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Grading hydronephrosis severity relies on subjective interpretation of renal ultrasound

images. Deep learning is a data-driven algorithmic approach to classifying data,

including images, presenting a promising option for grading hydronephrosis. The current

study explored the potential of deep convolutional neural networks (CNN), a type of

deep learning algorithm, to grade hydronephrosis ultrasound images according to the

5-point Society for Fetal Urology (SFU) classification system, and discusses its potential

applications in developing decision and teaching aids for clinical practice. We developed

a five-layer CNN to grade 2,420 sagittal hydronephrosis ultrasound images [191 SFU 0

(8%), 407 SFU I (17%), 666 SFU II (28%), 833 SFU III (34%), and 323 SFU IV (13%)],

from 673 patients ranging from 0 to 116.29 months old (Mage = 16.53, SD = 17.80).

Five-way (all grades) and two-way classification problems [i.e., II vs. III, and low (0–II) vs.

high (III–IV)] were explored. The CNN classified 94% (95% CI, 93–95%) of the images

correctly or within one grade of the provided label in the five-way classification problem.

Fifty-one percent of these images (95% CI, 49–53%) were correctly predicted, with an

average weighted F1 score of 0.49 (95% CI, 0.47–0.51). The CNN achieved an average

accuracy of 78% (95% CI, 75–82%) with an average weighted F1 of 0.78 (95% CI,

0.74–0.82) when classifying low vs. high grades, and an average accuracy of 71% (95%

CI, 68–74%) with an average weighted F1 score of 0.71 (95% CI, 0.68–0.75) when

discriminating between grades II vs. III. Our model performs well above chance level,

and classifies almost all images either correctly or within one grade of the provided label.

We have demonstrated the applicability of a CNN approach to hydronephrosis ultrasound

image classification. Further investigation into a deep learning-based clinical adjunct for

hydronephrosis is warranted.
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INTRODUCTION

Machine learning is a field of research with far reaching
applications that is generating considerable interest in medicine
(1, 2). Deep learning, a subset of machine learning, is a general
term for an algorithm that trains a many layered network to learn
hierarchical feature representations from raw data. Due to the
hierarchical nature of deep learning models, complex functions
can be learned to solve difficult classification problems that were
previously unsolvable by classic machine learning algorithms (3).
Deep convolutional neural networks (CNNs) are a type of deep
learning algorithm that are well-suited to computer vision tasks
(3) due to their ability to take advantage of the multi-scale spatial
structure of images (4). This makes CNN models an attractive
candidate architecture for tackling medical imaging problems.
In particular, they offer a promising avenue for creating clinical
adjuncts to help train physicians, and flag/grade challenging
diagnostic cases.

Prenatal hydronephrosis (HN) is a condition that involves
accumulation of urine with consequent dilatation of the
collecting system in fetuses. It is the most frequent neonatal
urinary tract abnormality, occurring in 1–5% of all newborn
babies (5). HN is detected by prenatal ultrasound (US) imaging
and can be caused by several underlying conditions, such as
uteropelvic junction obstruction or vesico-ureteral reflux (6).
Although many cases eventually resolve on their own, in severe
forms, afflicted infants may require surgical intervention (7, 8),
and failure to intervene can result in loss of renal function (9, 10).

All patients with prenatal HN are normally evaluated after
birth by postnatal renal ultrasonography to determine HN
severity and the best course of treatment. Appropriate HN
grading is important, as misclassification of any patient into the
inappropriate HN category can lead to incorrect management
and unnecessary testing since treatment is directly dependent
on HN severity. Given the need for accurate and unambiguous
classification of HN, numerous HN grading systems have been
developed (11). However, poor inter-rater reliability (12, 13),
particularly for intermediate HN grades, suggests that grading
still relies on subjective interpretation of ultrasound images, as
clear and objective criteria have not been fully established.

