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Abstract
Traveling waves in the developing brain are a prominent source of highly correlated spiking

activity that may instruct the refinement of neural circuits. A candidate mechanism for medi-

ating such refinement is spike-timing dependent plasticity (STDP), which translates corre-

lated activity patterns into changes in synaptic strength. To assess the potential of these

phenomena to build useful structure in developing neural circuits, we examined the interac-

tion of wave activity with STDP rules in simple, biologically plausible models of spiking neu-

rons. We derive an expression for the synaptic strength dynamics showing that, by mapping

the time dependence of STDP into spatial interactions, traveling waves can build periodic

synaptic connectivity patterns into feedforward circuits with a broad class of experimentally

observed STDP rules. The spatial scale of the connectivity patterns increases with wave

speed and STDP time constants. We verify these results with simulations and demonstrate

their robustness to likely sources of noise. We show how this pattern formation ability,

which is analogous to solutions of reaction-diffusion systems that have been widely applied

to biological pattern formation, can be harnessed to instruct the refinement of postsynaptic

receptive fields. Our results hold for rich, complex wave patterns in two dimensions and

over several orders of magnitude in wave speeds and STDP time constants, and they pro-

vide predictions that can be tested under existing experimental paradigms. Our model gen-

eralizes across brain areas and STDP rules, allowing broad application to the ubiquitous

occurrence of traveling waves and to wave-like activity patterns induced by moving stimuli.

Author Summary

In several areas of the developing brain, waves of electrical activity trace out distinct pat-
terns across the nervous tissue. These waves are intricately involved in developmental pro-
cesses that set up the structural connections of the adult brain, but it is unclear what role
the wave patterns play. Here, we examine how the strength of connections in these brain
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areas may change by a process called spike-timing dependent plasticity, which is sensitive
to the precise times at which individual neurons become electrically active. We use mathe-
matical models and simulations to show that interactions between waves and plasticity
build highly structured patterns into the connections. The results of our model are analo-
gous to many cases of biological pattern formation seen, for example, in zebra stripes,
leopard spots and seashells. An important connectivity pattern we consider is the receptive
field, which determines to a large extent the specific function of a neuron. We demonstrate
how pattern formation can refine the shape of a receptive field and therefore the specificity
of a neuron, and explore several ways in which pattern formation may be disrupted, pro-
viding clues regarding pathologies in receptive field development. Our theory makes sev-
eral predictions that may be tested using existing experimental paradigms.

Introduction
After an initial stage of activity-independent construction [1], the developing nervous system
undergoes a period of refinement that is strongly influenced by spontaneous and evoked pat-
terns of neural activity [2, 3]. Traveling wavefronts are a striking feature of these activity pat-
terns [4–9]. Within short temporal windows, wavefronts induce strong interneuronal
correlations that can act through Hebbian mechanisms of synaptic plasticity to build structure
into the connectivity of neural circuits [10, 11]. This has prompted the hypothesis that corre-
lated activity plays an instructive role for circuit refinement in the developing brain (reviewed
in [2] and [3]). One Hebbian mechanism that is well suited to this role and is widely reported
in the brain is spike-timing dependent plasticity (STDP), for which synaptic connections are
strengthened or weakened depending on the relative timing of pre- and postsynaptic spikes
that arrive at the synapse, typically within tens of milliseconds of each other [12–14]. In this
article, we undertake a mathematical analysis of the interaction between traveling wave activity
patterns and STDP, and explore the types of connectivity patterns that emerge as a result of
this interaction.

Past studies have demonstrated that STDP could translate correlated input patterns into
structured neural circuits [15–21], and could mediate the construction of realistic receptive
fields (RFs) with properties that resemble those found in the visual cortex [22, 23]. These mod-
els primarily focussed on spatial and temporal correlations as separable features when consid-
ering their interaction with STDP. However, the spatiotemporal correlations induced by
traveling waves are space-time inseparable, providing additional information that may be uti-
lized during circuit building. Space-time inseparable activity patterns map the temporal profile
of the STDP rule into a spatial profile of synaptic strength changes [24], which can be used to
build circuits that mimic neuronal sensitivity to visual motion during repeated exposure to
moving visual stimuli [25–28]. But despite the demonstrated applicability of STDP to specific
cases of neural circuit development, a more general, formal analysis of the interaction of STDP
and wave-like activity patterns is still lacking.

Here, we derive a mathematical expression that accounts for the interaction of a variety of
traveling wave activity patterns and STDP rules, and we examine the analytical predictions in a
simple yet biologically plausible model of spiking neurons. We show that, for a broad class of
experimentally observed STDP rules, such interactions build highly structured and periodic
connectivity patterns into feedforward circuits, analogous to a Turing instability in reaction
diffusion systems [29], which has been applied to diverse cases of biological pattern formation
[30, 31]. We then demonstrate the robustness of this pattern formation process and how it can
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be utilized to construct and refine the size and shape of RFs. Our results offer theoretical
insights that may advance the understanding of the role played by traveling wave phenomena
in different areas of the brain. We highlight particular insights into visual system development
and outline a number of predictions that may be tested experimentally.

Results
Our results are organized as follows. First, we describe how traveling waves can interact with
STDP to influence synaptic strengths, derive a mathematical expression for this effect and ver-
ify analytical solutions to the derived equations using a simulation of spiking neurons. Second,
we use further simulations to explore the robustness of our analytical results. Third, we demon-
strate the properties of waves and STDP rules that allow for different types of refinement in
downstream receptive fields (RFs).

Illustration of network dynamics
To understand how correlated activity caused by traveling waves could influence synaptic
strengths via a STDPmechanism, we consider a reduced model (Fig 1A) consisting of a one-
dimensional (1D) layer of presynaptic input cells, all of which connect via excitatory synapses,
wi,j, onto a single, postsynaptic output cell. In later sections, we extend the input layer to two
dimensions. When a wave traverses the input population (Fig 1A), each input neuron is recruited
by the wavefront (red colored unit with rightward arrow) and discharges a burst of spikes, which
drives spiking in the output neuron. Temporal differences between the spike times of a given
input neuron and the output neuron, Δt = tin−tout, determine how the respective synapse is mod-
ified in strength according to a STDP rule, K(Δt) (see Methods, Eqs 21 and 22). The set of spikes
for all input neurons leads to a simple diagonal band structure in space and time (Fig 1B).

To illustrate how this input spike pattern leads to spatially structured changes in synaptic
strength, we consider a STDP rule that is asymmetric in Δt (Fig 1C, top). In Fig 1D, we show a
snapshot of the traveling wave and its influence on the surrounding synaptic strengths. Here,
an input neuron (colored dark red) is recruited by the wavefront and fires a burst of spikes,
which in turn elicits excitatory postsynaptic potentials (EPSPs) that drive the output neuron to
spike. For waves traveling left to right, spikes generated by input neurons to the left of the
wavefront always precede output spikes. Consequently, their respective synapses are strength-
ened, because the STDP rule specifies strengthening for negative Δt. Likewise, synapses con-
necting input neurons to the right of the wavefront will be weakened. In fact, due to the wave
motion, the dependence of the STDP rule on relative spike times, Δt, is mapped onto the spatial
axis of the input layer, Δx, and thus the relative spike locations, as shown in Fig 1D and 1G.
Consequently, as depicted in Fig 1E, all input neurons (colored light red) that surround a syn-
apse will influence the net change in strength at that synapse. One might predict this change to
be proportional to the integral of the STDP rule, K0 ¼

R1
�1 dDt KðDtÞ. However, the extent to

which an input influences surrounding synapses depends on its influence over the output firing
rate, and thus its own synaptic strength. For example, with an asymmetric STDP rule and
waves traveling left to right, a synapse will strengthen relative to K0 if the surrounding synapses
are stronger to the right than to the left, as in Fig 1F. On the other hand, a synapse will be rela-
tively weakened if the surrounding synapses are stronger to the left than to the right. By the
same argument, a synapse will be relatively weakened by a temporally symmetric STDP rule if
the surrounding synapses are stronger on both sides (Fig 1G), and relatively strengthened if the
surrounding synapses are weaker. In this way, strong synapses increasingly dictate changes to
local synaptic strengths as more waves pass. Eventually, the connectivity pattern begins to form
islands of strong synapses that are flanked by regions of weak synapses.
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In the following analytical derivation and simulations, we show how this process of wave-
induced STDP results in a distinct type of pattern formation in the network for a broad class of
STDP rules.

Deriving synaptic strength dynamics
Here, we derive a description for the dynamics of synaptic strengths that are driven by pairs of
input and output spikes acting through a STDP rule and resulting from traveling wave activity
patterns traversing the input layer. Within our framework, input and output spike trains are

Fig 1. Model framework and dynamics. A. The model consists of a layer of input neurons, along which
wavefronts of spiking activity propagate. Input neurons undergo a burst of spikes, generated stochastically,
when the wavefront passes (red unit). Input spikes elicit excitatory postsynaptic potentials (EPSPs) in the
output neuron (blue unit) that are scaled by the synaptic strength,wij. The output neuron generates spikes
stochastically with a firing rate linearly proportional to its summed EPSP. B. Example spike raster from the
simulation, showing one wave traveling past input neurons 1–10.C. Synaptic strengths are modified by either
an asymmetric (top) or symmetric (bottom) STDP rule.D. Schematic for the influence of the wavefront on
modifications at surrounding synapses. An input neuron (red) is recruited by a wave, which travels from left to
right, and increases the firing rate of the output neuron (blue). When an asymmetric STDP rule is at play,
output spikes at the current time point will cause synapses behind the wavefront to increase in strength (‘+’
symbol) because they were active at an earlier time. Similarly, synapses in front of the wave will decrease (‘−’
symbol), because they will become active at a later time. Thus, traveling waves map the STDP rule onto
space. E. Schematic for the influence of surrounding inputs (colored light red), on synaptic modifications at
the wavefront (dark red). F. Same as E, except that inputs to the right of the wavefront induce even greater
synaptic strengthening as their respective synapses are stronger.G. Same as E, except for a symmetric
STDP rule. Here, the greater strength of synapses either side of the wavefront induce more synaptic
weakening.

doi:10.1371/journal.pcbi.1004422.g001
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generated by a stochastic process with a time-dependent firing rate. The stochastic arrival of
spikes results in stochastic changes to the synaptic strengths, thus posing a challenge when
seeking a description for the spatial structure of synaptic strengths that evolves slowly over
long periods of time, during which many traveling waves occur. It is therefore useful to separate
the slow dynamics from the fast, stochastic dynamics under the assumption that, during a lim-
ited period of time, ΔT, individual changes in synaptic strengths are negligible, but accumulate
slowly over multiple periods of ΔT as a result of the time-averaged input and output activity.
By approximating synaptic strengths as being constant during the period ΔT, Kempter et al.
[16] showed that changes in synaptic strength over this period could be described by the inner
product of the STDP rule, K(Δt), and the cross-correlation function, Cij(Δt,t), between the
spike trains of input neuron i and output neuron j:

wijðt þ DTÞ � wijðtÞ
DT

¼ DwijðtÞ
DT

� Z
Z tþDT

t

dDt KðDtÞCijðDt; tÞ; ð1Þ

where η is a small, positive constant that sets the required slow rate of change in synaptic
strengths. The cross-correlation is given by:

CijðDt; tÞ ¼
Z tþDT

t

dt0 Siðt0 þ DtÞSjðt0Þ; ð2Þ

where Si(j)(t) are ensemble averages, for example over multiple waves, of the input (output)
spike trains and can thus be identified with the input (output) firing rates. It is important that
the firing rates be sufficiently high for Cij(Δt,t) to accurately portray wave-induced correlations.
In addition, ηmust be sufficiently small for wave-induced correlations to be recovered over
several waves. Moreover, without small η, calculating Cij(Δt,t) becomes difficult, as Sj(t) would
depend on stochastically changing synaptic strengths, wij(t). As such, Eq 1 implements the
approximation by averaging over the small stochastic fluctuations, thus providing only the
mean drift in wij(t). Given that we will deal with discrete waves that pass one-by-one across the
input layer, it is convenient to relate the time scale, ΔT, to the passage time of just a single
wave. Further assumptions are now required to uphold the validity of Eq 1. First, in order to
ensure that multiple waves do not mutually influence changes in synaptic strength, ΔTmust
include an amount of time,K, both before and after the wave, whereK is the temporal
width of the STDP rule which contains most of its power. More formally, we require thatR K

�K dDt j KðDtÞ j �
R �K

�1 dDt j KðDtÞ j þ R1
K dDt j KðDtÞ j [16]. Because we are effectively

considering Δwij(t) for a wave in isolation, we can extend the integral limits in Eqs 1 and 2 to
±1. Second, with wij(t) effectively constant during a wave, and because Δwij(t) is small, we will
analyze changes in wij on a slower time scale, T, which is discretized in ΔT increments. Thus,
we approximate wij(t) with wij(T) and Cij(Δt,t) with Cij(Δt,T), and therefore approximate the
left-hand side of Eq 1 with @wij(T)/@T = @T wij(T).

