised, parallel-group, placebo-controlled study of camostat mesilate (FOY-305) for the treatment of COVID-19 (CANDLE study). medRxiv.
- Ko, M., Jeon, S., Ryu, W.-S., Kim, S., 2021. Comparative analysis of antiviral efficacy of FDA-approved drugs against SARS-CoV-2 in human lung cells. Journal of medical virology 93, 1403–1408. https://doi.org/10.1002/jmv.26397
- Kocabaş, F., Uslu, M., 2021. The current state of validated small molecules inhibiting SARS-CoV-2 nonstructural proteins. Turkish Journal of Biology 45, 469–483. https://doi.org/10.3906/biy-2106-42
- Kosinsky, Y., Peskov, K., Stanski, D.R., Wetmore, D., Vinetz, J., 2022. Semi-Mechanistic Pharmacokinetic-Pharmacodynamic Model of Camostat Mesylate-Predicted Efficacy against SARS-CoV-2 in COVID-19. Microbiology Spectrum 10, e02167-21. https://doi.org/10.1128/spectrum.02167-21
- Kow, C.S., Javed, A., Ramachandram, D., Hasan, S.S., 2022. Clinical outcomes of sofosbuvir-based antivirals in patients with COVID-19: a systematic review and meta-analysis of randomized trials. Expert Review of Anti-infective Therapy 20, 567–575. https://doi.org/10.1080/14787210.2022.2000861
- Kumar, Prateek, Bhardwaj, T., Garg, N., Giri, R., 2022a. Microsecond simulations and CD spectroscopy reveals the intrinsically disordered nature of SARS-CoV-2 spike-C-terminal cytoplasmic tail (residues 1242–1273) in isolation. Virology 566, 42–55. https://doi.org/10.1016/j.virol.2021.11.005
- Kumar, Prateek, Bhardwaj, T., Giri, R., 2022b. Mitoxantrone dihydrochloride, an FDA approved drug, binds with SARS-CoV-2 NSP1 C-terminal. RSC advances 12, 5648–5655. https://doi.org/10.1039/D1RA07434B
- Kumar, Prabhakaran, Mathayan, M., Smieszek, S.P., Przychodzen, B.P., Koprivica, V., Birznieks, G., Polymeropoulos, M.H., Prabhakar, B.S., 2022. Identification of potential COVID-19 treatment compounds which inhibit SARS Cov2 prototypic, Delta and Omicron variant infection. Virology. https://doi.org/10.1016/j.virol.2022.05.004
- Kumar, S., Singh, B., Kumari, P., Kumar, P.V., Agnihotri, G., Khan, S., Kant Beuria, T., Syed, G.H., Dixit, A., 2021. Identification of multipotent drugs for COVID-19 therapeutics with the evaluation of their SARS-CoV2 inhibitory activity. Computational and Structural Biotechnology Journal 19, 1998–2017. https://doi.org/10.1016/j.csbj.2021.04.014
- Kwon, P.S., Oh, H., Kwon, S.-J., Jin, W., Zhang, F., Fraser, K., Hong, J.J., Linhardt, R.J., Dordick, J.S., 2020.
 Sulfated polysaccharides effectively inhibit SARS-CoV-2 in vitro. Cell discovery 6, 1–4. https://doi.org/10.1038/s41421-020-00192-8

- Kyrou, I., Randeva, H.S., Spandidos, D.A., Karteris, E., 2021. Not only ACE2—the quest for additional host cell mediators of SARS-CoV-2 infection: Neuropilin-1 (NRP1) as a novel SARS-CoV-2 host cell entry mediator implicated in COVID-19. Signal transduction and targeted therapy 6, 1–3. https://doi.org/10.1038/s41392-020-00460-9
- Lai, M.Y., Bukhari, F.D.M., Zulkefli, N.Z., Ismail, I., Mustapa, N.I., Soh, T.S.T., Hassan, A.H., Peariasamy, K.M., Lee, Y.L., Suppiah, J., Thayan, R., Lau, Y.L., 2022. Colorimetric detection of SARS-CoV-2 by uracil-DNA glycosylase (UDG) reverse transcription loop-mediated isothermal amplification (RT-LAMP). Int J Infect Dis 120, 132–134. https://doi.org/10.1016/j.ijid.2022.04.036
- Lam, E., Sayedy, N., Dasgupta, N., Akella, J., Iqbal, J., 2022. COVID-19-Related Diffuse Leukoencephalopathy Clinical Improvement with Amantadine Therapy, in: B24. REPORTING ON COVID-19 AND ITS COMPLICATIONS. American Thoracic Society, pp. A2478–A2478.
- Lamb, Y.N., 2022. Nirmatrelvir plus Ritonavir: first approval. Drugs 1–7.
- Lan, Q., Wang, C., Zhou, J., Wang, L., Jiao, F., Zhang, Y., Cai, Y., Lu, L., Xia, S., Jiang, S., 2021. 25-Hydroxycholesterol-Conjugated EK1 Peptide with Potent and Broad-Spectrum Inhibitory Activity against SARS-CoV-2, Its Variants of Concern, and Other Human Coronaviruses. International journal of molecular sciences 22, 11869. https://doi.org/10.3390/ijms222111869
- Laponogov, I., Gonzalez, G., Shepherd, M., Qureshi, A., Veselkov, D., Charkoftaki, G., Vasiliou, V., Youssef, J., Mirnezami, R., Bronstein, M., Veselkov, K., 2021. Network machine learning maps phytochemically rich "Hyperfoods" to fight COVID-19. Hum Genomics 15, 1. https://doi.org/10.1186/s40246-020-00297-x
- Lau, E.Y., Negrete, O.A., Bennett, W.F.D., Bennion, B.J., Borucki, M., Bourguet, F., Epstein, A., Franco, M., Harmon, B., He, S., Jones, D., Kim, H., Kirshner, D., Lao, V., Lo, J., McLoughlin, K., Mosesso, R., Murugesh, D.K., Saada, E.A., Segelke, B., Stefan, M.A., Stevenson, G.A., Torres, M.W., Weilhammer, D.R., Wong, S., Yang, Y., Zemla, A., Zhang, X., Zhu, F., Allen, J.E., Lightstone, F.C., 2021. Discovery of Small-Molecule Inhibitors of SARS-CoV-2 Proteins Using a Computational and Experimental Pipeline. Front. Mol. Biosci. 8, 678701. https://doi.org/10.3389/fmolb.2021.678701
- Lehrer, S., Rheinstein, P.H., 2021. Homozygosity for rs17775810 minor allele associated with reduced mortality of COVID-19 in the UK Biobank Cohort. in vivo 35, 965–968. https://doi.org/10.21873/invivo.12338
- Leung, W.F., Chorlton, S., Tyson, J., Al-Rawahi, G.N., Jassem, A.N., Prystajecky, N., Masud, S., Deans, G.D., Chapman, M.G., Mirzanejad, Y., others, 2022. COVID-19 in an immunocompromised host: persistent shedding of viable SARS-CoV-2 and emergence of multiple mutations: a case report. International Journal of Infectious Diseases 114, 178–182. https://doi.org/10.1016/j.ijid.2021.10.045
- Lewis, D.S., Ho, J., Wills, S., Kawall, A., Sharma, A., Chavada, K., Ebert, M.C., Evoli, S., Singh, A., Rayalam, S., others, 2022. Aloin isoforms (A and B) selectively inhibits proteolytic and deubiquitinating activity of papain like protease (PLpro) of SARS-CoV-2 in vitro. Scientific reports 12, 1–11. https://doi.org/10.1038/s41598-022-06104-y
- Li, J., Chen, G., Meng, Z., Wu, Z., Gan, H., Zhu, X., Han, P., Liu, T., Wang, F., Gu, R., others, 2022. Bioavailability Enhancement of Cepharanthine via Pulmonary Administration in Rats and Its Therapeutic Potential for Pulmonary Fibrosis Associated with COVID-19 Infection. Molecules 27, 2745. https://doi.org/10.3390/molecules27092745
- Li, S., Zhang, Y., Guan, Z., Li, H., Ye, M., Chen, X., Shen, J., Zhou, Y., Shi, Z.-L., Zhou, P., others, 2020. SARS-CoV-2 triggers inflammatory responses and cell death through caspase-8 activation. Signal transduction and targeted therapy 5, 1–10.
- Lima, A.N., Philot, E.A., Trossini, G.H.G., Scott, L.P.B., Maltarollo, V.G., Honorio, K.M., 2016. Use of machine learning approaches for novel drug discovery. Expert Opin Drug Discov 11, 225–239. https://doi.org/10.1517/17460441.2016.1146250