Owing to the ability of deep learning algorithms to classify
images into diagnostic categories based solely on data-driven
pattern recognition, the main purpose of this study was to
extend on our previous work (14) to investigate whether deep
learning algorithms can effectively grade the severity of HN using
a prospectively collected HN database and separate them into
5 main classes. Secondary investigations were also conducted
to assess whether the same model can effectively discriminate
between low and high HN grades (SFU 0, I, II vs. III, IV), and
between moderate (SFU II vs. III) cases. The results of this study
may provide important insights into whether deep learning is
a promising avenue of future study for discriminating different
grades of HN, and developing clinical adjuncts. Given that our
models were trained on images with human expert-generated
training labels, we hypothesized that our deep learning model
would perform at or very close to that of a human expert at
HN grading. This would validate our method as a potential

training tool for medical students and as an adjunctive tool for
clinical experts.

MATERIALS AND METHODS

Study Population and Exclusion Criteria
Our database consists of 2-dimensional renal B-mode US images
from an ongoing large prospective cohort study involving all
patients diagnosed with prenatal HN who were referred to a
tertiary care pediatric hospital. The database contains one sagittal
US image per patient visit, spanning 687 patients. Each image
was assigned a grade according to the Society for Fetal Urology
(SFU) system, one of the most widely adopted HN classification
systems (15), ranging from 0 (normal kidney) to IV (severe
HN with parenchymal thinning). Grades were provided by three
separate physicians (2 fellowship trained pediatric urologists and
1 fellowship trained pediatric radiologist—agreement K = 90%)
with discrepancies resolved by consensus. From these 687
patients, 2,492 sagittal renal US images were collected. Seventy-
two images from 14 patients were excluded due to poor image
quality (e.g., blurry, large annotation overlaid, no visible kidney),
leaving 2,420 sagittal US images from 673 patients (Nfemale = 159,
Nmale = 514) ranging from 0 to 116.29months old (Mage = 16.53,
SD = 17.80) to be included in the analysis. Of these, 191 were
labeled as SFU 0, 407 as SFU I, 666 as SFU II, 833 as SFU III,
and 323 as SFU IV. Ethics clearance for this study was obtained
through the Research Ethics Board.

Preprocessing
Preprocessing is a crucial step in machine learning, as
standardizing images and taking simple steps to reduce noise and
non-discriminative variability improves the ability of models to
learn relevant information. In this study, all images were cropped
to remove any annotations and blank space in the margins. The
images were then despeckled using the bi-directional FIR-median
hybrid despeckling filter to remove speckle noise from the images
(16). Despeckling is a standard preprocessing technique for US
images since speckle noise is caused by interference between the
US probe and reflecting US waves. Finally, the image pixel values
were normalized between 0 and 1, and all images resized to 256
× 256 pixels to provide a consistent image input size into our
network. The final image size was chosen based on the smallest
dimension of the cropped images to ensure that images were
not stretched.

Data augmentation is a common approach to reducing
overfitting and improving classification performance for small
datasets (3, 17). It works by introducing variations on each image
during training so as to build robustness into the model. In this
study, we augment the data by rotating each image up to 45◦,
performing horizontal and vertical flips with a 50% probability,
and shifting the image vertically and horizontally up to 20%.

Model Architecture
A CNN is a type of neural network that has been particularly
successful in computer vision applications. CNNs are constructed
from alternating convolutional layers and pooling layers. The
structure of a CNN is inspired by that of the mammalian visual
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system, where earlier cortical areas receive input from small
regions of the retina and learn simple local features such as edges,
while regions at progressively higher levels in the visual system
have correspondingly broader receptive fields, and learn complex
features such as shape detectors. In a CNN, convolutional layers
learn multiple local features of an image by processing it across
many overlapping patches, while pooling layers summate the
filter responses from the previous layer, thereby compressing the
representations learned by the preceding convolutional layer to
force the model to filter out unimportant visual information.
As in the visual system, successive convolutional layers have
progressively larger receptive fields, permitting more complex,
and abstract image features to be learned in higher layers
of the network. In classification models a standard multilayer
perceptron, made up of a few fully connected layers of neurons
(called dense layers) receives the learned image representation
from the convolutional layers and attempts to classify the
image. The entire network is trained using backpropagation,
a neural network learning procedure which iteratively updates
the strengths of the connections between layers of neurons in
order to minimize classification error on the training data. For
a detailed explanation of how CNNs work and are designed, see
Le Cun et al. (18).