By considering a simple 1D chain of input neurons with a single output neuron, we replace
all subscripts i with the argument, x. That is, we replace wij(T) with w(x,T), Si(t) with Sin(x,t),
and Cij(Δt,T) with C(x,Δt,T). Eq 1 then becomes:

@Twðx;TÞ � Z
Z 1

�1
dDt KðDtÞCðx;Dt;TÞ; ð3Þ

where Cðx;Dt;TÞ ¼ R1
�1 dt Sinðx; t þ DtÞSoutðtÞ, with Sin and Sout the input and output firing

rates, respectively. As a final matter of notation, we will hereafter refrain from explicitly writing
the dependence of w and C on T, for brevity.
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We make two further assumptions to simplify the analytical derivation, then relax these for
a more general case: i) the input firing rate at the wavefront can be described as a short, travel-
ing pulse using a Dirac delta function: Sin(x,t) = δ(x−vt), where δ(y) =1 if y = 0 and is zero
otherwise, and v is the wave speed; ii) the output neuron’s response to its input is instanta-

neous: SoutðtÞ ¼
R1
�1 dx Sinðx; tÞwðxÞ ¼ wðvtÞ. Using these forms for S(in)out, C(x,Δt) =

w(x−vΔt) and we can write Eq 3 as

@TwðxÞ ¼ Z
R1
�1 dDt KðDtÞwðx � vDtÞ

¼ Z
v

Z 1

�1
dDx KðDx=vÞwðx � DxÞ

¼ ZKvðxÞ � wðxÞ;

ð4Þ

where Kv(x) has been introduced as a rescaled copy of K, Kv(x) = v−1 K(x/v), and � denotes con-
volution. There are two key features to Eq 4. Firstly, as illustrated above, the STDP rule can be
reinterpreted as a spatial kernel as a result of the wavefront’s constant velocity, which main-
tains a strict relationship between space and time. Secondly, the wave’s effect on the synaptic
dynamics is described by a convolution of the STDP rule with the synaptic strengths. By deriv-
ing a solution for w(x) in Eq 4, we will demonstrate how convolution plays an important role
in the type of connectivity patterns that w(x) acquires, but first we relax the two simplifying
assumptions used to reach Eq 4.

Incorporating finite input bursts and the dependence of output firing rates on EPSPs adds a
simple modification to Eq 4, which becomes

@TwðxÞ ¼ ZKvðxÞ � að�x=vÞ � aðx=vÞ � �ðx=vÞ � wðxÞ; ð5Þ

where α(t) describes the time dependent firing rate during an input burst, and thus captures
the shape of the wavefront, and �(t) is the EPSP. In our model, both α(t) and �(t) are positive
valued for t> 0 (Methods), and act as low pass filters on the STDP rule. The full derivation for
Eq 5 is provided in S1 Text. Note that the firing rate of the output neuron (Rout in Methods)
acts simply as a coefficient of � in Eq 5 and hence plays a similar role to η by varying the rate at
which synaptic strengths are modified. Amalgamating all terms in Eq 5, except for w(x), we
have

@TwðxÞ ¼ ZkðxÞ � wðxÞ; ð6Þ

where κ(x) is the effective spike-location dependent plasticity rule, which incorporates the
dynamics of input bursts and EPSPs:

kðxÞ ¼ KvðxÞ � að�x=vÞ � aðx=vÞ � �ðx=vÞ: ð7Þ

When a typical STDP rule (Fig 2A, top; see legend for parameters) is transformed into a spa-
tial kernel (Fig 2A, bottom) by a wave traveling at 3 mm/s (the speed of spontaneous waves in
the mouse cerebellum [8], or a 25 °/s stimulus on the kitten retina using the visual angle to
space conversion in Methods), the kernel extends over approximately 1 mm of input space.
Note that κ(x) preserves the asymmetric shape of the STDP rule, but is low pass filtered by α(t)
and �(t).

A solution for w(x) as T!1 is more easily found in the frequency domain by taking the
Fourier transform, such that convolution becomes multiplication:

@T ~wðkÞ ¼ Z~kðkÞ~wðkÞ; ð8Þ

where ‘~’ denotes the Fourier transform and k is the spatial frequency. Using w0 to describe the
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Fig 2. Traveling waves build periodic connectivity patterns into the synaptic strengths through STDP. A. Example of a STDP rule (top panel, τ+ = 20
ms, τ

−

= 40 ms, A+ = 1.0, A
−

= 0.51) that is mapped into a location-dependent plasticity rule (bottom panel) by a wave traveling at 3 mm/s (burst duration is 0.1
s). B. Re[~kðkÞ] for the STDP rule in A. The dominant spatial frequency, k*, lies where ~kðkÞ has a global maximum. Inset: ~kðkÞ for a symmetric STDP rule (τ+ =
20 ms, v = 3 mm/s).C. Evolution of the synaptic strengths, initialized with strength 0.5, from 500 input neurons to a single output neuron, under the influence
of an asymmetric (left column) and symmetric (right column) STDP rule. Waves sculpt a periodic connectivity pattern into the synaptic strengths with a spatial
frequency equal to k* (seeB and Eq 5). Larger values for τ+ (controls STDP rule width) or v (wave speed) produce lower spatial frequencies in the periodic
pattern. Values for τ+ and v are given between the columns.D–E. Log-log plots for the spatial frequency of the steady state connectivity pattern as a function
of τ+ and v, for both the symmetric (left panels) and asymmetric (right panels) STDP rules. Grey curves: predicted k*; blue: mean spatial frequency ± SEM of
the final connectivity pattern in the spiking simulation; purple: mean spatial frequency ± SEM ofw(x) in the numerical solution to Eq 6. D. Dependence of the
dominant spatial frequency on τ+, keeping v = 3 mm/s fixed. E. Dependence of the dominant spatial frequency on v, keeping τ+ = 20 ms fixed. F–G. Same as
D and E, but for an integrate and fire output neuron model.

doi:10.1371/journal.pcbi.1004422.g002
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initial synaptic strengths at time T = 0, the solution to Eq 8 for ~wðkÞ is
~wðkÞ ¼ ~w0ðkÞeZ~kðkÞT : ð9Þ

We can reconcile Eq 9 with several previous studies of STDP by writing ~kðkÞ ¼ lðkÞ þ
i�ðkÞ to explicitly express real and imaginary components:

~wðkÞ ¼ ~w0ðkÞeZlðkÞTeiZ�ðkÞT : ð10Þ

Here, the imaginary component gives rise to a spatial phase shift in w(x), a feature that has
been exploited to drive a spatial redistribution of synaptic strengths by asymmetric STDP rules
in several models of sequence learning [26, 32], asymmetric shifts in hippocampal place fields
[33, 34], and the formation of direction selective cells [24, 27, 28].

The focus of our results, however, is the stability of ~wðkÞ, which is determined by the real
component, λ(k). We therefore consider waves that travel in both directions so that, for suffi-
ciently small η, κ(x) is effectively symmetric and contains no imaginary component. This can
be shown by integrating Eq 8 over two wave events, with the first wave traveling left to right,
and the second wave traveling right to left (replacing v with −v). After the first wave, at T = T1,

~wðk;T1Þ ¼ ~w0ðkÞeZ~kðkÞT1 : ð11Þ

Using ~wðk;T1Þ as the initial condition for the second wave, we have at T = T2

~wðk;T2Þ ¼ ~wðk;T1ÞeZ~kðkÞðT2�T1Þ; ð12Þ

where ~kðkÞ is the complex conjugate of ~kðkÞ, with conjugation resulting from the sign reversal
in the wave speed. Expanding Eq 12, we have

~wðk;T2Þ ¼ ~w0ðkÞeZlðkÞT1eiZ�ðkÞT1eZlðkÞðT2�T1Þe�iZ�ðkÞðT2�T1Þ

¼ ~w0ðkÞeZlðkÞ2DT ;
ð13Þ

where ΔT = T1 = T2−T1 is the time taken for one wave to cross the input layer. We can there-
fore write an approximation to Eq 9 for the special case in which waves travel in both directions
in equal numbers:

~wðkÞ � ~w0ðkÞeZRe½~kðkÞ�T : ð14Þ

If the wave direction were random, instead of alternating, Eq 14 would be valid only if a
large number of waves traversed the input layer during the interval ΔT/η.

Thus, for any k such that Re½~kðkÞ� < 0, ~wðkÞ will be stable and decay to zero, whereas for
any k such that Re½~kðkÞ� > 0, ~wðkÞ will become unstable and grow exponentially. For the
STDP rules used in this study (Fig 1C), ~kðkÞ has a positive valued maximum at k� (Fig 2B).
Therefore, if the synaptic strengths are initially random, such that the expected form of ~w0ðkÞ
is flat, then ~wðk�Þ will be the fastest growing eigenmode of the synaptic strengths, and ~wðkÞ will
asymptotically approximate a delta function, δ(k�). If only a single spatial frequency dominates
~wðkÞ, w(x) will be sinusoidal. Thus, our derivation predicts that, for STDP rules like those
reported experimentally, the synaptic strengths will develop a connectivity pattern that is peri-
odic in space with a period of 1/k�, under the influence of traveling waves.

A similar model of pattern formation describes the development of ocular dominance col-
umns in primary visual cortex [35], in which it is proposed that short range excitatory and long
range inhibitory lateral interactions give rise to the spatially periodic dominance of eye specific
afferents across primary visual cortex. In our model, it is the mapping of the STDP rule onto
space that provides the lateral interactions necessary for pattern formation. More generally, the
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solution derived above is analogous to pattern forming solutions that result from Turing insta-
bilities in reaction-diffusion systems [29], whereby the initially homogeneous distribution of
synaptic strengths becomes unstable, allowing the fastest growing eigenmode to dominate the
resulting pattern. In systems composed of a diffusible activator and an inhibitor, Turing insta-
bilities frequently occur when the inhibitor diffuses over greater distances than does the activa-
tor [30]. Here, the decay constants of the positive and negative STDP lobes bear similarities to
the length scales of diffusion in reaction-diffusion systems. Thus, STDP rules with narrow win-
dows for strengthening and wide windows for weakening are good candidates for pattern for-
mation in neural circuits that support traveling wave activity patterns.

Stability of the connectivity pattern
If the synapses are unbounded, the STDP rules used here will always yield a sinusoidal connec-
tivity pattern when driven by traveling waves, given sufficient time, and the mean synaptic
strength will always be zero (the mean of a sine wave). This is far from a physiologically plausi-
ble scenario: without bounds, the synaptic strengths would tend towards ±1. When bounds
are imposed, however, care is needed to formulate the STDP rule, so that the synaptic strengths
do not reach the upper or lower bound before the dominant eigenmode at k = k� takes hold.
This can be achieved by ensuring that there is not too strong a bias for either synaptic weaken-

ing or strengthening in the STDP rule:�BL <
R1
�1 dDt KðDtÞ ¼ Re½~kðk ¼ 0Þ� < BU , where BL

and BU are, respectively, the magnitudes of the lower and upper bounds to the STDP bias.
Because synaptic strengths are constrained to be positive, it must be that BL > BU. In other
words, the range of biases for synaptic weakening that will yield stable periodic patterns is
greater than that for strengthening. Nevertheless, it is important to note that we need not have
BU < 0. This contrasts with previous studies that utilized different input activity patterns [16,

17, 19], and that required a bias for synaptic weakening by setting
R1
�1 dDt KðDtÞ < 0 to stabi-

lize the connectivity pattern. That is, in our model, it remains possible for periodic patterns to
emerge even if there is a bias for synaptic strengthening in the STDP rule, so long as the synap-
tic strengths are not pushed to the upper bound before the dominant spatial frequency takes
hold. The stability of the connectivity will also be sensitive to the learning rate, which is scaled
by η in Eq 6, and the initial conditions of the synaptic strengths. For example, we later explore
formulations of ~kðkÞ for which there are multiple peaks that are similar in amplitude, or a sin-
gle, broad peak. The stochastic dynamics introduced by spiking neurons may therefore move
the slower dynamics of plasticity along a spectrum of eigenmodes, resulting in more aperiodic
connectivity patterns. We later introduce a robustness measure to quantify the periodicity of a
connectivity pattern and that takes these potential features of ~kðkÞ into account.

Spatial pattern formation in a spiking neuron simulation
To test the predictions of the analytical derivation above, we examined whether a periodic con-
nectivity pattern would develop as a result of traveling waves and STDP in a simulated network
of linear Poisson, spiking neurons. The simulation captures the architecture and function of
the network illustrated in Fig 1A, consisting of a 1D layer of input neurons that all synapse
onto a single output neuron. During simulations, synaptic strengths were modified by one of
two distinct forms of STDP rule (see Methods) that have been reported in the literature, one
that is asymmetric (Eq 21) [13, 17, 36] and the other symmetric (Eq 22) [37, 38] in Δt. Spiking
activity is generated by a traveling wavefront that moves back and forth along the input layer,
eliciting EPSPs and spikes in the output neuron. We varied two parameters in the simulation:
i) the temporal window of K(Δt), which we control with the decay time constant for synaptic
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strengthening, τ+, and ii) the wave speed, v. These parameters modulate the shape of κ(x) and,
therefore, the spatial frequency of the predicted periodic connectivity pattern.