- Lin, C., Li, Yue, Zhang, Y., Liu, Z., Mu, X., Gu, C., Liu, J., Li, Yutang, Li, G., Chen, J., 2021. Ceftazidime is a potential drug to inhibit SARS-CoV-2 infection in vitro by blocking spike protein–ACE2 interaction. Signal transduction and targeted therapy 6, 1–4.
- Lin, H., Cherukupalli, S., Feng, D., Gao, S., Kang, D., Zhan, P., Liu, X., 2022. SARS-CoV-2 Entry inhibitors targeting virus-ACE2 or virus-TMPRSS2 interactions. Current Medicinal Chemistry 29, 682–699. https://doi.org/10.2174/0929867328666210420103021
- Lin, Y., Zhang, Z., Mahjour, B., Wang, D., Zhang, R., Shim, E., McGrath, A., Shen, Y., Brugger, N., Turnbull, R., others, 2021. Reinforcing the supply chain of umifenovir and other antiviral drugs with retrosynthetic software. Nature communications 12, 1–8. https://doi.org/10.1038/s41467-021-27547-3
- Liu, X., Wang, X.-J., 2020. Potential inhibitors against 2019-nCoV coronavirus M protease from clinically approved medicines. Journal of Genetics and Genomics 47, 119. https://doi.org/10.1016/j.jgg.2020.02.001
- Lo, H.S., Hui, K.P.Y., Lai, H.-M., He, X., Khan, K.S., Kaur, S., Huang, J., Li, Z., Chan, A.K., Cheung, H.H.-Y., others, 2021. Simeprevir potently suppresses SARS-CoV-2 replication and synergizes with remdesivir. ACS central science 7, 792–802. https://doi.org/10.1021/acscentsci.0c01186
- Loffredo, M., Lucero, H., Chen, D.-Y., O'Connell, A., Bergqvist, S., Munawar, A., Bandara, A., De Graef, S., Weeks, S.D., Douam, F., others, 2021. The in-vitro effect of famotidine on sars-cov-2 proteases and virus replication. Scientific reports 11, 1–9. https://doi.org/10.1038/s41598-021-84782-w
- Luban, J., Sattler, R.A., Mühlberger, E., Graci, J.D., Cao, L., Weetall, M., Trotta, C., Colacino, J.M., Bavari, S., Strambio-De-Castillia, C., others, 2021. The DHODH inhibitor PTC299 arrests SARS-CoV-2 replication and suppresses induction of inflammatory cytokines. Virus research 292, 198246. https://doi.org/10.1016/j.virusres.2020.198246
- Lucas, S., 2016. The pharmacology of indomethacin. Headache: The Journal of Head and Face Pain 56, 436–446. https://doi.org/10.1111/head.12769
- Ma, C., Hu, Y., Townsend, J.A., Lagarias, P.I., Marty, M.T., Kolocouris, A., Wang, J., 2020a. Ebselen, Disulfiram, Carmofur, PX-12, Tideglusib, and Shikonin Are Nonspecific Promiscuous SARS-CoV-2 Main Protease Inhibitors. ACS Pharmacol. Transl. Sci. 3, 1265–1277. https://doi.org/10.1021/acsptsci.0c00130
- Ma, C., Sacco, M.D., Hurst, B., Townsend, J.A., Hu, Y., Szeto, T., Zhang, X., Tarbet, B., Marty, M.T., Chen, Y., Wang, J., 2020b. Boceprevir, GC-376, and calpain inhibitors II, XII inhibit SARS-CoV-2 viral replication by targeting the viral main protease. Cell Res 30, 678–692. https://doi.org/10.1038/s41422-020-0356-z
- Maghzi, A.H., Houtchens, M.K., Preziosa, P., Ionete, C., Beretich, B.D., Stankiewicz, J.M., Tauhid, S., Cabot, A., Berriosmorales, I., Schwartz, T.H., others, 2020. COVID-19 in teriflunomide-treated patients with multiple sclerosis. Journal of neurology 267, 2790–2796. https://doi.org/10.1007/s00415-020-09944-8
- Mahdi, M., Mótyán, J.A., Szojka, Z.I., Golda, M., Miczi, M., Tőzsér, J., 2020. Analysis of the efficacy of HIV protease inhibitors against SARS-CoV-2's main protease. Virol J 17, 190. https://doi.org/10.1186/s12985-020-01457-0
- Mahmoud, A., Mostafa, A., Al-Karmalawy, A.A., Zidan, A., Abulkhair, H.S., Mahmoud, S.H., Shehata, M., Elhefnawi, M.M., Ali, M.A., 2021. Telaprevir is a potential drug for repurposing against SARS-CoV-2: computational and in vitro studies. Heliyon 7, e07962. https://doi.org/10.1016/j.heliyon.2021.e07962
- Malchair, P., Otero, A., Giol, J., Solanich, X., Carnaval, T., Fernández-Nistal, A., Sánchez-Gabriel, A., Montoto, C., Lleonart, R., Videla, S., 2022. A multicenter, open-label, randomized, proof-of-concept phase II clinical trial to assess the efficacy and safety of icatibant in patients infected with SARS-CoV-

2 (COVID-19) and admitted to hospital units without invasive mechanical ventilation: study protocol (ICAT-COVID). Trials 23, 1–15. https://doi.org/10.1186/s13063-022-06219-7

- Malone, R.W., Tisdall, P., Fremont-Smith, P., Liu, Y., Huang, X.-P., White, K.M., Miorin, L., Moreno, E., Alon, A., Delaforge, E., others, 2021. COVID-19: famotidine, histamine, mast cells, and mechanisms. Frontiers in Pharmacology 12, 633680. https://doi.org/10.3389/fphar.2021.633680
- Mandala, V.S., McKay, M.J., Shcherbakov, A.A., Dregni, A.J., Kolocouris, A., Hong, M., 2020. Structure and drug binding of the SARS-CoV-2 envelope protein transmembrane domain in lipid bilayers. Nature structural & molecular biology 27, 1202–1208. https://doi.org/10.1038/s41594-020-00536-8
- Manna, S., Chowdhury, T., Baindara, P., Mandal, S.M., 2020. Fusion Protein Targeted Antiviral Peptides: Fragment-Based Drug Design (FBDD) Guided Rational Design of Dipeptides Against SARS-CoV-2. Current Protein and Peptide Science 21, 938–947. https://doi.org/10.2174/1389203721666200908164641
- Martin, R., Löchel, H.F., Welzel, M., Hattab, G., Hauschild, A.-C., Heider, D., 2020. CORDITE: the curated CORona drug InTERactions database for SARS-CoV-2. Iscience 23, 101297. https://doi.org/10.1016/j.isci.2020.101297
- Mashayekhi-Sardoo, H., Hosseinjani, H., 2022. A new application of mTOR inhibitor drugs as potential therapeutic agents for COVID-19. Journal of basic and clinical physiology and pharmacology 33, 17–25. https://doi.org/10.1515/jbcpp-2020-0495
- Matsuyama, S., Kawase, M., Nao, N., Shirato, K., Ujike, M., Kamitani, W., Shimojima, M., Fukushi, S., 2020. The inhaled steroid ciclesonide blocks SARS-CoV-2 RNA replication by targeting the viral replicationtranscription complex in cultured cells. Journal of virology 95, e01648-20. https://doi.org/10.1128/JVI.01648-20
- Mazaherpour, H., Sofian, M., Farahani, E., Abdi, A., Mazaherpour, S., Larijani, M.S., abd Ramezani, A., 2021. Higher Rate of Hyperbilirubinemia and Arrythmia in COVID-19 Cases Receiving Combination Therapy Atazanavir/ritonavir vs. Lopinavir/ritonavir.
- Mellott, D.M., Tseng, C.-T., Drelich, A., Fajtová, P., Chenna, B.C., Kostomiris, D.H., Hsu, J., Zhu, J., Taylor, Z.W., Kocurek, K.I., Tat, V., Katzfuss, A., Li, L., Giardini, M.A., Skinner, D., Hirata, K., Yoon, M.C., Beck, S., Carlin, A.F., Clark, A.E., Beretta, L., Maneval, D., Hook, V., Frueh, F., Hurst, B.L., Wang, H., Raushel, F.M., O'Donoghue, A.J., de Siqueira-Neto, J.L., Meek, T.D., McKerrow, J.H., 2021. A Clinical-Stage Cysteine Protease Inhibitor blocks SARS-CoV-2 Infection of Human and Monkey Cells. ACS Chem. Biol. 16, 642–650. https://doi.org/10.1021/acschembio.0c00875
- Mendieta Zerón, H., Meneses Calderón, J., Paniagua Coria, L., Meneses Figueroa, J., Vargas Contreras, M.J., Vives Aceves, H.L., Carranza Salazar, F.M., Californias Hernández, D., Miraflores Vidaurri, E., Carrillo González, A., others, 2021. Nitazoxanide as an early treatment to reduce the intensity of COVID-19 outbreaks among health personnel. World Academy of Sciences Journal 3, 1–6. https://doi.org/10.3892/wasj.2021.94
- Merat, S., 2020. SD1000: high sustained viral response rate in 1361 patients with hepatitis C genotypes 1, 2, 3, and 4 using a low-cost, fixed-dose combination tablet of generic sofosbuvir and daclatasvir: a multicenter, phase III clinical trial. Clinical infectious diseases 70, 2206–2212. https://doi.org/10.1093/cid/ciz628
- Messina, V., Nevola, R., Izzi, A., De Lucia Sposito, P., Marrone, A., Rega, R., Fusco, R., Lumino, P., Rinaldi, L., Gaglione, P., others, 2022. Efficacy and safety of the sofosbuvir/velpatasvir combination for the treatment of patients with early mild to moderate COVID-19. Scientific Reports 12, 1–6. https://doi.org/10.1038/s41598-022-09741-5
- Meyer, B., Chiaravalli, J., Gellenoncourt, S., Brownridge, P., Bryne, D.P., Daly, L.A., Grauslys, A., Walter, M., Agou, F., Chakrabarti, L.A., Craik, C.S., Eyers, C.E., Eyers, P.A., Gambin, Y., Jones, A.R., Sierecki, E., Verdin, E., Vignuzzi, M., Emmott, E., 2021. Characterising proteolysis during SARS-CoV-2 infection