The CNN model used in the current study was developed
using the Keras neural network API with Tensorflow (19, 20).
The final architecture contained five convolutional layers, a fully
connected layer of 400 units, and a final output layer where the
number of units was equal to the number of classes for the given
task (i.e., five or two) (Figure 1). The architecture was determined
by experimenting with five-way SFU HN classification. The
output unit/class with the highest overall final activation was used
as the model’s prediction and was compared against the provided
label to assess performance. See Supplementary Materials for a
description of all technical details.

Model Training and Evaluation
Five-way (all SFU grades) and binary classification
tests were conducted using 5-fold cross validation. See
Supplementary Materials for a description of this process.
The binary classification tests were selected due to their clinical
relevance and included distinguishing between mild (0, I, and
II) and severe (III and IV) HN grades, and between moderate
grades (II vs. III). Layer-wise relevant propagation (21) was used
to visualize model output.

RESULTS

Our model achieved an average five-way classification accuracy
of 51% (95% CI, 49–53%), and an average weighted F1 score of
0.49 (95% CI, 0.47–0.51). Furthermore, 94% (95% CI, 93–95%)
of images were either correctly classified or within one grade of
the provided label (Figure 2).

Our model classified mild vs. severe HN with an
average accuracy of 78% (95% CI, 75–82%), and an
average weighted F1 of 0.78 (95% CI, 0.74–0.82). When
differentiating between moderate grades (SFU II and III),
our model achieved an average accuracy of 71% (95% CI,
68–74%) and an average weighted F1 score of 0.71 (95%
CI, 0.68–0.75). See Table 1 for a comprehensive overview of
model performance.

FIGURE 2 | The confusion matrix of the CNN model. Boxes along the

diagonal in gray represent the number (percentage) of cases where the CNN

made the correct classification decision. Light gray boxes represent the cases

where the CNN was incorrect by one grade, and white boxes indicate cases

where the CNN was incorrect by two or more grades.

FIGURE 1 | The CNN architecture containing all convolutional (dark gray) and fully connected (black) layers. The convolutional kernels (light gray squares) were 3 × 3

pixels in all layers.
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TABLE 1 | CNN model classification results averaged across the 5-folds.

Classification problem Accuracy (%) Sensitivity Specificity PPV F1

Five-way (0 to IV) 51 (49–53) 0.49 (0.47–0.51)a

SFU 0 0.11 (0–0.21) 0.99 (0.97–1.00) 0.26 (0.05–0.47) 0.15 (0.01–0.29)

SFU 1 0.39 (0.35–0.43) 0.87 (0.84–0.90) 0.39 (0.34–0.44) 0.38 (0.35–0.42)

SFU II 0.54 (0.43–0.65) 0.75 (0.72–0.79) 0.45 (0.42–0.49) 0.48 (0.43–0.53)

SFU III 0.65 (0.60–0.70) 0.76 (0.74–0.78) 0.59 (0.53–0.65) 0.61 (0.56–0.66)

SFU IV 0.46 (0.29–0.62) 0.96 (0.94–0.98) 0.65 (0.54–0.75) 0.52 (0.38–0.66)

Mild (0, I, II) vs. Severe (III, IV) 78 (75–82) 0.78 (0.74–0.82)a

Mild 0.89 (0.82–0.96) 0.66 (0.51–0.81) 0.75 (0.69–0.81) 0.81 (0.78–0.84)

Severe 0.66 (0.51–0.81) 0.89 (0.82–0.96) 0.87 (0.80–0.94) 0.73 (0.64–0.82)

SFU II vs. SFU III 71 (68–74) 0.71 (0.68–0.75)a

SFU II 0.76 (0.60–0.92) 0.67 (0.52–0.82) 0.67 (0.59–0.75) 0.69 (0.63–0.75)

SFU III 0.67 (0.52–0.82) 0.76 (0.60–0.92) 0.80 (0.73–0.87) 0.71 (0.65–0.77)

The 95% confidence intervals are given in parentheses.
aWeighted average.

DISCUSSION

We investigated the potential of deep CNN to create clinical
adjuncts for HN. This was achieved by testing our model’s ability
to classify HN US images. We tested our model’s performance
on three different classification tasks that are relevant to
clinical practice. These results, along with their potential clinical
implications, are discussed below.