As predicted by our derivation (Eq 9), the synaptic strengths in the simulation indeed devel-
oped a periodic connectivity pattern (Fig 2C) in the presence of traveling waves for both the
asymmetric and symmetric rules. The periodic pattern was robust over a range of STDP time
constants (τ+ = 20, 30, 40, 50, 60 and 70 ms), keeping the wave speed constant (v = 3 mm/s),
and for a range of wave speeds (v = 1, 2, 3, 4, 5, and 6 mm/s), keeping τ+ constant (τ+ = 20 ms).
As predicted, increasing τ+ or v caused the period of the connectivity pattern to increase (Fig
2C). To test the accuracy with which Eq 9 predicts the resulting spatial frequency over this
range of parameters, we computed the power spectrum of the steady state synaptic strengths
(mean subtracted) to which a Gaussian curve was fit. The spatial frequency of the connectivity
pattern was taken to be the centre of the fitted Gaussian. We repeated simulations sixteen
times for each set of parameters, using a different seed for the random number generators. In
Fig 2D and 2E, we compare the measured spatial frequencies (blue circles) with the predicted
spatial frequencies, k� (grey curves), as a function of τ+ (Fig 2D) and v (Fig 2E), where the pre-
dicted values were found by numerically computing Re½~kðkÞ� and determining the spatial fre-
quency at its peak. We measured the accuracy of our predictions by computing the coefficient
of determination, R2, between the logarithms of the predicted and measured spatial frequen-
cies. For each panel in Fig 2D and 2E, R2 > 0.85. Thus, the assumptions made to derive Eq 9
appear to maintain a veritable description of the noisy dynamics in the simulation over the
range of parameters tested. In addition to the simulations, we verified that solutions obtained
by numerically integrating Eq 6 (incorporating nonlinearities such as hard bounds to w(x), see
Methods) also produced periodic connectivity patterns with spatial frequencies that matched
predictions (magenta circles, Fig 2D and 2E, R2 > 0.92).

To investigate whether nonlinearities in the postsynaptic response influence the outcome of
the connectivity patterns, we replaced the linear output neuron with a leaky integrate and fire
(LIF) neuron (see Methods) that modeled absolute and relative refractory periods of 2 ms and
5 ms, respectively. These simulations yielded a similar relationship between the spatial fre-
quency of the connectivity pattern, wave speed and STDP time scale (Fig 2F and 2G). This sim-
ilarity might be expected, as the wave correlations extend over relatively long time scales and
thus smooth out any ripples in the correlation function, C(x,Δt), that would be introduced on
the short time scales of the refractory period or EPSP rise time. More noticeable differences
may, however, be observed if wavefronts elicited very short bursts or only single spikes.

The development of periodic patterns in synaptic connectivity could have wide applications
throughout the nervous system of many species, particularly because of the ubiquity of both
traveling waves and STDP. However, it is first necessary to determine the extent to which pat-
tern formation is influenced 1) over the range of space and time scales observed in biology, 2)
in the presence of noise, and 3) by 2D waves. We explore these issues in the following sections.

Pattern formation over a wide range of spatial and temporal scales
In the previous section, we found that the wave speed and STDP time scale are key parameters
that determine the spatial frequency of periodic connectivity patterns. Traveling waves in dif-
ferent areas of the brain are characterized by wave speeds that span at least two of orders of
magnitude, from slow retinal waves with speeds on the order of 0.1 mm/s [39] to fast cortical
waves with speeds reaching 17 mm/s [9]. On the other hand, time scales for STDP are typically
10–100 ms [40], but time scales on the order of seconds are predicted to be relevant to retinal
waves [41]. We consider in the Discussion how the theoretical results above might apply to
these different biological circuits. To do this, we first obtain a more complete picture of the

Pattern Formation in Neural Circuits by TravelingWaves and STDP

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004422 August 26, 2015 10 / 45



spatial scales of pattern formation predicted by the theory over a wide range of wave speeds
and STDP time scales.

We calculated the landscape of spatial frequencies as a function of τ+ and v by numerically
computing ~kðkÞ, and finding the spatial frequency, k�, that maximizes its real component. The
k� landscapes for both the asymmetric and symmetric STDP rules (Fig 3A and 3B, respectively)
reveal a remarkably similar dependence of the predicted spatial frequency on τ+ and v, which is
perhaps not surprising given the simple exponential functions underlying the STDP rules (Eqs

Fig 3. Predicted spatial frequencies as a function of the wave speed and STDP time scale. In all plots,
solid black contours denote spatial frequencies equal to 10 raised to integer exponents. A. Predicted spatial
frequencies for an asymmetric STDP rule as a function of v and τ+. White triangle: when τ+ is longer than the
burst duration, scaling τ+ or v by the same amount has the same effect on the spatial frequency. Green
triangle: when τ+ is shorter than the burst duration, the burst duration has a noticeable influence on the spatial
frequency. Red rectangle: wave speeds recorded in the cerebellum, ventral cortex and hippocampus of
neonatal mice occupy this region for STDP rules with τ+� 20 ms.B. Landscape of predicted spatial
frequencies for a symmetric STDP rule.

doi:10.1371/journal.pcbi.1004422.g003
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21 and 22). In particular, for a large region of parameter space, scaling either v or τ+ by a factor,
f, simply scales k� by 1/f. We illustrate this scaling feature using triangles with two equal sides
aligned to the axes, as multiplication in linear space is equivalent to addition in logarithmic
space. Starting at one iso-frequency contour (1 cycle/mm, bottom left vertex of white triangle
in Fig 3A), a constant step along the v-axis moves k� to the same iso-frequency contour (0.04
cycles/mm) as does an equal step along the τ+-axis. Because the input burst acts as a low pass
filter on the STDP rule, this relationship does not continue (green triangle, Fig 3A) when τ+
becomes shorter than the burst duration (here 0.1 s) of the input neurons. Thus, the burst dura-
tion has a strong influence on k� at time scales longer than τ+, which is particularly the case
during retinal waves when burst durations are often as long as 3 s [42, 43]. Addressing the
impact of the burst duration is the focus of the next section.

Impact of burst duration on pattern formation
The warping of the spatial frequency landscapes above shows that the burst duration also plays
a role in pattern formation. Furthermore, when correlated activity patterns comprise long
burst durations, STDP rules with short time scales struggle to extract information from the cor-
relations that might be relevant for circuit development [20, 41, 44]. Here, we further examine
the influence of burst duration on pattern formation in our model by carrying out simulations
over the range of burst durations that are observed for different types of traveling wave.

Waves in this set of simulations traveled with a fixed speed of 3 mm/s, and we used the
asymmetric STDP rule with a fixed decay time of t+ = 20 ms. In Fig 4A, we show examples of
the evolving connectivity pattern for different burst durations. For bursts lasting 0.03 s, the
connectivity pattern had only a very weak periodic structure (Fig 4A, left panel). The power
spectrum of connectivity patterns when the burst duration was 0.03 s, averaged over repeated
trials, is shown in Fig 4B (blue). By normalizing the spectrum to the power at its peak, it is clear
to see that power is spread over a broad range of spatial frequencies. Burst durations on the
order of a few hundred milliseconds produced more distinct periodic connectivity patterns
(Fig 4A, middle panels), with power concentrated around the peak in the power spectrum (Fig
4B, orange). However, in simulations with burst durations of 1 s or longer, the connectivity pat-
tern became disordered (Fig 4A, right panel), with some power concentrated at the lowest spa-
tial frequencies and otherwise spread evenly across higher frequencies (Fig 4B, black).

To summarize the robustness with which a periodic connectivity pattern is produced under
different conditions, we define robustness to be the ratio of the power spectrum amplitude at its
peak to the total power in the discretized power spectrum (see Methods). All robustness mea-
sures are plotted in comparison to a reference value, which we take to be the mean robustness
when parameters yielded a clear periodic connectivity pattern. Here, simulations with a 0.1 s
burst duration were used as the reference. The robustness is plotted in Fig 4C for simulations
using burst durations from 0.03 s to 5 s (black circles). In agreement with the shapes of the
power spectra in Fig 4B, the robustness is relatively high for burst durations in the range 0.1–
0.5 s, and relatively low outside of this range. Because non-linearities in the simulation, such as
bounded synaptic strengths, allow for the building of multiple spatial frequencies into the con-
nectivity pattern, we examined whether the concentration of power in Re½~kðkÞ� at the domi-
nant spatial frequency, k�, could explain the relationship between the burst duration and
robustness. That is, we numerically computed Re½~kðkÞ� over the full range of simulated burst
durations, from which we calculated the ratio of power at k� to the total power (see Methods).
We plot this theoretical measure of robustness in Fig 4C (pink), having normalized it to the
theoretical robustness when the burst duration is 0.1 s. The theoretical robustness provides a
good estimate for the robustness with which the periodic connectivity patterns are produced in
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the simulations. To demonstrate how different burst durations distribute power across differ-
ent spatial frequency ranges, we plot examples of Re½~kðkÞ� in Fig 4D for three burst durations:
0.03 s (blue), 0.3 s (orange) and 3.0 s (black). For a 0.03 s burst, power is distributed across a
wide range of high frequencies, whereas, for a 3.0 s burst, most of the power is concentrated in
the negative dip at the lowest frequencies. However, for 0.3 s bursts, power is concentrated
between these two extremes, around the dominant spatial frequency of k�. This trend is not
specific to the choice of α(t). In S1A Fig, we show Re½~kðkÞ� for which α(t) is modeled using an
alpha function.

Despite the poor robustness at short burst durations, the spatial frequencies that were mea-
sured from the connectivity patterns were well matched to the predicted k� for burst durations
between 0.03–0.5 s (Fig 4E). However, for burst durations exceeding 0.5 s, the connectivity pat-
terns no longer yielded spatial frequencies that matched the theory. This is likely to be due to
the similar amplitude of multiple peaks in ~kðkÞ for longer burst durations (for example, the
black curve in Fig 4D), compounded by the overall loss in robustness (Fig 4C). Butts & Rokhsar
[41] have shown that waves with long burst durations provide more information that is rele-
vant for refinement when the plasticity rule has a time scale much longer than is typically seen
for STDP. It might therefore be possible to rescue pattern formation for waves with long burst
durations by using a longer time scale for the STDP rule. To examine this possibility, we

Fig 4. The influence of burst duration on pattern formation. A. Examples of synaptic strength evolution over time. Numbers along the top indicate the
input burst duration in seconds.B.Mean power spectra, normalized by the peak power in each spectrum, of the final connectivity patterns in simulations
using burst durations of 0.03 s (blue), 0.3 s (orange), and 3.0 s (black).C. Robustness of the periodic connectivity pattern to different burst durations.
Reference power spectra are taken from simulations with a burst duration of 0.1 s. Black: robustness measures for each burst duration. Pink: theoretical
robustness measure, based on the concentration of power at k* inRe½~kðkÞ�, normalized to the theoretical robustness for a burst duration of 0.1 s. D.
Examples of Re½~kðkÞ� for burst durations of 0.03 s (blue), 0.3 s (orange) and 3.0 s (black). The negative lobe in the black curve extends beyond the horizontal
axis and has been cut for clarity. E. Spatial frequencies of connectivity patterns that developed in simulations as a function of the burst duration (black circles
and error bars: mean ± SEM). Grey line: predicted spatial frequencies. The sawtooth fluctuations at longer burst durations correspond to the emergence of
new dominant peaks in ~kðkÞ, which is compressed towards lower spatial frequencies as the burst duration is increased. F. Theoretical robustness as a
function of burst duration for asymmetric STDP rules with τ+ = 20 ms (pink) and τ+ = 50 ms (green).

doi:10.1371/journal.pcbi.1004422.g004
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computed the fraction of power at ~kðk�Þ over the range of simulated burst durations for a
STDP rule with τ+ = 50 ms (Fig 4F, green). The wider STDP rule exhibits a greater concentra-
tion of power at k� over a much wider range of burst durations, when compared with the STDP
rule with τ+ = 20 ms, and the same trend is seen for other α(t) kernels (S1B Fig). This includes
bursts exceeding 1 s in duration. For burst durations as long as 3 s, which are common for reti-
nal waves, STDP rules with even longer time scales would be expected, according to our model.
Thus, our model supports the hypothesis of Butts & Rokhsar [41], and provides a new
approach for estimating the required time scale of STDP with which retinal waves may refine
developing neural circuits.

Additional contributions to wave-related correlations can arise from the noisy mechanisms
of wave and spike generation during early development, which may deliver waves in quick suc-
cession as well as generate non-wave related input spikes. The extent to which our analytical
results can be applied to biological systems therefore depends on their robustness to these addi-
tional contributions to C(x,Δt). In the following sections, we seek to understand how the pres-
ence of noise and multiple waves may impact upon the development of periodic connectivity
patterns.

Sensitivity of the connectivity pattern to noise
Thus far, we have tested theoretical predictions using idealized wavefronts. In reality, sponta-
neous and sensory driven waves exist among continuous background activity and travel with
variable wave speeds. Here, we use simulations to establish the sensitivity of pattern formation
to these sources of noise. To examine the effect of variable wave speed, we conducted a set of
simulations in which a new speed was assigned to each wave from a lognormal distribution,
with a mean of 4 mm/s and standard deviation (SD) σv. We imposed a minimum speed of 0.05
mm/s so that waves would not take too long to traverse the input layer. Examples of the evolv-
ing connectivity pattern in these simulations are provided in Fig 5A and, in Fig 5C, we plot the
mean power spectra of the final connectivity patterns for σv = 0.0, 2.0 and 4.0 mm/s. An unex-
pected feature of the resulting connectivity patterns was a decrease in the spatial frequency
with increasing σv (orange: σv = 0.0 Hz, cyan: σv = 2.0 Hz, black: σv = 4.0 Hz). In these simula-
tions, the developing connectivity pattern may experience a greater influence from the faster
waves that recruit more input neurons per unit time and thus drive higher output firing rates.
This would correspond to our earlier results in Fig 2, for which we showed that lower spatial
frequencies are associated with higher wave speeds. In Fig 5E, we plot the robustness of the
connectivity pattern to variation in wave speed, where we have referenced robustness to the
case when σv = 0. Despite the variation in wave speed, which corresponds to there being a spec-
trum of spatial frequencies impressed on the network, the connectivity retains a reasonably
robust periodic structure.