identifies viral cleavage sites and cellular targets with therapeutic potential. Nat Commun 12, 5553. https://doi.org/10.1038/s41467-021-25796-w

- Minasov, G., Rosas-Lemus, M., Shuvalova, L., Inniss, N.L., Brunzelle, J.S., Daczkowski, C.M., Hoover, P., Mesecar, A.D., Satchell, K.J., 2021. Mn2+ coordinates Cap-O-RNA to align substrates for efficient 2'-O-methyl transfer by SARS-CoV-2 nsp16. Science signaling 14, eabh2071. https://doi.org/10.1126/scisignal.abh2071
- Miorin, L., Mire, C., Ranjbar, S., Hume, A., Huang, J., Crossland, N., White, K., Laporte, M., Kehrer, T., Haridas, V., others, n.d. The oral drug nitazoxanide restricts SARS-CoV-2 infection and attenuates disease pathogenesis in Syrian hamsters (preprint).
- Monteil, V., Kwon, H., Prado, P., Hagelkrüys, A., Wimmer, R.A., Stahl, M., Leopoldi, A., Garreta, E., Del Pozo, C.H., Prosper, F., others, 2020. Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell 181, 905–913. https://doi.org/10.1016/j.cell.2020.04.004
- Moran-Lev, H., Weisman, Y., Cohen, S., Deutsch, V., Cipok, M., Bondar, E., Lubetzky, R., Mandel, D., 2018. The interrelationship between hepcidin, vitamin D, and anemia in children with acute infectious disease. Pediatric Research 84, 62–65. https://doi.org/10.1038/s41390-018-0005-0
- Mostafa, A., Kandeil, A., A. M. M. Elshaier, Y., Kutkat, O., Moatasim, Y., Rashad, A.A., Shehata, M., Gomaa, M.R., Mahrous, N., Mahmoud, S.H., GabAllah, M., Abbas, H., Taweel, A.E., Kayed, A.E., Kamel, M.N., Sayes, M.E., Mahmoud, D.B., El-Shesheny, R., Kayali, G., Ali, M.A., 2020. FDA-Approved Drugs with Potent In Vitro Antiviral Activity against Severe Acute Respiratory Syndrome Coronavirus 2. Pharmaceuticals 13, 443. https://doi.org/10.3390/ph13120443
- Mostafa, M.A., 2020. Role of Zidovudine and Candesartan in the Novel SARS-CoV-2 Treatment Trials: Theoretical Study (preprint). https://doi.org/10.21467/preprints.30
- Narayanan, A., Narwal, M., Majowicz, S.A., Varricchio, C., Toner, S.A., Ballatore, C., Brancale, A., Murakami, K.S., Jose, J., 2022. Identification of SARS-CoV-2 inhibitors targeting Mpro and PLpro using in-cell-protease assay. Commun Biol 5, 169. https://doi.org/10.1038/s42003-022-03090-9
- Nassar, A., Ibrahim, I.M., Amin, F.G., Magdy, M., Elgharib, A.M., Azzam, E.B., Nasser, F., Yousry, K., Shamkh, I.M., Mahdy, S.M., others, 2021. A review of human coronaviruses' receptors: the host-cell targets for the crown bearing viruses. Molecules 26, 6455. https://doi.org/10.3390/molecules26216455
- Nicastri, E., Marinangeli, F., Pivetta, E., Torri, E., Reggiani, F., Fiorentino, G., Scorzolini, L., Vettori, S., Marsiglia, C., Gavioli, E.M., Beccari, A.R., Terpolilli, G., De Pizzol, M., Goisis, G., Mantelli, F., Vaia, F., Allegretti, M., 2022. A phase 2 randomized, double-blinded, placebo-controlled, multicenter trial evaluating the efficacy and safety of raloxifene for patients with mild to moderate COVID-19. eClinicalMedicine 48, 101450. https://doi.org/10.1016/j.eclinm.2022.101450
- Ohashi, H., Watashi, K., Saso, W., Shionoya, K., Iwanami, S., Hirokawa, T., Shirai, T., Kanaya, S., Ito, Y., Kim, K.S., Nomura, T., Suzuki, Tateki, Nishioka, K., Ando, S., Ejima, K., Koizumi, Y., Tanaka, T., Aoki, S., Kuramochi, K., Suzuki, Tadaki, Hashiguchi, T., Maenaka, K., Matano, T., Muramatsu, M., Saijo, M., Aihara, K., Iwami, S., Takeda, M., McKeating, J.A., Wakita, T., 2021. Potential anti-COVID-19 agents, cepharanthine and nelfinavir, and their usage for combination treatment. iScience 24, 102367. https://doi.org/10.1016/j.isci.2021.102367
- Ono, J., Koshimizu, U., Fukunishi, Y., Nakai, H., 2022. Multiple protonation states in ligand-free SARS-CoV-2 main protease revealed by large-scale quantum molecular dynamics simulations. Chemical physics letters 794, 139489. https://doi.org/10.1016/j.cplett.2022.139489
- Pandey, P., Prasad, K., Prakash, A., Kumar, V., 2020. Insights into the biased activity of dextromethorphan and haloperidol towards SARS-CoV-2 NSP6: in silico binding mechanistic analysis. J Mol Med 98, 1659–1673. https://doi.org/10.1007/s00109-020-01980-1
- Patel, L., Shukla, T., Huang, X., Ussery, D.W., Wang, S., 2020. Machine Learning Methods in Drug Discovery. Molecules 25, E5277. https://doi.org/10.3390/molecules25225277