Five-Way Classification Performance
Our model achieved an average five-way classification accuracy
that was well above chance level (51%). In practice, physicians
usually have access to multiple different US images at different
angles, as well as patient histories, and are therefore able to
grade the US image by combining information from multiple
views and timepoints. Although we are unable to compare our
model’s performance directly to a physician, achieving this level
of accuracy with a single US image is very promising.

The model classified 94% (95% CI, 93–95%) of images either
correctly or within one grade of the correct/provided label.
Further investigation into the output of our model reveals that
there are many borderline images where there is not an obvious
choice for which class the image belongs to (e.g., Figures 3A,C).
In cases such as these where two grades possible are, it must
choose a single HN grade according to the SFU system, much
like a physician (12, 13).

Considering that HN grading can be challenging, and
that subjective assessments are used to differentiate between
borderline cases (12, 13), we would argue that solely relying on
whether themodel’s predictionsmatched the provided SFU labels
is an incomplete assessment of our model’s performance. Instead,
the percentage of cases that are either “correct” of within one
grade of the provided label (94%) is a more representative metric
of our model’s true performance. The nearly block-diagonal
structure of the confusion matrix supports this (Figure 2) and
indicates that the model is learning useful information for
HN classification.

Binary Classification Performance
Discriminating between moderate HN grades is known to be
challenging (12, 13), and therefore we wanted to investigate
our model’s performance on this same task. When comparing
mild (0, I, II) and severe (III, IV) HN images, our model
achieved an average accuracy of 78%, which is well above
chance level. When the model discriminated between moderate
grades (II and III), which is less reliable for physicians
(12, 13), performance only dropped to 71%. There is no
direct comparison to be made against physician accuracy,
however, considering the known difficulties in distinguishing
between moderate HN grades (12, 13), these results
are encouraging.

Interpretability
We visualized regions of the HN US images that the CNN
found important for five-way classification in a sample of
images using layer-wise relevance propagation (21) from the
DeepExplain toolbox (22). Layer-wise relevance propagation
allows us to determine which features in the image contribute
most strongly to the CNNs output (Figure 3B). Cyan pixels
indicate that the model heavily relied on those features to classify
the image. Visualizing can be used to validate whether our model
is learning appropriate features that correspond with the SFU
grading system and interpret its inner workings. Interpretability
is crucial as we develop deep learning based clinical adjuncts
since physicians will need to be able to understand why a
model made a decision, rather than just blindly following
the algorithm.

Of the examples we tested, we can see that our model is
learning features that correspond appropriately with the SFU
system (e.g., renal parenchyma, calyces), however, in some
cases it is also relying on regions outside of the kidney.
This can likely be attributed to image noise, and therefore
removing the noise with segmentation (i.e., finding regions
of interest in the image) would ensure that the model is
only relying on appropriate regions for classification. However,
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FIGURE 3 | (A) Example SFU I, borderline SFU II/III, and SFU IV US images from the database. (B) The corresponding layerwise relevance propagations of each of

the example images. Layer-wise relevance propagations give a sparse representation of pixel importance. Propagations were visualized as heat maps and overlaid on

top of the gray-scale input US images. The cyan colored pixels indicate regions that the CNN heavily relied upon for classification. (C) The corresponding softmax

output probability distribution of the borderline SFU II/III US image. The image was labeled as SFU grade III by physicians; however, the CNN predicted SFU grade II

which was incorrect. We can see based on the probability distribution that the model “thought” SFU grade II and III were almost equally likely but had to select one

grade as its prediction. This behavior is analogous to that of physicians and can be partially explained by the poor inter-rater reliability and subjectivity of the SFU

system (i.e., intrinsic limitations of that classification).

the model may be finding relevant features outside of those
from the SFU classification system that are clinically relevant
but not normally considered, and so this finding warrants
further investigation.