We next tested the robustness of periodic connectivity patterning to the presence of back-
ground spiking noise, which diminishes the relative contribution of wave-activity to C(x,Δt) in
Eq 3. To implement background noise in the simulation, input neurons that were not partici-
pating in a wave fired spontaneous spikes with a firing rate of R0, which was varied between
simulations (see Methods). Examples of the evolving connectivity patterns are shown in Fig 5B
(top row) for different background firing rates. Mean power spectra of the final connectivity
patterns when R0 = 0.0 (cyan), 1.0 (orange) and 2.0 Hz (black) are plotted in Fig 5D, and show
little variation in the dominant spatial frequency when R0 < 2.0 Hz. However, the robustness
degraded substantially when R0 � 2.0 Hz (black circles in Fig 5F, reference case R0 = 0 Hz). In
these simulations, a new wave traversed the input layer every 10 s, but the burst duration was
only 0.1 s. Therefore, the ratio of wave-related spikes to background spikes, rather than the
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background rate, might better parameterize when the connectivity pattern will be robust. In
this case, periodic patterns lacked robustness when the ratio went below approximately 1:4.
Accordingly, the robustness could be significantly enhanced for almost all background rates by
increasing the firing rate during a wave burst to 100 Hz. In this case, the robustness degraded
substantially when R0 � 4 Hz (Fig 5B, bottom row; Fig 5F, grey circles). During early, sponta-
neous waves, low background firing rates are typical, and there is good reason to believe that
background firing rates are low in early stages of sensory processing as well [45]. We review
more evidence for this in the Discussion.

Spike-spike correlations induced by the wavefront, rather than time averaged firing rates,
are the driving force behind periodic patterning in our model. Additional sources of spike-
spike correlations may therefore disrupt periodic patterning. We conducted a set of simulations
in which inputs experienced instantaneous correlations with their neighbors (see Methods)

Fig 5. Robustness of periodic connectivity pattern to variation in wave speed and background input spikes. A & B. Examples of synaptic strength
evolution over time for simulations in which: A)wave speeds were drawn from a lognormal distribution with mean 4 mm/s and standard deviation σv; B) a
background firing rate of R0 was assigned to input neurons. The firing rate during a wave burst was 50 Hz (top row) or 100 Hz (bottom row). C & D.Mean
power spectra for the connectivity patterns, normalized by the maximum in each spectrum, for simulations in which:C) wave speeds were drawn from a
lognormal distribution with σv = 0 mm/s (blue), σv = 2 mm/s (orange) and σv = 4 mm/s (black);D) input neurons were assigned a background firing rate of 0.0
Hz (blue), 1.0 Hz (orange) and 2.0 Hz (black), with 50 Hz firing rates during a wave burst. E & F. Robustness of periodic connectivity patterns to: E) variation
in wave speed, where reference power spectra are from simulations with σv = 0; F) background spiking of input neurons, where reference power spectra are
from simulations with R0 = 0. Black: 50 Hz firing rate during a wave. Grey: 100 Hz firing rate during a wave. Orange: 50 Hz firing rate during a wave, with local
input correlations of strength c = 0.1 (closed circles) and c = 0.25 (open circles).

doi:10.1371/journal.pcbi.1004422.g005
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while also varying the background firing rate. With non-zero background rates, increasing the
correlation strength does indeed degrade the robustness of the periodic connectivity patterns
(Fig 5F, orange circles), referenced to simulations with no local correlations and R0 = 0.0 Hz. In
the absence of background spiking, however, the additional local correlations act to enhance
the robustness. Typically, correlations are not instantaneous but decay over time [46–49] and
thus would have a reduced impact on plasticity due to the decaying amplitude of the STDP
rules around Δt = 0 [18].

Sensitivity of the connectivity pattern to multiple, non-isolated waves
The intervals between consecutive spontaneous waves can be very variable, and inter-wave
intervals (IWIs) cover a broad range, from approximately 100 ms in the cerebellum [8] to tens
of seconds in the retina [39, 50]. IWIs during sensory driven waves may also be highly variable,
and are likely to match the temporal pattern of naturally occurring stimulus features to which a
population of input neurons are tuned. During vision, for example, multiple luminance con-
tours can be cast across the retina in quick succession when tracking a moving object. In the
following, we investigate how the presence of multiple waves, which simultaneously drive spik-
ing in the output neuron, impact the development of the connectivity pattern. In so doing, we
test our assumption in the above derivation that waves be sufficiently isolated in time.

We ran a set of simulations in which waves were generated with an approximately lognor-
mal distribution of IWIs and varied the mean IWI, μIWI, between simulations (see Methods).
At a speed of 4 mm/s, waves took 2.5 s to traverse the input layer. Thus, to ensure that multiple
waves were present for the majority of the simulation, we set μIWI � 2.0 s across the set of
simulations.

Despite multiple waves driving the output cell, periodic connectivity patterns emerged in
the simulations, examples of which are shown in Fig 6A (left and center panels). Power spectra
of the connectivity patterns had distinct peaks near the predicted spatial frequency (0.91
cycles/mm) for μIWI as short as 0.5 s (Fig 6C). The connectivity pattern began to degrade for
μIWI < 0.5 s, and had little structure when μIWI � 0.2 s (Fig 6A, right panel), with power spread
broadly across the spectrum (Fig 6C). The loss of robustness with decreasing μIWI is summa-
rized in Fig 6E (black circles), where robustness is referenced to simulations in which a con-
stant IWI of 5 s was used, thus ensuring that only one wave was present at a time.

The loss of robustness with decreasing μIWI may be related to our requirement in the above
derivation that waves be sufficiently isolated in time, with ΔT> 2K, where ΔT can be interpreted
as the IWI andK as half the temporal width of the STPD rule. AlthoughK is not precisely
defined, values in the range 0.1–0.3 s would be reasonable for the STDP rule used here, for which
the decay time of the longer, negative lobe was τ− = 0.04 s. An alternative explanation might be
that successive waves with very short IWIs are not very different from single waves with long
burst durations, as far as the timing precision of the STDP rule is concerned. Because the burst
duration also influences robustness, these two possible factors would be difficult to disentangle,
and efforts to do so go beyond the scope of this study. The important qualitative result is that,
above a lower limit to the mean IWI of only a few tenths of a second, the succession of randomly
occurring waves does not greatly degrade the robustness of periodic connectivity patterns.

We next asked whether a constant IWI between waves, which would contribute a strong fre-
quency component to ~kðkÞ, would lead to a similar degradation in robustness with decreasing
IWI. Because wavefronts of activity in the retina readily track moving luminance edges [7], reg-
ular waves could correspond to stimulation of the retina by luminance gratings, as used in
experiments studying the development of orientation and direction selectivity [51]. We ran
simulations in which waves traversed the inputs in a periodic fashion, with a constant IWI, but
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otherwise used the same parameters as for the simulations with irregular waves. Examples of
the periodic patterns that developed for different IWIs are provided in Fig 6B, and their power
spectra are shown in Fig 6D. It is clear that regular waves built robust periodic patterns, even
with the shortest IWIs. Our robustness measure confirmed that this was the case across all of
the IWIs tested (Fig 6E, grey circles). In addition to the enhanced robustness, a distinct feature
of the connectivity patterns with constant IWIs is the shift towards higher spatial frequencies
for short IWIs (Fig 6D, power spectra for IWIs of 0.2 s and 0.15 s).

The emergence of robust periodic connectivity patterns, with increased spatial frequencies
for fixed IWIs� 0.2 s, appears at odds with our theoretical predictions. However, these features
can be easily accounted for by considering how κ(x) is constructed in Eq 7. To represent the
periodic input bursts elicited by multiple waves, we replace α(t) in Eq 7 with

apðtÞ ¼
R1
�1 dt0

P
ndðt0 � ðn	 IWIÞÞaðt � t0Þ, the convolution of α(t) with a Dirac comb. Eq 7

expresses κ(x) as the convolution of Kv(x), αp(x/v), αp(−x/v) and �(x/v), and can be solved by
taking its Fourier transform, whereby convolution in the real domain is equivalent to multipli-
cation in the frequency domain. In Fig 6F, we plot the two functions that have the greatest

Fig 6. Robustness of periodic connectivity patterns whenmultiple waves traverse the inputs
simultaneously. A & B. Examples of synaptic strength evolution over time for simulations in which: A)waves
are generated with IWIs drawn from an approximately lognormal distribution;B) waves are generated
regularly with a constant IWI. C & D. Power spectra for the connectivity patterns, normalized by the maximum
in each spectrum, for simulations in which: C) IWIs are drawn from a lognormal distribution. Light blue to
black corresponds to mean IWIs of 2.0 s, 1.0 s, 0.5 s, 0.2 s and 0.15 s, respectively; D) IWIs are constant.
Color scheme the same as for C. E. Robustness of connectivity patterns as a function of the mean IWI.
Reference power spectra are taken from simulations with a constant IWI of 5 s. Black: IWIs drawn from a
lognormal distribution. Grey: IWIs are constant. F. An example ofRe½~KvðkÞ� (black) and examples of
Re½~apðvkÞ� for a single wave in isolation (grey) and multiple waves with constant IWIs of 1 s (blue) and 0.15 s

(pink).G. Examples of Re½~KvðkÞ j ~apðvkÞj2� for the same IWIs in F.

doi:10.1371/journal.pcbi.1004422.g006
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influence in our simulations. In black is the Fourier transform of the STDP rule, ~KvðkÞ. The
remaining curves are the Fourier transforms of the input firing patterns, ~apðvkÞ (with the

zeroth frequency component removed), for three cases: a single wave in isolation (effectively,
IWI =1 grey curve) and periodic waves with IWI = 1.0 s (blue) and IWI = 0.15 s (pink). Note
that the Fourier transform of the EPSP has little effect in this calculation because its time con-

stant is much shorter than that of the other functions. The product ~KvðkÞ j ~apðvkÞj2 therefore
yields a good approximation of ~kðkÞ, and is drawn for the three cases of ~apðvkÞ in Fig 6G.

Because the Fourier transform of a Dirac comb is another Dirac comb, ~apðvkÞ produces sharp
peaks in ~kðkÞ (pink and blue) at spatial frequencies that may be higher (pink) than the peak in
the case of isolated waves (grey). The large amplitude and narrow peaks in ~kðkÞ, when
IWI = 0.15 s and 0.2 s, explain the dominance and robustness of a single spatial frequency in
the respective connectivity patterns, and the positions of these peaks explain the shift of the
power spectra toward higher spatial frequencies in Fig 6D.

The strong dependence of the spatial frequency on the IWI for short IWIs only, as depicted
in Fig 6F and 6G, suggests a critical value for the IWI. We can relate the critical value to the
time taken for a wave to travel a distance equal to one cycle of the periodic pattern: IWIcrit = 1/
vk� � 0.27 s. That is to say, when IWI< IWIcrit, the spatial frequency with which waves are
lined up along the input layer exceeds the dominant spatial frequency of κ(x) for a wave in iso-
lation (S2 Fig). This interpretation fits well with our assumption in the derivation that waves be
sufficiently isolated in time (and therefore isolated in space). Moreover, the existence of a criti-
cal IWI provides a means for quantifyingK, and thus provides a possible explanation for the
degradation in robustness when μIWI � 0.3 s in the simulations with irregular waves.

Traveling waves are instructive for shaping receptive fields via spike-
timing dependent plasticity
The filtering properties of a RF result from feedforward and recurrent synaptic inputs to the
neuron, as well as its intrinsic cell properties. In this section, we used simulations of spiking
neurons to examine whether the interaction of traveling waves and STDP rules, which can
impose spatially periodic connectivity patterns on a uniform field of synaptic strengths (shown
above), might be a plausible mechanism for shaping the feedforward component of RFs. As
such, a RF in our model refers to the spatial pattern of synaptic strengths impinging on the out-
put neuron from a small region of the input layer. During development, coarse RFs are thought
to be set up by molecular cues before activity dependent refinement takes place [52]. Therefore,
at the beginning of each simulation, we set synapses from the center of the input layer to maxi-
mum strength and the remaining synapses to zero, thus endowing the output neuron with an
initial RF having a diameter, RF0. Despite this restricted initial arrangement of synaptic
strengths, we found that a periodic pattern would nevertheless emerge across the entire input
array (S3 Fig). This outcome is not typical of the brain, as topographic maps and the limited
size of axonal arbors and dendritic trees restrict the spatial distribution of synaptic inputs to a
neuron. We therefore applied an arbor function (see Methods) that was centered in the middle
of the input layer and spanned a region greater than RF0. Synapses that were outside the arbor
were disconnected from the output neuron and prevented from strengthening. A schematic of
this new network architecture is provided in Fig 7A. In the majority of the following simula-
tions, we set RF0 = 0.8 mm, which approximates an area of retina that corresponds to RF sizes
in developing areas of the visual system, including the cat primary visual cortex [53, 54], the
lateral geniculate nucleus (LGN) in ferrets [55, 56], and the superior colliculus (SC) in adult
mice that have had disrupted retinal waves. The conversion between RF size and retinal dis-
tance is described in the Methods. Furthermore, in the remaining sections, we increase the bias
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Fig 7. Refinement of receptive fields. A. Schematic of network architecture for simulations investigating RF
development. Grey solid connectors: synapses at maximal strength comprise the initial RF. Grey dashed
connectors: synapses with zero strength at the start of the simulation but are modifiable, as they lie within the
arbor function (teal).B–D. Examples of RF development over time for different RF0, v and τ+ combinations.
Teal lines mark the boundary of the arbor function.B. Left! centre! right: v = 10 mm/s, 4 mm/s and
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for synaptic weakening in the asymmetric STDP rule from A− = 0.51 to A− = 0.55, which is use-
ful for RF refinement. Later, we examine the influence of this bias in greater detail.