- Patidar, V., Sharma, A., Garg, V., Tripathi, A.P., Dhaneriya, S., 2022. Methylene blue in management of COVID19. J Assoc Physicians India 70, 11–12.
- Pearlman, B.L., 2012. Protease inhibitors for the treatment of chronic hepatitis C genotype-1 infection: the new standard of care. Lancet Infect Dis 12, 717–728. https://doi.org/10.1016/S1473-3099(12)70060-9
- Pfefferle, S., Schöpf, J., Kögl, M., Friedel, C.C., Müller, M.A., Carbajo-Lozoya, J., Stellberger, T., von Dall'Armi, E., Herzog, P., Kallies, S., others, 2011. The SARS-coronavirus-host interactome: identification of cyclophilins as target for pan-coronavirus inhibitors. PLoS pathogens 7, e1002331. https://doi.org/10.1371/journal.ppat.1002331
- Pitts, J., Li, J., Perry, J.K., Du Pont, V., Riola, N., Rodriguez, L., Lu, X., Kurhade, C., Xie, X., Camus, G., others, 2022. Remdesivir and GS-441524 retain antiviral activity against Delta, Omicron, and other emergent SARS-CoV-2 variants. Antimicrobial Agents and Chemotherapy e00222-22.
- Ponti, G., Roli, L., Oliva, G., Manfredini, M., Trenti, T., Kaleci, S., Iannella, R., Balzano, B., Coppola, A., Fiorentino, G., others, 2021. Homocysteine (Hcy) assessment to predict outcomes of hospitalized Covid-19 patients: a multicenter study on 313 Covid-19 patients. Clinical Chemistry and Laboratory Medicine (CCLM) 59, e354–e357. https://doi.org/10.1515/cclm-2021-0168
- Prajapat, M., Sarma, P., Shekhar, N., Avti, P., Sinha, S., Kaur, H., Kumar, S., Bhattacharyya, A., Kumar, H., Bansal, S., Medhi, B., 2020. Drug targets for corona virus: A systematic review. Indian J Pharmacol 52, 56–65. https://doi.org/10.4103/ijp.IJP_115_20
- Protein Kinase Inhibitors, 2012., in: LiverTox: Clinical and Research Information on Drug-Induced Liver Injury. National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda (MD).
- Puschmann, A., Fiesel, F.C., Caulfield, T.R., Hudec, R., Ando, M., Truban, D., Hou, X., Ogaki, K., Heckman, M.G., James, E.D., Swanberg, M., Jimenez-Ferrer, I., Hansson, O., Opala, G., Siuda, J., Boczarska-Jedynak, M., Friedman, A., Koziorowski, D., Rudzińska-Bar, M., Aasly, J.O., Lynch, T., Mellick, G.D., Mohan, M., Silburn, P.A., Sanotsky, Y., Vilariño-Güell, C., Farrer, M.J., Chen, L., Dawson, V.L., Dawson, T.M., Wszolek, Z.K., Ross, O.A., Springer, W., 2017. Heterozygous PINK1 p.G411S increases risk of Parkinson's disease via a dominant-negative mechanism. Brain 140, 98–117. https://doi.org/10.1093/brain/aww261
- Puskarich, M.A., Cummins, N.W., Ingraham, N.E., Wacker, D.A., Reilkoff, R.A., Driver, B.E., Biros, M.H., Bellolio, F., Chipman, J.G., Nelson, A.C., others, 2021. A multi-center phase II randomized clinical trial of losartan on symptomatic outpatients with COVID-19. EClinicalMedicine 37, 100957. https://doi.org/10.1016/j.eclinm.2021.100957
- Puskarich, M.A., Ingraham, N.E., Merck, L.H., Driver, B.E., Wacker, D.A., Black, L.P., Jones, A.E., Fletcher, C.V., South, A.M., Murray, T.A., others, 2022. Efficacy of Losartan in Hospitalized Patients With COVID-19–Induced Lung Injury: A Randomized Clinical Trial. JAMA network open 5, e222735– e222735. https://doi.org/10.1001/jamanetworkopen.2022.2735
- Rabie, A.M., 2021. Teriflunomide: A possible effective drug for the comprehensive treatment of COVID-19. Current Research in Pharmacology and Drug Discovery 2, 100055. https://doi.org/10.1016/j.crphar.2021.100055
- Ramachandran, R., Bhosale, V., Reddy, H., Atam, V., Faridi, M., Fatima, J., Shukla, V., Khan, Z.A., Khan, H., Singh, V., Negi, M.P.S., Srivastava, M., Srivastava, A.K., Tripathi, C.B., Ghosh, N., Majumdar, N., Tripathi, R.K., Rath, S.K., Mishra, P.R., Sharma, S., Kundu, T.K., 2022. Phase III, Randomized, Doubleblind, Placebo controlled trial of Efficacy, Safety and Tolerability of Antiviral drug Umifenovir vs Standard care of therapy in non-severe COVID-19 patients. International Journal of Infectious Diseases 115, 62–69. https://doi.org/10.1016/j.ijid.2021.11.025
- Ramos, F., Jr., Zeze, V., Velut, S., & Jan, M. (1987). Cystic meningiomas. Practical value of a radio-surgical classification. J Neuroradiol, 14(3), 271-286.

- Rapicavoli, R. V., Alaimo, S., Ferro, A., & Pulvirenti, A. (2022). Computational Methods for Drug Repurposing. Adv Exp Med Biol, 1361, 119-141. doi:10.1007/978-3-030-91836-1_7
- Ravichandran, R., Mohan, S.K., Sukumaran, S.K., Kamaraj, D., Daivasuga, S.S., Ravi, S.O.A.S., Vijayaraghavalu, S., Kumar, R.K., 2022. An open label randomized clinical trial of Indomethacin for mild and moderate hospitalised Covid-19 patients. Scientific reports 12, 1–10. https://doi.org/10.1038/s41598-022-10370-1
- Reichen, F.R., Dawson, K.M., Lewis, S., Steiner, D., Amstutz, P., Engler, O., Stumpp, M.T., Stumpp, M.T., n.d. Multi-specific DARPin[®] therapeutics demonstrate very high potency against mutated SARS-CoV-2 variants in vitro.
- Reina, J., Iglesias, C., 2022. Nirmatrelvir plus ritonavir (Paxlovid) a potent SARS-CoV-2 3CLpro protease inhibitor combination. Revista Espanola de Quimioterapia: Publicacion Oficial de la Sociedad Espanola de Quimioterapia.
- Reis, G., Silva, E.A.S.M., Silva, D.C.M., Thabane, L., Milagres, A.C., Ferreira, T.S., dos Santos, C.V.Q., Campos, V.H.S., Nogueira, A.M.R., de Almeida, A.P.F.G., Callegari, E.D., Neto, A.D.F., Savassi, L.C.M., Simplicio, M.I.C., Ribeiro, L.B., Oliveira, R., Harari, O., Forrest, J.I., Ruton, H., Sprague, S., McKay, P., Guo, C.M., Rowland-Yeo, K., Guyatt, G.H., Boulware, D.R., Rayner, C.R., Mills, E.J., 2022. Effect of Early Treatment with Ivermectin among Patients with Covid-19. N Engl J Med 386, 1721–1731. https://doi.org/10.1056/NEJMoa2115869
- Rejdak, K., Grieb, P., 2020. Adamantanes might be protective from COVID-19 in patients with neurological diseases: multiple sclerosis, parkinsonism and cognitive impairment. Multiple sclerosis and related disorders 42, 102163. https://doi.org/10.1016/j.msard.2020.102163
- Ren, Z., Luo, H., Yu, Z., Song, J., Liang, L., Wang, L., Wang, H., Cui, G., Liu, Y., Wang, J., others, 2020. A randomized, open-label, controlled clinical trial of azvudine tablets in the treatment of mild and common COVID-19, a pilot study. Advanced Science 7, 2001435. https://doi.org/10.1002/advs.202001435
- Reznikov, L.R., Norris, M.H., Vashisht, R., Bluhm, A.P., Li, D., Liao, Y.-S.J., Brown, A., Butte, A.J., Ostrov, D.A., 2021. Identification of antiviral antihistamines for COVID-19 repurposing. Biochemical and Biophysical Research Communications 538, 173–179. https://doi.org/10.1016/j.bbrc.2020.11.095
- Riccio, A.A., Sullivan, E.D., Copeland, W.C., 2022. Activation of the SARS-CoV-2 NSP14 3'-5' exoribonuclease by NSP10 and response to antiviral inhibitors. Journal of Biological Chemistry 298. https://doi.org/10.1016/j.jbc.2021.101518
- Robinson, P.C., Liew, D.F., Tanner, H.L., Grainger, J.R., Dwek, R.A., Reisler, R.B., Steinman, L., Feldmann, M., Ho, L.-P., Hussell, T., others, 2022. COVID-19 therapeutics: Challenges and directions for the future. Proceedings of the National Academy of Sciences 119, e2119893119. https://doi.org/10.1073/pnas.2119893119
- Rocco, P.R., Silva, P.L., Cruz, F.F., Melo-Junior, M.A.C., Tierno, P.F., Moura, M.A., De Oliveira, L.F.G., Lima, C.C., Dos Santos, E.A., Junior, W.F., others, 2021. Early use of nitazoxanide in mild Covid-19 disease: randomised, placebo-controlled trial. European Respiratory Journal 58. https://doi.org/10.1183/13993003.03725-2020
- Rossignol, J.-F., Bardin, M.C., Fulgencio, J., Mogelnicki, D., Bréchot, C., 2022. A randomized double-blind placebo-controlled clinical trial of nitazoxanide for treatment of mild or moderate COVID-19. eClinicalMedicine 45, 101310. https://doi.org/10.1016/j.eclinm.2022.101310
- Ruggiero, V., Aquino, R.P., Del Gaudio, P., Campiglia, P., Russo, P., 2022. Post-COVID Syndrome: The Research Progress in the Treatment of Pulmonary sequelae after COVID-19 Infection. Pharmaceutics 14, 1135. https://doi.org/10.3390/pharmaceutics14061135
- Ruhm, C.J., 2022. Excess deaths in the United States during the first year of COVID-19. Preventive Medicine 107174. https://doi.org/10.1016/j.ypmed.2022.107174