Implications for Clinical Practice
Machine learning and deep learning models have been
successfully applied in the context of HN to predict the need for
surgical intervention (1), and the necessity of diuretic nuclear
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renography (2). More broadly, machine learning and deep
learning have been used in the field of pediatric urology to classify
between different kidney diseases (23), and between diseased and
normal kidneys (24). In addition, deep learning has recently been
used to perform automatic kidney segmentation in ultrasound
imaging (25). Due to the different problems being evaluated
in each of the studies, a direct comparison in performance
cannot be made. It is important to highlight that along with
investigating different questions, and therefore having differing
levels of chance performance (i.e., 50 vs. 20% in the current
study), these studies also differ from the current study in that
many of these papers are asking objective questions (e.g., Was
surgery required?) and are therefore able to utilize objective
labels in their models. As discussed previously, the lack of
objective ground truth in the current study presents challenges
in interpreting the true performance of our model, and likely
contributes to our model’s lower accuracy metric as compared to
other papers.

Considering the issue of subjectivity, our model’s current level
of performance in classifying HN is promising and in line with
previous research from our group (14). Our findings suggest that
applying these algorithms into clinical practice through decision
aids and teaching aids has potential. It is important to clarify that
we anticipate that deep learning models like the one presented
here will 1 day be used to support physicians rather than replace
them, as human-level reliability and generalizability remains a
major challenge for medical applications (26). We outline below
two new ways that we expect deep learningmodels can be applied
to benefit clinical practice in the future.

Decision Aids

In clinical practice, decision aids are used to assess the structure
of interest, and then provide its estimate of disease probability.
Physicians are then free to use this estimate as they wish. To our
knowledge, patientmanagement is always left up to the physician,
and the aids act more like a second opinion. Studies have shown
that the combined synergistic effects of the decision aid and
physician knowledge greatly improved the diagnostic accuracy
(27). In the context of HN, we expect that the second opinion
from the decision aid would be particularly useful for borderline
cases, since currently consensus decisions are required to resolve
these cases.

Teaching Aids

Deep learning models can also be used to develop teaching
aids for trainees to teach and provide them with feedback
on how to grade HN US images. These teaching features
can be created by exploiting the rich information that these
algorithms contain. For example, a deep learning-based teaching
aid could provide trainees with informative feedback based on
the inner workings of the algorithm to tell trainees whether
their diagnosis was correct. Furthermore, the teaching aid
could highlight parts of the image with a heat-map using
visualization methods, such as layer-wise relevance propagation,
to indicate which regions were of clinical importance, and
to what degree. A teaching aid would alleviate at least some

of the need for direct physician feedback and would allow
trainees to work through examples at their own pace to
maximize learning.

Limitations and Future Work
Considering that the current dataset was small by deep
learning standards, slightly imbalanced, and only contained
one image per patient visit, our model still achieved moderate
to good accuracy across the different classification problems.
This suggests that a richer and larger dataset could lead to
even better performance and an eventual deep learning based
clinical adjunct for HN. Future work should also investigate
HN classification at the patient level and consider the time
series in the data. HN patients are followed across time,
and the trends in their HN severity provide physicians with
important information that is incorporated into their clinical
decision making. We would expect that providing a deep
learning model with time series data would benefit model
performance as well. Additionally, a model could convey
its level of uncertainty in its diagnosis, flagging to the
physician that this image merited a closer examination or
additional measurements.

We applied relatively little preprocessing to our images,
therefore future studies should investigate whether segmentation,
a commonly recommended preprocessing technique, reduces
model noise and improves performance (25). Within the current
classification model, layer-wise relevance propagation revealed
that regions outside of the kidney were contributing to model
output. Further investigation on the impact of segmentation
whereby the model is constrained to extract features from the
kidney that correspond with the SFU grading system should
elucidate whether these findings are attributable to image noise
or useful features.

CONCLUSIONS

The purpose of the current study was to explore whether deep
learning can effectively classify HN US images and separate
them into 5 main categories. Overall, our model performs well
above chance level across all classifications, categorizing images
either correctly, or within one grade of the provided label. The
model was also capable of discriminating well between mild and
severe grades of HN, which has important clinical implications.
The results of the current study suggest that CNNs can be
applied to grade HN US images effectively, and that further
investigation into using deep learning to grade HN US images
is warranted. With further model refinement, and by addressing
the limitations of our current data set, we expect that our model
can be used to develop effective clinical adjuncts to improve
clinical practice.
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