By interpreting the output neuron RF as a single cycle in the type of periodic connectivity
patterns obtained above, we are able to examine how properties such as the wave speed and the
STDP time scale may shape RF development by controlling the characteristic wavelength, 1/k�,
of the connectivity pattern. Depending on the size of 1/k� with respect to RF0, one of three
modes of RF modification were observed. In one set of simulations, the RF became larger (Fig
7B, left), smaller (Fig 7B, middle) or split into subfields (Fig 7B, right) with progressively slower
wave speeds and thus shorter characteristic wavelengths. The same modes of RF modification
were achieved by decreasing the STDP time scales (Fig 7C) and holding the wave speed con-
stant. If instead of changing k� we increased RF0, keeping the wave speed and STDP rule fixed,
the RFs were similarly modified (Fig 7D). Thus, characteristic wavelengths that are long rela-
tive to RF0 caused the RF to grow, shorter wavelengths caused the RF to shrink, and even
shorter wavelengths enabled multiple cycles of the periodic pattern to form within the arbor.

Our results suggest that 1/k� in fact determines the size of the final RF, or each subfield. To
verify this, we varied RF0 from 0.2 mm to 3.2 mm between simulations, with the wave speed and
STDP rule fixed, and looked for the convergence of RF sizes, which we measured as the number
of synapses with strengths> 0.5. To accommodate RF0, the width of the arbor function was set
to the larger of 0.8 mm or RF0+0.4 mm. RF sizes converged to one of three sizes (Fig 7E),
depending on whether the RF maintained a single field (purple), or split into two (yellow) or
three (blue) subfields. The larger RF0, the more subfields that emerged. Regardless of RF0, the
mean final size of each subfield was approximately the same. Integer multiples of the mean sub-
field size (measured from RFs with three subfields) are drawn on the right of Fig 7E to illustrate
this fact. Small biases were evident, however, whereby larger values of RF0 tended to give rise to
larger RFs or subfields. This considered, the final number of strong synapses were easily distin-
guishable between cases in which one, two or three subfields developed. Thus, the size and
shape of the final RF tightly corresponds with the wave, STDP and initial RF properties.

A quantitative relationship between periodic patterning and refinement of
receptive fields
We showed above, in Fig 7B and 7C, that different wave and STDP parameter combinations
could yield the same mode of RF modification, including RF expansion, contraction, or split-
ting. Here, we focus on RFs that are made to contract, which is particularly relevant to the
refinement of topographic maps such as the retinotopic map in superior colliculus, and exam-
ine the range over which the wave speed and STDP time scale achieves this mode of modifica-
tion. To do this, we numerically integrated Eq 6 (see Methods) for the wide range of wave
speeds and STDP time constants used to generate Fig 3, holding RF0 = 0.8 mm constant. An
example of w(x) during the numerical integration of Eq 6, starting with an initial RF, is shown
in Fig 8A, for which parameters matched those in the central panels of Fig 7B and 7D. Using
the solutions for w(x), we constructed a phase diagram for the size and shape of RFs that devel-
oped, which we call the refinement phase space.

2 mm/s, keeping τ+ = 20 ms and RF0 = 0.8 mm fixed.C. Left! centre! right: τ+ = 50 ms, 20 ms and 20 ms,
τ
−

= 100 ms, 40 ms and 20 ms, A
−

= 0.55, 0.55 and 1.1, keeping v = 4 mm/s and RF0 = 0.8 mm fixed.D. Left
! centre! right: RF0 = 0.28 mm, 0.8 mm and 1.4 mm, keeping v = 4 mm/s and τ+ = 20 ms fixed. E.
Development of the mean number of synapses with strength > 0.5 in simulations using RF0 values from 0.2
mm to 3.2 mm in steps of 0.2 mm. Traces tend towards one of three values, depending on the number of
subfields that develop. Blue: RFs split into three subfields; yellow: RFs split into two subfields; purple: RFs
maintain just a single field.

doi:10.1371/journal.pcbi.1004422.g007
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In the refinement phase space, shown in Fig 8B, there is a region (shaded blue) correspond-
ing to v and τ+ parameters that caused the RF to contract, with darker shades of blue indicating
greater contraction, measured as a percentage of RF0. In the region labelled α (unshaded), at
which κ(x) has higher characteristic spatial frequencies, RFs split into subfields. In the region
labelled β (unshaded), at which spatial frequencies are lower, RFs expanded. Overlaid are the
iso-frequency contours of the predicted spatial frequencies, k�, as in Fig 3. The boundaries
between each mode of RF modification closely follow the iso-frequency contours, with greater
RF contraction (darker shades) occurring at higher spatial frequencies. Because the outcome of
the final RF depends on the initial RF size, we recomputed the refinement phase space, setting
RF0 = 0.44 mm, which just exceeded the smallest size of RFs after contracting in solutions
when RF0 = 0.8 mm. For RF0 = 0.44 mm, the region of phase space in which RFs contracted
(colored purple) corresponded to slower wave speeds and shorter STDP time constants, i.e.
higher spatial frequencies in κ(x). Taken together, these results confirm that smaller initial RF
sizes require higher spatial frequencies in κ(x) to achieve a particular mode of RF modification.
The area of the blue and purple regions of phase space also show that, in order for RFs to be
refined to a smaller size by the asymmetric STDP rule, the maximum possible wave speed can
be just over a factor of two times greater than the minimum possible wave speed. At least the
same range in τ+ can also enable RF contraction. Thus, the mechanism of RF contraction

Fig 8. Relationship between periodic patterning and receptive field refinement. A. Example of RF refinement obtained by numerically solving Eq 6.
Vertical teal lines denote the arbor function boundary. B. Refinement phase space for RFs as a function of wave speed and STDP time constants. Colored
regions: areas of phase space in which RFs maintain a single field that is refined to smaller sizes; blue: RF0 = 0.8 mm; purple: RF0 = 0.44 mm. Shading
indicates the total change in RF size as a percentage of RF0. Region α corresponds to higher spatial frequencies in which RFs split into subfields. Region β
corresponds to lower spatial frequencies in which RFs expand. Overlaid are the iso-frequency contours of Fig 3. Solid contours correspond to spatial
frequencies with integer exponents of 10 (lower left to upper right: 10 cyc./mm, 1 cyc./mm and 0.1 cyc./mm).C. Incremental changes in wave speed can
continually refine RFs while maintaining a single subfield structure. Shown is the development of a RF, averaged over 16 trials, during which the wave speed
is first set to 4 mm/s and then decreases to 2.5 mm/s, after which the RF decreases in size. Increasing the wave speed back to 4 mm/s returns the RF to its
previous refined size. Purple trace: plot of the mean number of synapses with strength > 0.5 as an indicator of RF size.D. Refinement phase space using a
symmetric STDP rule, for which RF0 matches that for the blue region in B. Numbers next to the iso-frequency contours indicate their spatial frequency in
cycles/mm. E. Refinement phase spaces, using the asymmetric STDP rule, for different biases towards synaptic weakening. Left: A

−

= 0.50, which
corresponds to

R1
1 dDt KðDtÞ ¼ 0. Centre and right: A

−

= 0.55 and 0.60, respectively, which correspond to
R1
1 dDt KðDtÞ > 0. Red circles lie at the same v and

τ+ coordinates, to compare the effect of different A
−

values on RF refinement. The refinement phase space moves to lower spatial frequencies as A
−

increases.

doi:10.1371/journal.pcbi.1004422.g008
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described here allows for some variation in STDP properties between synapses, variation in
wave speed, or even fluctuations in both of these phenomena over time.

An interesting corollary of these results is that changes in wave speed and STDP properties
can follow changes in RF size, thus allowing continued contraction beyond that of a fixed v and
τ+ combination. To demonstrate this point, we ran a simulation using the same parameters as
those used for the central panels in Fig 7B and 7D. However, once the RF had refined to a
smaller size, we decreased the wave speed from 4 mm/s to 2.5 mm/s. Note that, according to Fig
8B, v = 2.5 mm/s and τ+ = 20 ms would cause a RF with RF0 = 0.8 mm to split into subfields, as
this point in the phase space lies to the lower left of the blue shaded region. However, as shown
in Fig 8C, an initial period of contraction with v = 4 mm/s set up further contraction, after a
decrease in wave speed to v = 2.5 mm/s, without splitting the RF into subfields. Increasing the
wave speed back to 4 mm/s at a later time caused the RF to expand and return to its previous
size. Analogously, changes in the time constants of STDP can achieve the same effect.

The phase diagram corresponds very well with the simulation results in Fig 7, confirming
our hypothesis that κ(x) and RF0 jointly determine the final shape and size of the RF. This was
not unique to the asymmetric STDP rule. In Fig 8D, we show a similar correspondence
between refinement and the iso-frequency contours for a symmetric STDP rule.

Tuning the characteristic wavelength by itself was not sufficient to achieve RF contraction.
In addition, both asymmetric and symmetric STDP rules required a bias towards synaptic
weakening. In Fig 8E, we plot the refinement phase space of a 0.8 mm RF for three asymmetric
STDP rules that differed only in A−, which scaled the amplitude of the negative lobe in the rule.

When A− = 0.5, we have
R1
�1 dDtKðDtÞ ¼ 0, such that synapses no longer compete for connec-

tions with the output. Consequently, increasing the dominant spatial frequency of κ(x) would
not decrease the size of the RF before causing it to split into subfields (left panel). However, by

increasing A− (A− = 0.55, middle panel; A− = 0.6, right panel), such that
R1
�1 dDtKðDtÞ < 0,

RF contraction was possible. Furthermore, increasing A−moved the iso-frequency contours,
making RF contraction possible at lower characteristic spatial frequencies and, therefore, larger
v and τ+ values. As such, for a given v and τ+ pair (red circles in Fig 8E), greater contraction
was achieved with increased bias for synaptic weakening.

Equipped with a basic understanding of the relationship between periodic patterning and
RF modification, we examine how more realistic traveling waves and STDP impact the devel-
opment of RFs in two dimensions in the following sections.

Refinement of receptive fields in two spatial dimensions
In two dimensions, the variables x and v in Eq 6 can now be considered as 2D vectors, x = (x,y)
and v = (vx,vy), in the x-y plane. As such, we expected the connectivity pattern to adopt the
characteristic spatial frequency, k� = (kx,ky), and thus for the type of RF modification along a
particular axis to depend on the direction of wave propagation. To test this, we generated wave
stimuli in a 2D input layer consisting of 64×64 units arranged on a square lattice. Plane waves
were generated in a similar fashion to the 1D scenario, moving with a constant speed in alter-
nating directions, from one side of the input layer to the opposite side with a wave speed of 4
mm/s. The single output neuron was provided with an initial, circular RF 0.8 mm in diameter
(Fig 9A, left panel), and synapses were modified by an asymmetric STDP rule (τ+ = 20 ms).
When plane waves travelled along just one axis, the RF contracted along the same axis (Fig 9A;
top panels: waves travel along the horizontal axis; bottom panels: waves travel along the vertical
axis), corresponding with the 1D results above (Fig 8B). However, the RF grew along the
orthogonal axis until it spanned the full extent of the arbor. This corresponds with an
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effectively infinite wave speed along the orthogonal axis, resulting in a periodic pattern with a
spatial frequency of zero.

Exposing the network to a reduced set of wave directions in this way can be used to build
RFs that exhibit periodic structure along the same directions. In S4 Fig, we provide examples of
RFs that developed when waves traveled in both directions along one, two and three axes. Of
particular interest are RFs that exhibit multiple parallel subfields (S4A Fig), which bare several
similarities with oriented simple cell RFs in primary visual cortex. In the Discussion, we
describe in more detail how periodic patterning might be applied to realistic simple cell RFs.

When waves travelled in 16 possible directions, equally spaced around the compass and in a
random sequence, the final RF maintained an approximately circular shape (Fig 9B, left). How-
ever, using the same wave and STDP properties as for Fig 9A, the RF area increased (Fig 9C,

Fig 9. Refinement of receptive fields with 2D plane waves. A. Refinement depends on the direction of
wave propagation. If an initial RF is circular (left), then waves traveling along a horizontal direction will refine
the RF along the horizontal axis only (top row). The RF necessarily expands to the arbor boundary along the
orthogonal axis. Likewise, waves traveling along a vertical direction refine RFs along the vertical axis only
(bottom row). Increasing time from left to right. Arrows: direction of wave propagation. Solid teal circle: arbor
boundary. Dashed green circle: boundary of the initial RF.B. Final RFs that were exposed to plane waves
traveling randomly in 16 possible directions. Left: using the same wave speed (4 mm/s) and STDP
parameters (τ+ = 20 ms, A

−

= 0.55) as in A. Centre: using a slower wave speed (3 mm/s) to lower the
characteristic spatial frequency of κ(x). Right: using the faster wave speed (4 mm/s) but shifting refinement
phase space to lower frequencies by increasing the bias for synaptic weakening (A

−

= 0.60). C. Summary of
the development of RF sizes for each of the conditions inB, averaged over three trials for each condition.

doi:10.1371/journal.pcbi.1004422.g009
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dark blue) because contraction along the axis parallel to the wave direction was outweighed by
expansion along the orthogonal axis. RF expansion could be counteracted by changing parame-
ters that enhance contraction, as explained in the results of Fig 8. Thus, increasing k� by
decreasing the wave speed to 3 mm/s (Fig 9B, middle), or increasing the amplitude for synaptic
weakening in the STDP rule from A− = 0.55 to A− = 0.6 (Fig 9B, right), caused RFs to contract
(Fig 9C, light blue and purple, respectively). This shows that the principle of using STDP and
traveling waves to refine a RF extends from 1D to 2D networks for simple, idealized waves. In
the following section, we will examine how this process holds up when waves follow more
irregular and complex trajectories.