- Russo, L.C., Tomasin, R., Matos, I.A., Manucci, A.C., Sowa, S.T., Dale, K., Caldecott, K.W., Lehtiö, L., Schechtman, D., Meotti, F.C., others, 2021. The SARS-CoV-2 Nsp3 macrodomain reverses PARP9/DTX3L-dependent ADP-ribosylation induced by interferon signaling. Journal of Biological Chemistry 297. https://doi.org/10.1016/j.jbc.2021.101041
- Salvarani, C., Massari, M., Costantini, M., Franco Merlo, D., Lucia Mariani, G., Viale, P., Nava, S., Guaraldi, G., Dolci, G., Boni, L., Savoldi, L., Bruzzi, P., Turrà, C., Catanoso, M., Maria Marata, A., Barbieri, C., Valcavi, A., Franzoni, F., Cavuto, S., Mazzi, G., Corsini, R., Trapani, F., Bartoloni, A., Barisione, E., Barbieri, C., Jole Burastero, G., Pan, A., Inojosa, W., Scala, R., Burattini, C., Luppi, F., Codeluppi, M., Eldin Tarek, K., Cenderello, G., Salio, M., Foti, G., Dongilli, R., Bajocchi, G., Alberto Negri, E., Ciusa, G., Fornaro, G., Bassi, I., Zammarchi, L., Aloè, T., Facciolongo, N., 2022. Intravenous methylprednisolone pulses in hospitalised patients with severe COVID-19 pneumonia, A double-blind, randomised, placebo-controlled trial. Eur Respir J 2200025. <u>https://doi.org/10.1183/13993003.00025-2022</u>
- Savytskyi, O.V, Yesylevskyy, S.O, Kornelyuk, A.I., 2013. Asymmetric structure and domain binding interfaces of human tyrosyl-tRNA synthetase studied by molecular dynamics simulations. J Mol Recognit. 26(2):113-120. https://doi:10.1002/jmr.2259
- Savytskyi, O., Kornelyuk, A., 2022. Computational modeling of the complex between glycyrrhizin and SARS-CoV-2 protease 3CLpro as a target for the development of antiviral drugs. Reports of the National Academy of Sciences of Ukraine. https://doi.org/10.15407/dopovidi2022.01.115
- Schloer, S., Brunotte, L., Mecate-Zambrano, A., Zheng, S., Tang, J., Ludwig, S., Rescher, U., 2021. Drug synergy of combinatory treatment with remdesivir and the repurposed drugs fluoxetine and itraconazole effectively impairs SARS-CoV-2 infection in vitro. British Journal of Pharmacology 178, 2339–2350. https://doi.org/10.1111/bph.15418
- Schuurmans, M.M., Hage, R., 2021. Cyclosporine A and COVID-19–The COQUIMA cohort. EClinicalMedicine 31. https://doi.org/10.1016/j.eclinm.2020.100680
- Serpa Neto, A., Landoni, G., Ostermann, M., Lumlertgul, N., Forni, L., Alvarez-Belon, L., Trapani, T., Alliegro, P.V., Zacharowski, K., Wiedenbeck, C., others, 2022. Angiotensin II infusion in COVID-19: An international, multicenter, registry-based study. Journal of Medical Virology 94, 2079–2088. https://doi.org/10.1002/jmv.27592
- Shabani, M., Sadegh Ehdaei, B., Fathi, F., Dowran, R., 2021. A mini-review on sofosbuvir and daclatasvir treatment in coronavirus disease 2019. New Microbes and New Infections 42, 100895. https://doi.org/10.1016/j.nmni.2021.100895
- Shafiee, A., Teymouri Athar, M.M., Kohandel Gargari, O., Jafarabady, K., Siahvoshi, S., Mozhgani, S.-H., 2022. Ivermectin under scrutiny: a systematic review and meta-analysis of efficacy and possible sources of controversies in COVID-19 patients. Virol J 19, 102. https://doi.org/10.1186/s12985-022-01829-8
- Shah, S.B., 2021. COVID-19 and Progesterone: Part 1. SARS-CoV-2, Progesterone and its potential clinical use. Endocrine and Metabolic Science 5, 100109. https://doi.org/10.1016/j.endmts.2021.100109
- Shaheer, M., Singh, R., Sobhia, M.E., 2021. Protein degradation: a novel computational approach to design protein degrader probes for main protease of SARS-CoV-2. J Biomol Struct Dyn 1–13. https://doi.org/10.1080/07391102.2021.1953601
- Shannon, A., Fattorini, V., Sama, B., Selisko, B., Feracci, M., Falcou, C., Gauffre, P., El Kazzi, P., Delpal, A., Decroly, E., others, 2022. A dual mechanism of action of AT-527 against SARS-CoV-2 polymerase. Nature communications 13, 1–9. https://doi.org/10.1038/s41467-022-28113-1
- Sheahan, T.P., Sims, A.C., Leist, S.R., Schäfer, A., Won, J., Brown, A.J., Montgomery, S.A., Hogg, A., Babusis, D., Clarke, M.O., others, 2020. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nature Communications 11, 1–14. https://doi.org/10.1038/s41467-019-13940-6