Refinement of receptive fields by complex wave patterns
To test the robustness of refinement under conditions in which waves are far from idealized
plane waves moving with a constant velocity, we used a wave model developed by Feller et al.
[39] to generate complex wave patterns in the input layer. In the Feller et al. model, waves are
generated spontaneously in random locations, and propagate along winding trajectories on a
2D input layer (see Methods). Due to the complexity of the model, it was not possible to set a
precise wave speed. We therefore controlled the mean wave speed by temporally rescaling pre-
computed wave patterns, and measuring the speeds of waves that were isolated by a center of
mass (COM) tracking algorithm (Methods and S7 Fig). In this way, we generated slow,
medium and fast waves with speeds of 1.29±0.01 mm/s, 2.58±0.02 mm/s and 3.87±0.03 mm/s
(mean ± SEM), respectively. Examples of two isolated waves are shown in Fig 10A, and a 90 s
movie of isolated waves is provided in S1 Movie.

Using these rescaled wave patterns as input to simulations of RF development, we found
that, quite remarkably, complex waves could shape and refine RFs in much the same manner
as simple plane waves. With an asymmetric STDP rule and holding t+ = 20 ms fixed, RFs could
be made to expand (Fig 10B, left), contract (Fig 10B, center) or split into subfields (Fig 10B,
right) by the fast, medium and slow complex waves, respectively. Although slow waves did not
always split the RF, the final RF area was always smaller with slow waves than with medium
wave speeds. The evolution of the RF area during the simulation, averaged over repeated trials,
is plotted in Fig 10C for the different wave speeds (solid: fast waves; dashed: medium waves;
dotted: slow waves). Similarly, STDP rules with shorter STDP time scales produced RFs with
smaller areas (Fig 10D and 10E), corresponding to a shorter characteristic wavelength in a peri-
odic connectivity pattern. These results recapitulate the dependence of RF development on
wave speed and STDP time scales, even when the input wave patterns followed complex and
noisy trajectories.

Discussion
Here we examined how spatiotemporal correlations in traveling waves, a prominent feature of
activity in the developing nervous system, could in principle interact with Hebbian STDP to
instruct neural circuit development. Building upon previous studies of the interaction of STDP
with correlated activity [16–21], we have identified a novel process by which traveling waves are
able to establish and refine highly structured connectivity patterns in neural circuits. Specifically,
our analysis has led to the following major results: 1) common examples of experimentally
observed STDP build periodic patterns into feedforward networks when driven by traveling
waves; 2) the spatial frequency of the periodic pattern scales with the wave speed and character-
istic time scale of the STDP rule; 3) robust periodic connectivity patterns are produced only
when the duration of the wave-related burst falls within a range that depends on the time scale
of the STDP rule; the longer the burst duration, the longer the time scale of STDPmust be to
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yield robust periodic patterns; 4) periodic patterning is robust to variability in the wave speed
and wave frequency, but is lost if the ratio of non-wave spikes to wave-spikes becomes too high;
5) the shape and size of a RF can be modified by the spatial frequency imposed upon it by the
wave-STDP interaction. Below, we discuss in greater detail how our results build upon previous

Fig 10. Refinement of RFs by complex wave patterns. A. Snapshots of two example waves generated by the complex wave model, with time increasing
from left to right in steps of 0.4 s. Dashed orange curves mark the spatial boundaries within which activity was assigned to the same, isolated wave. Black
pixels mark input neurons that fired at least one spike during a 0.1 s interval and were part of the isolated wave. Grey pixels mark input neurons that fired at
least one spike but were not part of the isolated wave. The analysis of each isolated wave excluded activity from outside the orange boundary. B. Example
final RFs that developed under different wave speeds, holding the asymmetric rule fixed with τ+ = 20 ms. Left: fast wave speeds; middle: medium wave
speeds; right: slow wave speeds. Solid teal circles denote the boundary of the arbor function. Dashed teal circles denote the initial RF size. C. Summary of
the development of RF areas under the influence of fast (solid black line), medium (dashed black line) and slow (dotted black line) waves, averaged over
three trials. Dashed grey line: initial RF area. RF areas were calculated by multiplying the number of synapses with strength > 0.5 by the input cell spacing (34
μm) squared. D. Example final RFs that developed under different time scales of an asymmetric STDP rule, holding the wave speed fixed with medium speed
waves. Left: τ+ = 25 ms; middle: τ+ = 20 ms; right: τ+ = 15 ms. Teal circles the same as in B. E. Summary of the development of RF areas under the influence
of different STDP time constants, averaged over three trials. Solid black line: τ+ = 25 ms; dashed black line: τ+ = 20 ms; dotted black line: τ+ = 15 ms. Dashed
grey line: initial RF area.

doi:10.1371/journal.pcbi.1004422.g010
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work, and reflect on their application to experimentally observed wave phenomena and circuit
refinement. We point out predictions from our model that may be tested using existing experi-
mental paradigms, and suggest how our results may be extended in future work.

Pattern formation in the brain and biology
Our theoretical results, expressed in Eqs 6 and 9, are analogous to those derived by Swindale
[35], who modeled the development of ocular dominance columns in primary visual cortex.
Swindale showed that short range excitatory and long range inhibitory lateral interactions
could give rise to the spatially periodic dominance of eye specific afferents across primary
visual cortex, a principle also used to model the development of orientation columns in visual
cortex [57]. In our model, the lateral interactions between synapses that are necessary for pat-
tern formation result from the timing dependence of STDP, which is mapped onto space by
the spatiotemporal correlations of traveling waves. Pattern formation of this kind is analogous
to a Turing instability in reaction-diffusion systems [29], which has been applied to diverse
cases of biological pattern formation [31]. A useful recipe for Turing-like pattern formation
includes the presence of a diffusible activator and inhibitor, whereby the inhibitor diffuses over
greater distances than the activator [30]. STDP rules emulate this feature if τ−> τ+, i.e. the tem-
poral window for synaptic weakening is longer than that for synaptic strengthening. Such
STDP rules are widely reported throughout the brain [14, 58]. In the alternative scenario, when
τ+ > τ−, we found that STDP tends to weaken local regions of synapses that had strengthened
by chance, preventing islands of strong synapses from forming. It is not impossible, however,
for periodic patterns to form when τ+ > τ−, so long as we carefully choose A+ and A−, which
control the overall bias for strengthening and weakening. However, we found that the stability
of the pattern is very sensitive to small changes in A+ and A− in this case.

Influence of input correlations and synaptic competition on refinement
Models of circuit development by Hebbian plasticity require constraints on the synapses so as to
keep their strengths within biologically realistic bounds. A suitable choice of constraint, such as
subtractive normalization, provides competition between synapses so that when a subset of syn-
apses strengthen, all other synapses are suppressed [11, 59, 60]. Under this constraint, correla-
tions between nearby inputs over short temporal windows encourage a localized group of
synapses to strengthen, yielding a RF-like connectivity pattern [11]. This is because synapses
separated by larger distances are uncorrelated within short temporal windows, so are rarely
strengthened but are often weakened together. STDP rules that are biased for synaptic weaken-
ing can achieve this type of competition between uncorrelated synapses, and are therefore capa-
ble of building RF-like connectivity patterns [18]. However, this competitive process is
fundamentally different to the mechanism by which STDP builds structured connectivity pat-
terns in this paper. We recognize that a single wave can induce strong correlations between any
two input neurons that it passes, irrespective of their separation. They will be correlated with a
specific time lag, Δt, which scales with the separation, Δx, between the two inputs as Δx = vΔt. If
Δt corresponds to synaptic weakening in the STDP rule, the synapses of the two input neurons
will compete as a result of their strong correlations. Note that waves cannot produce periodic
connectivity patterns if synaptic weakening does not have a particular dependence on timing,
for example when competition is provided by subtractive normalization, as this will not yield the
bandpass filtering that we have demonstrated for experimentally observed STDP rules (Fig 2B).
This underlies why the wave speed, and the range of Δt values for which the STDP rule specifies
synaptic weakening or strengthening, determines the resulting spatial frequency of the connec-
tivity pattern, and therefore influences the type of modification experienced by a RF.
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In Fig 5, we showed how contributions to the correlation function that are not wave-related
act to degrade the periodic connectivity pattern. The strength of wave-related correlations may
be further suppressed by recurrent inputs arriving from other postsynaptic cells, which we
have excluded from our model. Output spikes that are driven by recurrent activity are likely to
be much less correlated with spikes in the input layer and will therefore contribute an approxi-
mately constant term to the correlation function, C(x,Δt), the effect of which will be to empha-
size any bias in the STDP rule towards synaptic weakening or strengthening. Moreover,
excitatory recurrent connections are well known for encouraging similarities between postsyn-
aptic RF properties, whereas inhibitory connections are known to decorrelate RFs, without
drastically changing the basic RF properties of individual postsynaptic neurons [18, 57, 61–63].

Increasing the bias for synaptic weakening in our simulations enhanced the degree to which
RFs could be refined to a smaller size (Fig 8E). A bias for weakening in STDP is frequently
observed in experiments [14, 64], but is not the only possible source of synaptic competition,
which can also be achieved by homeostatic regulation and intrinsic plasticity [65, 66]. As men-
tioned above, these additional sources of competition would not aid pattern formation if they
do not have the appropriate spike timing dependence that yields bandpass filtering as do the
STDP rules used in this study.

Previous STDPmodels with space-time inseparable inputs
Several studies have previously explored the interaction between space-time inseparable input
patterns and STDP. They demonstrated how motion stimuli can act through asymmetric
STDP rules to impart an asymmetry in the spatial profile of excitatory connection strengths.
This can be utilized to endow a network with direction selectivity similar to that found in the
visual cortex [25–28]. Through our analytical results, we have shown that this phenomenon is
one component of a richer set of dynamics with which the connectivity pattern can evolve
under space-time inseparable inputs. Specifically, synaptic strengths are modified according to
the convolution of the spatially mapped STDP rule, κ(x), with the synaptic strengths, w(x).
Because of this convolution, the imaginary component of ~kðkÞ results in spatial shifts, whereas
the real component results in the emergence of a periodic connectivity pattern. It is possible
that periodic patterning was occluded in previous modeling studies due to the setup of those
models for the specific application to the development of direction selectivity.

Patterning and refinement by retinal waves
Retinal waves have been reported in the developing retina of several species [4, 67–71], suggest-
ing that they play an important developmental role that has been conserved over the course of
evolution. In mice, for example, disrupting normal retinal wave propagation [42, 72] has a pro-
found effect on the refinement of retinal ganglion cell (RGC) afferents to, and RFs in, superior
colliculus (SC) [73, 74]. One way in which retinal waves may drive this refinement is by impos-
ing a wavelength onto the spatial structure of retinocollicular connections. To illustrate the
relationship between RF sizes in SC, retinal wave speeds and STDP time scales, we computed
the landscape of dominant spatial frequencies (S5 Fig) as a function of v and τ+, as in Fig 3, but
using a typical retinal wave burst duration of 2 s for α(t) [42, 43]. Retinal waves travel at rela-
tively slow speeds of 0.1–0.2 mm/s, such that if the STDP rule at retinocollicular synapses is
asymmetric with τ+ = 20 ms, the characteristic wavelength would be 1/k� � 0.09 mm (solid red
rectangle in S5 Fig). By interpreting a RF as half a cycle in the periodic pattern, a wavelength of
0.09 mm corresponds to a RF size in mice of 1.8°, using the distance to visual angle conversion
in Methods. This is much smaller than the reported RF sizes of ~10° [74]. In order to obtain
RFs ~10° in diameter (equivalent to a wavelength of 0.51 mm) with slow retinal waves, the
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STDP time scale would have to be τ+ = 0.15 s (dashed red rectangle in S5 Fig), almost an order
of magnitude longer than time scales commonly reported in STDP studies. The long duration
of retinal wave bursts imposes an additional constraint on the minimum STDP time scale. We
showed in Fig 4 that, when τ+ = 20 ms, periodic patterning degraded when the burst duration
exceeded 0.5 s. However, as the STDP time scale increases, so too should the limiting burst
duration (Fig 4F). Assuming that the limit imposed by the burst duration scales linearly with
τ+ suggests that a STDP time constant exceeding 0.1 s should operate at retinocollicular synap-
ses during retinal waves.

Our prediction of long STDP time scales at developing retinofugal synapses supports previ-
ous work by Butts and Rokhsar [41], who showed that retinal waves convey the most informa-
tion about the relative retinotopic positions of RGCs over time scales ranging 0.1–2 s. This was
further supported by the observation of such a rule at developing retinogeniculate synapses in
the rat [44]. Evidence for long STDP time scales was recently provided in the visual cortex of
mice that had a greater than normal expression of NMDA receptors (NMDARs) with NR2B
subunits [75]. The STDP rule in these animals was temporally asymmetric, but was sensitive to
remarkably long spike time differences greater than 0.1 s. NR2B expression is high during the
stage of development when retinal waves are important for refinement, which in mice is the
first postnatal week [52]. Thereafter, the number of NR2B containing NMDARs reduces, being
replaced by faster acting NR2A containing NMDARs [76, 77]. The change in NMDAR compo-
sition may explain why many STDP studies in mice, which are typically conducted in the sec-
ond or third postnatal week of development, reveal STDP rules with time scales not much
longer than 20 ms. We speculate that such developmental changes in NMDAR composition
may provide a gradual reduction in STDP time scales that enables greater levels of refinement,
as we demonstrated in Fig 8B-8C. The effect of this developmental progression may be comple-
mented by the observed reduction in wave speeds in mice during the same period [43]. Our
results describe a potentially important role for these phenomena in refinement, which can be
examined experimentally.

The noisy mechanism of wave generation in the developing retina adds considerable vari-
ability to the size of retinal waves [39]. In our model, it is important that the total distance trav-
elled by a wave exceeds the characteristic wavelength, 1/k�. This is the spatial analog of
requiring the wave duration to exceed the time scales of STDP in our analytical derivation. Our
calculation above therefore suggests that retinal waves should travel distances greater than 0.51
mm in order to produce RFs 10° in diameter in the mouse SC. By tracking the center of mass of
experimentally recorded retinal waves, Maccione et al. showed that a substantial majority of
retinal waves indeed exceeded this distance throughout the period of major retinocollicular
refinement [43].

Taken together, experimentally recorded retinal waves exhibit many of the properties
required for retinocollicular refinement by a periodic patterning process. However, whether
the mode of synaptic plasticity at retinocollicular synapses is suitable for this process has yet to
be determined.

Suitability of traveling waves for refinement in other brain areas
Traveling waves occur in many different parts of the brain, and each location will have particu-
lar constraints that limit the types of patterns that could form based on the interaction with
STPD rules. As discussed above, one constraint is the characteristic wavelength, 1/k�, which
sets a lower bound to the distance traveled by waves if periodic patterning is to be achieved.
We computed the characteristic wavelengths associated with waves in brain areas other than
the retina—including the cortex, cerebellum and hippocampus—and list them in Table 1,
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under the assumption of an asymmetric STDP rule like that used in many of the results above
(τ+ = 20 ms), and which is reported widely throughout the brain. The speeds of waves in these
areas are 1–2 orders of magnitude faster than retinal waves [5, 8, 9], but yield characteristic
wavelengths that are similar in scale to that required for RFs in SC because of the short STDP
time scale (first four entries in Table 1). Fast wave speeds and short STDP time scales place
these waves in a region near the bottom right hand corner of Fig 3A (solid red rectangle),
assuming a burst duration of 0.1 s. Also listed in Table 1 are the maximum distances over
which the waves in different areas may propagate. Comparing these distances with the charac-
teristic wavelengths reveals that periodic patterning in the efferents of the cerebellum, dorsal
cortex and ventral cortex would not be expected, as the maximum possible propagation dis-
tance is close to or less than the lower bound set by 1/k�. However, wave properties in the hip-
pocampus, as in the retina, do satisfy the minimum distance constraint for the type of STDP
rule assumed. More detailed analyses of waves in the hippocampus and STDP at its efferent
synapses is necessary to determine whether these phenomena could drive periodic patterning
in a manner useful for development.

Development of cortical receptive fields
RFs of simple cells in the primary visual cortex (V1) exhibit weak selectivity for orientated fea-
tures in the visual environment at the onset of vision [78–80] and become more selective with
visual experience [79, 81]. Yet when an animal is raised in an environment comprising a
restricted range of oriented contours, RF selectivity matures for those same orientations but
not others [79–84]. A key feature of orientation tuned simple cell RFs is their composition of
ON and OFF subfields, which are respectively sensitive to increments and decrements in lumi-
nosity, and are thought to reflect the visuotopic organization of ON and OFF inputs from the
lateral geniculate nucleus (LGN) [85, 86]. The orientation of these subfields is thought to confer
the orientation preference of the simple cell [85, 86]. However, it is not clear whether oriented
features in the environment instruct the development of orientation selectivity, or whether
they permit the maturation of RFs that are already selective for the same orientations. The spa-
tial frequency tuning of simple cells may help to resolve this question, as it is well predicted by
the periodic structure of ON and OFF subfields [87]. One model of simple cell RF development
[57] posits that spatial frequency tuning is determined by the structure of spatial correlations
between LGN cells. However, the necessary correlations were not observed in the developing
LGN in later experiments [88]. Other models inspired by sparse coding schemes [89] posit that
simple cell RFs result from learning the independent components of natural visual scenes [90],
a consequence of which is that RFs would exhibit tuning for velocity and spatial frequency with
an inversely proportional relationship [91]. However, despite recent insights [23, 63], it is not
yet well established how sparse coding is implemented in biological circuits.

Table 1. Summary of different wave phenomena. Wavelengths, 1/k*, were computed using the wave speeds given, a burst duration of 0.1 s, and the
same asymmetric STDP rule for the first four rows, with τ+ = 20 ms, τ

−

= 40 ms, A+ = 1.0 and A
−

= 0.51. For retinal waves in the last row, we used a burst dura-
tion of 2 s, and an asymmetric STDP rule with τ+ = 0.2 s, τ

−

= 0.4 s, A+ = 1.0 and A
−

= 0.55.

Brain area Wave speed (mm/s) 1/k* (mm) Max. propagation distance (mm)

Cerebellum [8] 3 0.8 1

Dorsal cortex [9] 17 4.8 3

Ventral cortex [9] 7 1.9 2

Hippocampus [5] 8 2.2 5

Retina [39] 0.15 0.5 3

doi:10.1371/journal.pcbi.1004422.t001
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Our results provide an alternative mechanism for simple cell RF development. We have
shown how oriented wavefronts can build orientated RFs (Fig 9A), and how the same process
can develop multiple, periodic subfields (Fig 7 and S4A Fig), akin to the ON and OFF subfields
of simple cells, thus providing a means for spatial frequency tuning (Fig 8). Moreover, our pre-
diction of an inverse relationship between the wave speed and spatial frequency of the connec-
tivity pattern provides a novel test for the role of visual experience in shaping simple cell
development, and bares striking similarity to the sparse coding schemes mentioned above.
Using stimuli that consist of high contrast luminance contours to elicit wave-like activity in the
retina and LGN may help to test our predictions, and experimental protocols using such sti-
muli with young animals are already well established (for example, see [92]).

We can use our model to predict a range of plausible STDP parameters that would build
RFs with the spatial frequency tuning of simple cells. In adult cats, spatial frequency tuning
ranges from ~0.2–2 cycles/° within eccentricities of ±15° [54, 93]. We further constrain the
model by considering wave speeds that match the velocity tuning of cat simple cells (~0.5–20°/s,
[94]). In S6 Fig, we illustrate the spatial frequencies that are obtained in selected parts of this
large STDP parameter space. Assuming an asymmetric STDP rule in the cortex [36, 95], realistic
spatial frequencies can be obtained with STDP time scales ranging ~1–100ms, and biases for
synaptic weakening in the approximate range 0.3≲ A-/A+≲ 0.7. Realistically, STDP need not
operate over such a wide range of parameters, as variability in the speeds of natural stimuli
should explain most of the variability in spatial frequency tuning.

The relationship between temporal correlations and the development of spatially structured
connectivity patterns may be extended to other visual RF properties. For example, temporal
delays between inputs with spatially offset RFs are the major components needed to build
direction selective cells [96, 97]. This kind of organization, and hence direction selectivity, can
be learned with rate-dependent Hebbian plasticity [62], utilizing diverse response latencies in
the LGN [98–100]. It is feasible that STDP should also yield spatial offsets between inputs with
different response latencies, given its Hebbian nature. Combined with the capacity for periodic
patterning, we speculate that the interaction of traveling waves with STDP could yield connec-
tivity patterns that are direction selective, as well as orientation and spatial frequency tuned.

Tolerance to background spiking noise
We found that pattern formation in our simulations was sensitive to noise: patterns began to
degrade when the ratio of the background spike rate to the wave-induced spike rate became too
high. It is therefore essential to consider what is known about background firing rates reported
in the literature. We concentrate on background noise in the developing visual system, for
which good data are available. During retinal wave activity in mice, retinal ganglion cells rarely
spike outside of a burst. However, bursts that occur outside of a wave event have approximately
the same firing rate as wave related bursts (Table 1 in [42]). Nevertheless, wave related bursts
comprise approximately 90% of all bursts in the developing retina [42], suggesting that back-
ground spiking noise would have little impact on wave-induced correlations at this stage of
visual development. Retinal waves also drive bursts in the LGN at firing rates of 10 Hz with
long intervening periods of quiescence [101]. In later stages of development, visually evoked
responses in the LGN reach firing rates of 10 Hz, whereas 1 Hz firing rates are typical of spon-
taneous activity [102]. This highly skewed distribution of firing rates is recapitulated in the
developing visual cortex [103]. Thus, it is likely that, during early developmental periods when
RF properties undergo refinement, spontaneous spikes contribute little to the overall activity in
the visual system, and that patterned retinal waves and visual stimulation are propagated
throughout the early visual system.
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Modulation of STDP by other factors
The precise dependence of STDP on spike timing can be sensitive to many factors that can
modify the shape of the STDP rule (reviewed extensively in [14] and [58]). Whatever the mech-
anisms that underly these additional interactions, they must preserve a bandpass dependency
on spike times in order for periodic patterns to form. Biophysical models of cellular activity
that may underlie STDP have been proposed to account for some of these additional interac-
tions [104, 105]. These models rely on the summed pre- and postsynaptic contributions to the
intracellular calcium concentration, the amplitude of which at any given time determines
whether synapses are strengthened or weakened. As such, the shape of the STDP rule changes
for different spike trains and thus would not adhere to the spike-timing dependence that is nec-
essary for bandpass filtering and pattern formation. If pattern formation as outlined in this
paper does influence circuit development, then we predict that STDP must maintain a band-
pass profile at synapses that mediate wave-like activity patterns. To test this, a typical STDP
experimental protocol could be performed, in which paired spike bursts are stimulated in con-
nected pre- and postsynaptic cells over a range of temporal offsets, and the resulting change in
synaptic strength measured. A key requirement of such an experiment would be to extend the
temporal offsets well beyond the burst durations, in contrast to previous studies [44, 106, 107],
so as to detect the full temporal profile of the plasticity rule and ensure that synaptic changes
decay to zero with larger offsets. If the bandpass property of synaptic plasticity is present at
these synapses, then it should be reflected in the resulting STDP curve. Retinocollicular or geni-
culocortical synapses would be ideal substrates for testing this.

Future directions
The robustness of our results to various types of noise suggests that pattern formation should
also be achieved in more complex models that incorporate details specific to the circuit. The
developing visual system provides a promising arena in which to test our theory of pattern for-
mation for the reasons discussed above, and we outline here future work that will facilitate this
investigation.

The dominant spatial frequency that characterizes a periodic pattern is strongly influenced
by the stimulus response properties of the input neurons, as demonstrated by the effect of the
burst duration in Fig 4. Incorporating accurate space- and time-dependent response properties
of neurons in the visual pathway, as determined by their spatiotemporal RFs [55, 108–111], is
therefore essential to making accurate predictions about pattern formation in downstream
visual targets such as the SC and V1. For theoretical analysis, these features can be easily incor-
porated by reformulating α(t) as α(x,t) to take account presynaptic RF structures.

Application of our model to simple cell RF development will require modeling both ON
and OFF response types in the input layer, which must become spatially segregated as a result
of learning. Previous proposals for the mechanism of this segregation typically rely on correla-
tions within each ON or OFF population exceeding those between the two populations [20, 57,
88]. The extent to which STDP will be sensitive to ON and OFF correlations, in addition to the
strong spatiotemporal correlations induced by traveling waves, requires further investigation.

The linearity of our current model, though useful for theoretical analysis, prevents RFs from
developing an orientation preference when waves travel in multiple directions (Fig 9B), as is
the case for retinal waves and natural visual environments. Any bias towards one orientation is
eventually averaged away by the influence of waves with other orientations. The addition of a
nonlinearity, either in the sensitivity of STDP to the output firing rate, or in the transfer func-
tion for the output firing rate itself, should help to break the symmetry in wave directions and
bias the RF towards any asymmetric shape that is built into it by chance. In this way, a
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population of output neurons might be able to acquire different orientation preferences when
exposed to the same input pattern. In a similar fashion, a spectrum of spatial frequency prefer-
ences could be acquired throughout the population, rather than the uniform preference for a
single spatial frequency, as we observed in simulations in which the wave speed was varied.

It is worth noting that traveling waves are just one incarnation of activity patterns that
exhibit the space-time inseparable correlations necessary for periodic patterning. Our results
may be generalized to any reliable temporal sequence of activity, some examples of which
include navigation codes in the hippocampus [112], pre-motor coding in songbirds [113], and
spontaneous ‘synfire chains’ in the cortex [114].

Methods

Overview
Wemodel a reduced feedforward network consisting of a presynaptic layer of input neurons
and a single postsynaptic output neuron. Traveling waves of activity traverse the input layer
and recruit input neurons, which discharge bursts of spikes and provide excitatory synaptic
inputs to the output neuron. Each feedforward synapse is modified according to the time delay
between spikes from its corresponding input neuron and spikes from the output neuron. A
schematic of the network is provided in Fig 1A.

Spiking neuron simulation
Our model is simulated using a time step of 1 ms. During each step, a number of processes are
simulated. First, input neurons generate spikes from one of two wave models described below.
Each input spike elicits in the output neuron an excitatory postsynaptic potential (EPSP),
which is weighted by the synaptic strength. EPSPs modulate the output membrane potential,
which determines the generation of output spikes according to either a linear or nonlinear pro-
cess, described below. Once all spikes have been generated for a given time step, synaptic
strengths are modified by a STDP rule.