- Shekhar, N., Kaur, H., Sarma, P., Prakash, A., Medhi, B., 2022. Indomethacin: an exploratory study of antiviral mechanism and host-pathogen interaction in COVID-19. Expert Rev Anti Infect Ther 20, 383–390. https://doi.org/10.1080/14787210.2022.1990756
- Shen, Z., Halberg, A., Fong, J.Y., Guo, J., Song, G., Louie, B., Luedtke, G.R., Visuthikraisee, V., Protter, A., Koh, X., Baik, T., Lum, P.Y., 2022. Elucidating host cell response pathways and repurposing therapeutics for SARS-CoV-2 and other coronaviruses using gene expression profiles of chemical and genetic perturbations (preprint). Genomics. https://doi.org/10.1101/2022.04.18.488682
- Sherrington, D., Kirkpatrick, S., 1975. Solvable Model of a Spin-Glass. Phys. Rev. Lett. 35, 1792–1796. https://doi.org/10.1103/PhysRevLett.35.1792
- Shi, Z., Wei, J., Deng, X., Li, S., Qiu, Y., Shao, D., Li, B., Zhang, K., Xue, F., Wang, X., others, 2014. Nitazoxanide inhibits the replication of Japanese encephalitis virus in cultured cells and in a mouse model. Virology journal 11, 1–10. https://doi.org/10.1186/1743-422X-11-10
- Shu, T., Huang, M., Wu, D., Ren, Y., Zhang, X., Han, Y., Mu, J., Wang, R., Qiu, Y., Zhang, D.-Y., others, 2020. SARS-coronavirus-2 Nsp13 possesses NTPase and RNA helicase activities that can be inhibited by bismuth salts. Virologica Sinica 35, 321–329. https://doi.org/10.1007/s12250-020-00242-1
- Simeoni, M., Cavinato, T., Rodriguez, D., Gatfield, D., 2021. I (nsp1) ecting SARS-CoV-2–ribosome interactions. Communications biology 4, 1–5. https://doi.org/10.1038/s42003-021-02265-0
- Siragusa, L., Menna, G., Buratta, F., Baroni, M., Desantis, J., Cruciani, G., Goracci, L., 2022. CROMATIC: Cro ss-Relationship Ma p of Cavi ti es from C oronaviruses. Journal of chemical information and modeling. https://doi.org/10.1021/acs.jcim.2c00169
- Smieszek, S.P., Przychodzen, B.P., Polymeropoulos, M.H., 2020. Amantadine disrupts lysosomal gene expression: A hypothesis for COVID19 treatment. International journal of antimicrobial agents 55, 106004. https://doi.org/10.1016/j.ijantimicag.2020.106004
- Song, J.-Y., Kim, Y.-S., Eom, J.-S., Kim, J.-Y., Lee, J.-S., Lee, J., Choi, W.-S., Heo, J.-Y., Sohn, J.-W., Lee, K.-D., Cho, D., Cho, I., Kim, W.-J., 2021. Oral antiviral clevudine compared with placebo in Korean COVID-19 patients with moderate severity (preprint). Infectious Diseases (except HIV/AIDS). https://doi.org/10.1101/2021.12.09.21267566
- Stegmann, K.M., Dickmanns, A., Gerber, S., Nikolova, V., Klemke, L., Manzini, V., Schlösser, D., Bierwirth, C., Freund, J., Sitte, M., others, 2021. The folate antagonist methotrexate diminishes replication of the coronavirus SARS-CoV-2 and enhances the antiviral efficacy of remdesivir in cell culture models. Virus research 302, 198469. https://doi.org/10.1016/j.virusres.2021.198469
- Stevens, L.J., Pruijssers, A.J., Lee, H.W., Gordon, C.J., Tchesnokov, E.P., Gribble, J., George, A.S., Hughes, T.M., Lu, X., Li, J., others, 2022. Mutations in the SARS-CoV-2 RNA dependent RNA polymerase confer resistance to remdesivir by distinct mechanisms. Science translational medicine eabo0718. https://doi.org/10.1126/scitranslmed.abo0718
- Sugamoto, K., Tanaka, Y.L., Saito, A., Goto, Y., Nakayama, T., Okabayashi, T., Kunitake, H., Morishita, K., 2022. Highly polymerized proanthocyanidins (PAC) components from blueberry leaf and stem significantly inhibit SARS-CoV-2 infection via inhibition of ACE2 and viral 3CLpro enzymes. Biochemical and Biophysical Research Communications 615, 56–62. https://doi.org/10.1016/j.bbrc.2022.04.072
- Sun, Y.J., Velez, G., Parsons, D.E., Li, K., Ortiz, M.E., Sharma, S., McCray, P.B., Bassuk, A.G., Mahajan, V.B., others, 2021. Structure-based phylogeny identifies avoralstat as a TMPRSS2 inhibitor that prevents SARS-CoV-2 infection in mice. The Journal of clinical investigation 131. https://doi.org/10.1172/JCI147973
- Suryamohan, K., Diwanji, D., Stawiski, E.W., Gupta, R., Miersch, S., Liu, J., Chen, C., Jiang, Y.-P., Fellouse, F.A., Sathirapongsasuti, J.F., others, 2021. Human ACE2 receptor polymorphisms and altered susceptibility to SARS-CoV-2. Communications biology 4, 1–11. https://doi.org/10.1038/s42003-021-02030-3

- Taccone, F.S., Gorham, J., Vincent, J.-L., 2020. Hydroxychloroquine in the management of critically ill patients with COVID-19: the need for an evidence base. The Lancet Respiratory Medicine. https://doi.org/10.1016/S2213-2600(20)30172-7
- Talevi, A., Morales, J.F., Hather, G., Podichetty, J.T., Kim, Sarah, Bloomingdale, P.C., Kim, Samuel, Burton, J., Brown, J.D., Winterstein, A.G., Schmidt, S., White, J.K., Conrado, D.J., 2020. Machine Learning in Drug Discovery and Development Part 1: A Primer. CPT Pharmacometrics Syst Pharmacol 9, 129–142. https://doi.org/10.1002/psp4.12491
- Tao, X., Zhang, L., Du, L., Liao, R., Cai, H., Lu, K., Zhao, Z., Xie, Y., Wang, P.-H., Pan, J.-A., others, 2021. Allosteric inhibition of SARS-CoV-2 3CL protease by colloidal bismuth subcitrate. Chemical science 12, 14098–14102. https://doi.org/10.1039/D1SC03526F
- Thachil, J., 2020. The versatile heparin in COVID-19. Journal of Thrombosis and Haemostasis 18, 1020– 1022. https://doi.org/10.1111/jth.14821
- Than, M.E., Henrich, S., Bourenkov, G.P., Bartunik, H.D., Huber, R., Bode, W., 2005. The endoproteinase furin contains two essential Ca2+ ions stabilizing its N-terminus and the unique S1 specificity pocket. Acta Crystallographica Section D: Biological Crystallography 61, 505–512. https://doi.org/10.1107/S0907444905002556
- Theodorakopoulou, M.P., Alexandrou, M.-E., Boutou, A.K., Ferro, C.J., Ortiz, A., Sarafidis, P., 2022. Renin– angiotensin system blockers during the COVID-19 pandemic: an update for patients with hypertension and chronic kidney disease. Clinical kidney journal 15, 397–406. https://doi.org/10.1093/ckj/sfab272
- Toft-Bertelsen, T.L., Jeppesen, M.G., Tzortzini, E., Xue, K., Giller, K., Becker, S., Mujezinovic, A., Bentzen, B.H., B Andreas, L., Kolocouris, A., others, 2021. Amantadine inhibits known and novel ion channels encoded by SARS-CoV-2 in vitro. Communications Biology 4, 1–10.
- Tomar, P.P.S., Krugliak, M., Arkin, I.T., 2021. Identification of sars-cov-2 e channel blockers from a repurposed drug library. Pharmaceuticals 14, 604. https://doi.org/10.3390/ph14070604
- Tornling, G., Batta, R., Porter, J.C., Williams, B., Bengtsson, T., Parmar, K., Kashiva, R., Hallberg, A., Cohrt, A.K., Westergaard, K., others, 2021. Seven days treatment with the angiotensin II type 2 receptor agonist C21 in hospitalized COVID-19 patients; a placebo-controlled randomised multi-centre double-blind phase 2 trial. EClinicalMedicine 41, 101152. https://doi.org/10.1016/j.eclinm.2021.101152
- Townsend, J.A., Sanders, H.M., Rolland, A.D., Park, C.K., Horton, N.C., Prell, J.S., Wang, J., Marty, M.T., 2021. Influenza AM2 Channel Oligomerization Is Sensitive to Its Chemical Environment. Analytical Chemistry 93, 16273–16281. https://doi.org/10.1021/acs.analchem.1c04660
- Tran, D.P., Taira, Y., Ogawa, T., Misu, R., Miyazawa, Y., Kitao, A., 2022. Inhibition of the hexamerization of SARS-CoV-2 endoribonuclease and modeling of RNA structures bound to the hexamer. Scientific reports 12, 1–15. https://doi.org/10.1038/s41598-022-07792-2
- Tu, B., Wang, H., An, X., Qu, J., Li, Q., Gao, Y., Shi, M., Qiu, H., Huang, Y., 2022. Inhaled heparin polysaccharide nanodecoy against SARS-CoV-2 and variants. Acta Pharmaceutica Sinica. B. https://doi.org/10.1016/j.apsb.2022.01.019
- Tu, J., Mo, X., Zhang, X., Xun, J., Chen, X., Liu, Y., Jing, W., Xie, T., 2022. Effects of different corticosteroid therapy on severe COVID-19 patients: a meta-analysis of randomized controlled trials. Expert Review of Respiratory Medicine 16, 79–89. https://doi.org/10.1080/17476348.2021.1983429
- Ullrich, S., Ekanayake, K.B., Otting, G., Nitsche, C., 2022. Main protease mutants of SARS-CoV-2 variants remain susceptible to nirmatrelvir. Bioorganic & Medicinal Chemistry Letters 62, 128629. https://doi.org/10.1016/j.bmcl.2022.128629
- Vandyck, K., Deval, J., 2021. Considerations for the Discovery and Development of 3-Chymotrypsin-Like Cysteine Protease Inhibitors Targeting SARS-CoV-2 Infection. Current Opinion in Virology. https://doi.org/10.1016/j.coviro.2021.04.006

- Varona, J.F., Landete, P., Lopez-Martin, J.A., Estrada, V., Paredes, R., Guisado-Vasco, P., de Orueta, L.F., Torralba, M., Fortun, J., Vates, R., others, 2022. Preclinical and randomized phase I studies of plitidepsin in adults hospitalized with COVID-19. Life science alliance 5. https://doi.org/10.26508/lsa.202101200
- Vela, J.M., 2020. Repurposing Sigma-1 Receptor Ligands for COVID-19 Therapy? Front. Pharmacol. 11, 582310. https://doi.org/10.3389/fphar.2020.582310
- Verma, J.S., Libertin, C.R., Gupta, Y., Khanna, G., Kumar, R., Arora, B.S., Krishna, L., Fasina, F.O., Hittner, J.B., Antoniades, A., others, 2022. Multi-Cellular Immunological Interactions Associated With COVID-19 Infections. Frontiers in immunology 13, 794006. https://doi.org/10.3389/fimmu.2022.794006
- von Roemeling, C.A., Caulfield, T.R., Marlow, L., Bok, I., Wen, J., Miller, J.L., Hughes, R., Hazlehurst, L., Pinkerton, A.B., Radisky, D.C., Tun, H.W., Kim, Y.S.B., Lane, A.L., Copland, J.A., 2018. Accelerated bottom-up drug design platform enables the discovery of novel stearoyl-CoA desaturase 1 inhibitors for cancer therapy. Oncotarget 9, 3–20. https://doi.org/10.18632/oncotarget.21545
- Vuong, W., Khan, M.B., Fischer, C., Arutyunova, E., Lamer, T., Shields, J., Saffran, H.A., McKay, R.T., van Belkum, M.J., Joyce, M.A., Young, H.S., Tyrrell, D.L., Vederas, J.C., Lemieux, M.J., 2020. Feline coronavirus drug inhibits the main protease of SARS-CoV-2 and blocks virus replication. Nat Commun 11, 4282. https://doi.org/10.1038/s41467-020-18096-2
- Wahl, A., Gralinski, L.E., Johnson, C.E., Yao, W., Kovarova, M., Dinnon, K.H., Liu, H., Madden, V.J., Krzystek, H.M., De, C., others, 2021. SARS-CoV-2 infection is effectively treated and prevented by EIDD-2801. Nature 591, 451–457. https://doi.org/10.1038/s41586-021-03312-w
- Wang, C., Li, H., Xiao, S., Li, Z., Zhao, X., Xie, J., Ye, C., Xia, L., Lou, X., Zhou, X., 2022. Abnormal dynamic ventilation function of COVID-19 survivors detected by pulmonary free-breathing proton MRI. European radiology 1–11.
- Wang, Y., Fang, S., Wu, Y., Cheng, X., Zhang, L., Shen, X., Li, S., Xu, J., Shang, W., Gao, Z., others, 2022. Discovery of SARS-CoV-2-E channel inhibitors as antiviral candidates. Acta Pharmacologica Sinica 43, 781–787. https://doi.org/10.1038/s41401-021-00732-2
- Wang, Z., Joshi, A., Leopold, K., Jackson, S., Christensen, S., Nayfeh, T., Mohammed, K., Creo, A., Tebben,
 P., Kumar, S., 2022. Association of vitamin D deficiency with COVID-19 infection severity: systematic review and meta-analysis. Clinical Endocrinology 96, 281–287. https://doi.org/10.1111/cen.14540
- Watson, C., 2022. Rise of the preprint: How rapid data sharing during COVID-19 has changed science forever. Nature Medicine 28, 2–5. https://doi.org/10.1038/s41591-021-01654-6
- Whitley, R., 2022. Molnupiravir—a step toward orally bioavailable therapies for Covid-19. New England Journal of Medicine.
- WHO Coronavirus Disease (COVID-19) Dashboard [WWW Document], n.d. URL https://covid19.who.int (accessed 1.20.21).
- Wimmer, S., Keestra, S.M., 2022. Public risk-taking and rewards during the COVID-19 pandemic-a case study of remdesivir in the context of global health equity. International journal of health policy and management 11, 567–578.
- Wong, C.K., Au, I.C., Lau, K.T., Lau, E., Cowling, B.J., Leung, G.M., 2022. Real-world effectiveness of molnupiravir and nirmatrelvir/ritonavir among COVID-19 inpatients during Hong Kong's Omicron BA.
 2 wave: an observational study. medRxiv.
- Xian, Y., Zhang, J., Bian, Z., Zhou, H., Zhang, Z., Lin, Z., Xu, H., 2020. Bioactive natural compounds against human coronaviruses: a review and perspective. Acta Pharmaceutica Sinica B 10, 1163–1174. https://doi.org/10.1016/j.apsb.2020.06.002
- Xiang, R., Yu, Z., Wang, Y., Wang, L., Huo, S., Li, Y., Liang, R., Hao, Q., Ying, T., Gao, Y., Yu, F., Jiang, S., 2022.
 Recent advances in developing small-molecule inhibitors against SARS-CoV-2. Acta Pharmaceutica Sinica B 12, 1591–1623. https://doi.org/10.1016/j.apsb.2021.06.016

- Xiong, R., Zhang, L., Li, S., Sun, Y., Ding, M., Wang, Y., Zhao, Y., Wu, Y., Shang, W., Jiang, X., others, 2020. Novel and potent inhibitors targeting DHODH are broad-spectrum antivirals against RNA viruses including newly-emerged coronavirus SARS-CoV-2. Protein & cell 11, 723–739. https://doi.org/10.1007/s13238-020-00768-w
- Yalcinkaya, M., Liu, W., Islam, M.N., Kotini, A.G., Gusarova, G.A., Fidler, T.P., Papapetrou, E.P., Bhattacharya, J., Wang, N., Tall, A.R., 2021. Modulation of the NLRP3 inflammasome by Sars-CoV-2 Envelope protein. Scientific reports 11, 1–12. https://doi.org/10.1038/s41598-021-04133-7
- Yamaguchi, T., Hoshizaki, M., Minato, T., Nirasawa, S., Asaka, M.N., Niiyama, M., Imai, M., Uda, A., Chan, J.F.-W., Takahashi, S., 2021. ACE2-like carboxypeptidase B38-CAP protects from SARS-CoV-2-induced lung injury. Nature communications 12, 1–13. https://doi.org/10.1038/s41467-021-27097-8
- Yamamoto, M., Kiso, M., Sakai-Tagawa, Y., Iwatsuki-Horimoto, K., Imai, M., Takeda, M., Kinoshita, N., Ohmagari, N., Gohda, J., Semba, K., Matsuda, Z., Kawaguchi, Y., Kawaoka, Y., Inoue, J., 2020. The Anticoagulant Nafamostat Potently Inhibits SARS-CoV-2 S Protein-Mediated Fusion in a Cell Fusion Assay System and Viral Infection In Vitro in a Cell-Type-Dependent Manner. Viruses 12, 629. https://doi.org/10.3390/v12060629
- Yan, W., Zheng, Y., Zeng, X., He, B., Cheng, W., 2022. Structural biology of SARS-CoV-2: open the door for novel therapies. Signal Transduction and Targeted Therapy 7, 1–28. https://doi.org/10.1038/s41392-022-00884-5
- Yang, C., Pan, X., Huang, Y., Cheng, C., Xu, X., Wu, Y., Xu, Y., Shang, W., Niu, X., Wan, Y., others, 2021. Drug Repurposing of Itraconazole and Estradiol Benzoate against COVID-19 by Blocking SARS-CoV-2 Spike Protein-Mediated Membrane Fusion. Advanced therapeutics 4, 2000224. https://doi.org/10.1002/adtp.202000224
- Yang, C.-W., Peng, T.-T., Hsu, H.-Y., Lee, Y.-Z., Wu, S.-H., Lin, W.-H., Ke, Y.-Y., Hsu, T.-A., Yeh, T.-K., Huang, W.-Z., Lin, J.-H., Sytwu, H.-K., Chen, C.-T., Lee, S.-J., 2020. Repurposing old drugs as antiviral agents for coronaviruses. Biomedical Journal 43, 368–374. https://doi.org/10.1016/j.bj.2020.05.003
- Ye, Q., West, A.M., Silletti, S., Corbett, K.D., 2020. Architecture and self-assembly of the SARS-CoV-2 nucleocapsid protein. Protein Science 29, 1890–1901. https://doi.org/10.1002/pro.3909
- Yim, S.-K., Kim, K., Kim, I., Chun, S., Oh, T., Kim, J.-U., Kim, J., Jung, W., Moon, H., Ku, B., Jung, K., 2021. Inhibition of SARS-CoV-2 Virus Entry by the Crude Polysaccharides of Seaweeds and Abalone Viscera In Vitro. Marine Drugs 19, 219. https://doi.org/10.3390/md19040219
- Yu, F., Pan, T., Huang, F., Ying, R., Liu, J., Fan, H., Zhang, J., Liu, W., Lin, Y., Yuan, Y., others, 2022. Glycopeptide antibiotic teicoplanin inhibits cell entry of SARS-CoV-2 by suppressing the proteolytic activity of cathepsin L. Frontiers in microbiology 13. https://doi.org/10.3389/fmicb.2022.884034
- Yu, J., Granberg, T., Shams, R., Petersson, S., Skold, M., Nyren, S., Lundberg, J., 2022. Lung Perfusion Disturbances Detected with MRI in Non-Hospitalized Post-COVID-19 Individuals with Dyspnea 3-13 Months after the Acute Disease. medRxiv.
- Yuan, S., Wang, R., Chan, J.F.-W., Zhang, A.J., Cheng, T., Chik, K.K.-H., Ye, Z.-W., Wang, S., Lee, A.C.-Y., Jin, L., others, 2020. Metallodrug ranitidine bismuth citrate suppresses SARS-CoV-2 replication and relieves virus-associated pneumonia in Syrian hamsters. Nature microbiology 5, 1439–1448. https://doi.org/10.1038/s41564-020-00802-x
- Zamai, L., 2021. Upregulation of the renin–angiotensin system pathways and SARS-CoV-2 infection: the rationale for the administration of zinc-chelating agents in COVID-19 patients. Cells 10, 506. https://doi.org/10.3390/cells10030506
- Zanella, I., Zizioli, D., Castelli, F., Quiros-Roldan, E., 2021. Tenofovir, Another Inexpensive, Well-Known and Widely Available Old Drug Repurposed for SARS-COV-2 Infection. Pharmaceuticals 14, 454. https://doi.org/10.3390/ph14050454
- Zapata-Cardona, M.I., Flórez-Álvarez, L., Zapata-Builes, W., Guerra-Sandoval, A.L., Guerra-Almonacid, C.M., Hincapié-García, J., Rugeles, M.T., Hernandez, J.C., 2021. Atorvastatin effectively inhibits late

replicative cycle steps of SARS-CoV-2 in vitro (preprint). Microbiology. https://doi.org/10.1101/2021.03.01.433498

- Zein, A.F.M.Z., Sulistiyana, C.S., Raffaello, W.M., Wibowo, A., Pranata, R., 2022. Sofosbuvir with daclatasvir and the outcomes of patients with COVID-19: a systematic review and meta-analysis with GRADE assessment. Postgrad Med J 98, 509–514. https://doi.org/10.1136/postgradmedj-2021-140287
- Zein, J.G., Strauss, R., Attaway, A.H., Hu, B., Milinovich, A., Jawhari, N., Chamat, S.S., Ortega, V.E., 2022. Eosinophilia Is Associated with Improved COVID-19 Outcomes in Inhaled Corticosteroid-Treated Patients. The Journal of Allergy and Clinical Immunology: In Practice 10, 742-750.e14. https://doi.org/10.1016/j.jaip.2021.12.034
- Zendehdel, A., Bidkhori, M., Ansari, M., Jamalimoghaddamsiyahkali, S., Asoodeh, A., 2022. Efficacy of oseltamivir in the treatment of patients infected with Covid-19. Annals of Medicine and Surgery 77, 103679. https://doi.org/10.1016/j.amsu.2022.103679
- Zeng, X., Song, X., Ma, T., Pan, X., Zhou, Y., Hou, Y., Zhang, Z., Li, K., Karypis, G., Cheng, F., 2020. Repurpose Open Data to Discover Therapeutics for COVID-19 Using Deep Learning. J Proteome Res 19, 4624– 4636. https://doi.org/10.1021/acs.jproteome.0c00316
- Zhang, H., Yang, Y., Li, J., Wang, M., Saravanan, K. M., Wei, J., ... Wei, Y. (2020). A novel virtual screening procedure identifies Pralatrexate as inhibitor of SARS-CoV-2 RdRp and it reduces viral replication in vitro. PLoS Comput Biol, 16(12), e1008489. doi:10.1371/journal.pcbi.1008489
- Zhang, H., Zhang, T., Saravanan, K. M., Liao, L., Wu, H., Zhang, H., ... Wei, Y. (2022). DeepBindBC: A practical deep learning method for identifying native-like protein-ligand complexes in virtual screening. Methods, 205, 247-262. doi:10.1016/j.ymeth.2022.07.009
- Zhang, J., Ejikemeuwa, A., Gerzanich, V., Nasr, M., Tang, Q., Simard, J.M., Zhao, R.Y., 2022. Understanding the Role of SARS-CoV-2 ORF3a in Viral Pathogenesis and COVID-19. Frontiers in Microbiology 13, 854567.
- Zhang, L., Lin, D., Sun, X., Curth, U., Drosten, C., Sauerhering, L., Becker, S., Rox, K., Hilgenfeld, R., 2020. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science 368, 409–412. https://doi.org/10.1126/science.abb3405
- Zhang, Q., Radvak, P., Lee, J., Xu, Y., Cao-Dao, V., Xu, M., Zheng, W., Chen, C.Z., Xie, H., Ye, Y., 2022. Mitoxantrone modulates a heparan sulfate-spike complex to inhibit SARS-CoV-2 infection. Scientific Reports 12, 1–12.
- Zhang, W., Zhang, Y., Min, Z., Mo, J., Ju, Z., Guan, W., Zeng, B., Liu, Y., Chen, J., Zhang, Q., others, 2022.
 COVID19db: a comprehensive database platform to discover potential drugs and targets of COVID-19 at whole transcriptomic scale. Nucleic acids research 50, D747–D757. https://doi.org/10.1093/nar/gkab850
- Zhao, Y., Du, X., Duan, Y., Pan, X., Sun, Y., You, T., Han, L., Jin, Z., Shang, W., Yu, J., others, 2021. Highthroughput screening identifies established drugs as SARS-CoV-2 PLpro inhibitors. Protein & cell 12, 877–888. https://doi.org/10.1007/s13238-021-00836-9
- Zheng, M., Karki, R., Williams, E.P., Yang, D., Fitzpatrick, E., Vogel, P., Jonsson, C.B., Kanneganti, T.-D., 2021. TLR2 senses the SARS-CoV-2 envelope protein to produce inflammatory cytokines. Nature immunology 22, 829–838. https://doi.org/10.1038/s41590-021-00937-x
- Zheng, Y.-X., Wang, L., Kong, W.-S., Chen, H., Wang, X.-N., Meng, Q., Zhang, H.-N., Guo, S.-J., Jiang, H.-W., Tao, S.-C., 2021. Nsp2 has the potential to be a drug target revealed by global identification of SARS-CoV-2 Nsp2-interacting proteins. Acta Biochim Biophys Sin (Shanghai) 53, 1134–1141. https://doi.org/10.1093/abbs/gmab088
- Zhou, Y., Vedantham, P., Lu, K., Agudelo, J., Carrion Jr, R., Nunneley, J.W., Barnard, D., Pöhlmann, S., McKerrow, J.H., Renslo, A.R., others, 2015. Protease inhibitors targeting coronavirus and filovirus entry. Antiviral research 116, 76–84. https://doi.org/10.1016/j.antiviral.2015.01.011

- Zhuravel, S.V., Khmelnitskiy, O.K., Burlaka, O.O., Gritsan, A.I., Goloshchekin, B.M., Kim, S., Hong, K.Y., 2021. Nafamostat in hospitalized patients with moderate to severe COVID-19 pneumonia: A randomised Phase II clinical trial. EClinicalMedicine 41, 101169. https://doi.org/10.1016/j.eclinm.2021.101169
- Zimniak, M., Kirschner, L., Hilpert, H., Geiger, N., Danov, O., Oberwinkler, H., Steinke, M., Sewald, K., Seibel, J., Bodem, J., 2021. The serotonin reuptake inhibitor Fluoxetine inhibits SARS-CoV-2 in human lung tissue. Sci Rep 11, 5890. https://doi.org/10.1038/s41598-021-85049-0