Traveling waves in the input layer.
1D and 2D plane waves
The input layer comprised point neurons, arranged 20 μm apart in a 1D chain or 2D square

lattice. Plane waves were always initiated at one edge of the input layer and travelled the entire
length to the opposite edge. For most simulations using plane waves, a blank period lasting at
least 5 s was inserted between the end of one wave and the beginning of the next so as to allow
the postsynaptic activation to decay to zero before the next wave traversed the inputs. The only
simulations in which waves were not interleaved with a blank period were those in which the
presence of multiple waves was tested.

In most 1D simulations, the wave direction was alternated between each wave. In simula-
tions with multiple waves, the wave direction was alternated after every 100 waves. In the 2D
plane wave simulations, the wave direction was selected randomly out of N possible directions
that were equally spaced around the compass, where N was either 2, 4, 6 or 16.

When an input neuron is recruited by the wavefront, it undergoes a burst of spikes. The
input firing rate during a burst, α(t), is modeled as a boxcar function: α(t) = Rin[H(t)−H(t−d)],
whereH(t) is the Heaviside step function, Rin is the input firing rate, and d is the burst dura-
tion. During an input burst, spikes were generated in time steps of 1 ms using a Bernoulli pro-
cess. Unless otherwise stated, Rin = 50 Hz.

In some simulations, input neurons were given background firing rates, Rbg
in , which are

stated in the relevant results sections. In these simulations, the background rate was not added
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to the firing rate of inputs undergoing a wave-related burst. Otherwise, when an input neuron
was not being recruited by a wave, it was silent.

In all cases, we repeated trials of plane wave simulations with the same model parameters 16
times, using different seeds for the random number generators, such that each trial would pro-
duce different spike trains. In simulations where a parameter that was normally fixed was
instead a random variable, such as the wave speed, or wave direction in the case of 2D plane
waves, the random number generator for that random variable was reseeded for repeated trials.
Otherwise, the random number generator for spike generation was reseeded. In all cases, origi-
nal spike sequences were always generated for each trial.

Complex wave patterns
To generate more complex wave patterns in 2D, we implemented a simulation based on a

previously published model of spontaneous depolarizations that propagate across the develop-
ing mammalian retina [39]. In short, cells in the model that undergo spontaneous depolariza-
tions provide excitatory input to nearby cells, triggering cascades of excitatory synaptic
transmission that propagate throughout the network, while strong refractory currents quickly
return active cells to the rest state. As such, wavefronts of activity propagate along winding tra-
jectories between refractory domains of the network.

The model comprises a layer of starburst amacrine cells (SACs) and a layer of retinal gan-
glion cells (RGCs). Both layers are arranged on 64×64 square lattices with a cell spacing of 34
μm. SACs receive excitatory synaptic input of equal strength from other SACs that are within a
radial distance of 120 μm. RGCs also receive excitatory input from SACs over the same dis-
tance but do not provide synaptic input to other RGCs or SACs. None of the synapses within
the model retina undergo synaptic plasticity.

Every cell in the retina model is characterized by a dynamic excitation variable, Xi, which is
analogous to its membrane potential, for i = 1. . .N where N is the number of SACs or RGCs.
The simulation evolves in time steps of 100 ms and Xi is updated for cells in the SAC (S) and
RGC (R) layers according to

d
dt

XS
i ¼ nS

i �
XS

i

tR;S
; ð15Þ

d
dt

XR
i ¼ nS

i �
XR

i

tR;S
; ð16Þ

where nS
i is the number of active SACs at time, t, that are connected to cell i (from a maximum

of 38 connected SACs). Thus, active SACs increase the excitation of connected SACs and
RGCs. In the absence of input from any SACs, the excitation variables for both SACs and
RGCs decay exponentially with a decay constant of τR,S = 0.1 s. A SAC becomes active when XS

i

exceeds a threshold, θS = 6. Similarly, RGCs become active when XR
i exceeds a threshold, θR =

10. Synaptic transmission from a SAC persists for 1 s, after which the SAC becomes refractory.
Every time a SAC becomes refractory, the refractory period is chosen from a normal distribu-
tion with mean τref = 40 s and standard deviation σref = 20 s. After the refractory period, XS

i is
set to zero. To model the spontaneous initiation of waves, SAC activation variables, XS

i , were
forced to exceed θS at each time step with a probability of 0.0035.

There are several possible ways to manipulate the wave speed in the wave model by tuning
different parameters [39, 115]. However, this approach has the undesirable effect of changing
the overall spatiotemporal structure of the waves, which complicates the interpretation of the
effect wave speed has on receptive field development. In order to manipulate the wave speed
without altering the wave patterns, we simulated long periods of wave activity and rescaled
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these activity patterns in time by a factor, Ft. This involved recording the set of times, Ti, at
which the RGC activation, XR

i , exceeded θR. We then rescaled Ti by Ft to compress the wave
patterns in time, and used the rescaled Ti as burst onset times for the ith RGC. RGC spike bursts
0.1 s in duration were then generated using a Bernoulli process with a firing rate of 50 Hz and
temporal precision of 1 ms. The RGCs in this model retina act as the input neurons in the final
set of 2D simulations in this paper. To produce slow, medium and fast waves, we used Ft =
0.21, 0.11 and 0.07, respectively. Thus, medium and fast waves were respectively two and three
times faster than the slow waves.

We repeated trials of complex wave simulations with the same model parameters three
times, using different seeds for the τref random number generator, such that each trial would
produce a different sequence of wave patterns.

Excitatory postsynaptic potentials. Each input spike elicits an EPSP in the output neuron.
If at time, tj,n, input j fires its n

th spike, then at some later time t, the resulting EPSP is described
by a difference of exponentials:

�j;nðtÞ ¼
1

td � tr
exp �ðt � tj;nÞ

td

� �
� exp �ðt � tj;nÞ

tr

� �� �
; ð17Þ

where τd = 5 ms and τr = 1 ms are the EPSP decay and rise times, respectively, based on neuro-
transmission through AMPA receptors, and �j,n(t) = 0 for t< tj,n.

Linear output neuron. Spikes in the linear output neuron are generated by a Bernoulli
process: at time, t, the output fires a single spike with a probability that is determined by its
time varying firing rate, λ(t), which is proportional to the summed EPSPs:

lðtÞ ¼ Rout

X
j

X
n

wjðtÞ�j;nðtÞ: ð18Þ

Here, Rout is a constant of proportionality, chosen to constrain the output neuron to realistic
firing rates in the range 10–100 Hz, and wj is the strength of the synapse from input neuron j at
the time of its nth spike.

Nonlinear output neuron. Wemodel a nonlinear output neuron with leaky integrate and

fire (LIF) dynamics. The output neuron fires a spike at time t̂ when its membrane potential,
u(t), is pushed above a threshold, ϑ, by incoming EPSPs, �(t). EPSPs follow Eq 17, which mod-
els the leaky response of u(t) to an inward synaptic current, I(t), that has an instantaneous rise
and exponential decay: I(t) =H(t)exp(−t/τr)/τr, withH(t) the Heaviside step function. After an

output spike, an instantaneous outward current,�Wdðt � t̂Þ, returns u(t) to the resting poten-
tial, urest = 0. The full response of u(t) to incoming EPSPs and the outward current follows the
equation

uðtÞ ¼ xðt � t̂Þ þ
X

j

wj

X
n

�j;nðt � tj;nÞ; ð19Þ

where ξ(t) is a refractory kernel that models the leaky response of u(t) to the outward current.
The kernel ξ(t) is therefore a decaying exponential that imposes a relative refractory period ρrel
= τd = 5 ms. In addition, we incorporate into ξ(t) an absolute refractory period, ρabs = 2 ms,
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during which it is impossible for the output to spike. The full refractory kernel is therefore:

xðtÞ ¼

0 if t < 0

�1 if t � rabs

�W exp � t
rrel

� �
if t > rabs:

8>>><
>>>:

ð20Þ

Note that ξ(t) depends only on the time since the last output spike, whereas EPSPs summate
over all previous input spikes.

Synaptic plasticity. After the spike generating process, synaptic strengths are updated
using a spike-timing dependent plasticity (STDP) rule. Two rules are used in this paper, one
asymmetric [13], Kasym, and the other symmetric [38] in time, Ksym (Fig 1C):

KasymðDtÞ ¼
Aþ exp ðDt=tþÞ if Dt < 0

�A� exp ð�Dt=t�Þ if Dt > 0

0 if Dt ¼ 0;

8><
>: ð21Þ

KsymðDtÞ ¼ Aþ exp � 1

2

Dt
tþ

� �2
 !

� A� exp � 1

2

Dt
t�

� �2
 !" #

: ð22Þ

Here, Δt = tin−tout is the time difference between spikes belonging to input and output neu-
rons, respectively. The size of the temporal windows for synaptic strengthening and weakening
are scaled by τ+ and τ−, respectively, and A+ and A− scale the relative degree of strengthening
and weakening, respectively. The size of synaptic modifications, or learning, is further scaled
by η, which is set to be a small number. Every time an input (output) neuron spikes, all output
(input) spikes in the previous 5τ− seconds are used to update a synapse. Unless otherwise
stated, all asymmetric STDP rules are constructed such that τ− = 2τ+, and all symmetric STDP
rules have τ− = 1.6τ+. In the results, we therefore almost always refer to the STDP time scale
using just τ+. Furthermore, unless otherwise stated, A+ = 1.0 and A− = 0.51 for all asymmetric
rules, whereas A+ = 3.2 and A− = 2.1 for all symmetric rules. In the simulations with complex
wave patterns, an asymmetric rule is used with A+ = 1.0 and A− = 0.55.

To prevent synaptic strengths from increasing ad infinitum, or from becoming negative and
thus inhibitory, both of which are biologically implausible scenarios, we imposed hard bounds
at synaptic strengths of 0 and 1.

Initial synaptic strengths. At the beginning of every simulation, the synaptic strengths
were initialized with one of two configurations: 1) all synapses were given a strength of 0.5; 2)
the central synapses, spanning a distance of RF0, were given the maximum strength of 1.0, and
all other synapses given strengths of zero, to simulate a coarse RF structure. When the synaptic
strengths were initialized with a RF, an arbor function, A(x), was applied to maintain the RF
structure and prevent a periodic connectivity pattern from emerging across all synapses. The
arbor function was implemented by multiplying A(x) with @T w(x), where

AðxÞ ¼ 1; if jx � x0j � a0

¼ 0; if jx � x0j > a0;
ð23Þ

where a0 is the radius of the arbor and x0 is the center of the arbor.
Local input correlations. In some simulations, we induced additional correlations

between neighboring inputs by generating spikes in two stages for each time step. In the first
stage, spikes were generated by a Bernoulli process as usual but with a modified input firing
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rate, R̂in ¼ Rin= 1þ 2cð Þ, where c is the correlation strength and takes values between 0 and 1.
In the second stage, correlated spikes were generated with a probability, c, in all cells neighbor-
ing inputs that spiked in the first stage. In simulations with background firing rates, the back-

ground rate was likewise modified so that R̂bg
in ¼ Rbg

in = 1þ 2cð Þ. Dividing by the factor 1+2c in
the first stage kept the firing rates constant after the second stage, allowing independent manip-
ulation of the correlation strength.

Wave speed and inter-wave interval distributions. In simulations with variable wave
speeds or IWIs, a new speed or IWI was drawn from a lognormal distribution for each wave.
For the ith wave, the lognormal random variable, y, was:

yi ¼ emþszi ; ð24Þ
where

mðm; sÞ ¼ ln
mffiffiffiffiffiffiffiffiffiffiffiffi
1þ s

m2

q
0
B@

1
CA ð25Þ

and

sðm; sÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln 1þ s

m2

� �s
ð26Þ

are respectively the mean and standard deviation (SD) of ln(y), μ and σ are respectively the mean
and SD of y, and z is a normally distributed random variable with zero mean and unit variance.

For simulations with variable speeds, μv = 4 mm/s was fixed and σv was varied between sim-
ulations. We imposed a minimum speed of 0.05 mm/s, such that the ith wave speed was:

vi ¼ max ð0:05; yiÞ: ð27Þ

For simulations with variable IWIs, the IWI distribution was modified slightly to ensure
that IWIs were no shorter than the burst duration, d. That is, successive waves never over-
lapped. Each new IWI was therefore:

IWIi ¼ d þ yi; ð28Þ
where y was computed usingm(μ−d,σ) and s(μ−d,σ). For these simulations, σ = 1 s was fixed,
and μ was varied between simulations. Because a downtime of at least 5 s is needed for waves to
clear the input layer before switching direction, we switched the wave direction in these simula-
tions after every 100 waves. That is, ~ 99% of the waves sampled from the IWI distribution.

Analysis of complex wave patterns
To measure the speed and size of simulated complex wave patterns, we analyzed a 2000 s seg-
ment of RGC spiking activity from a simulation of the slow waves only, as these waves were
less compressed in time and therefore lasted longer, enabling a more accurate measure of the
wave properties. Spike times were first converted into a firing rate movie,M(x,y,t), with dimen-
sions 64 × 64 × 20000, where the (i,j,k)th bin inM contained the number of spikes fired by a
single RGC, at location (xi,yj), during a 100 ms period, tk.

During the retinal wave simulation, multiple waves were occasionally present at the same
time. Concurrent waves would occasionally collide into or split from each other, but they were
mostly well separated in space. We sought to isolate concurrent waves to accurately measure
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their individual properties, such as speed and size, using a center of mass (COM) tracking algo-
rithm, of which a schematic is drawn in S7 Fig. First, we computed a smoothed firing rate

movie,Ms(x,y,t) = (M�G)(x,y,t), where Gðx; y; tÞ ¼ e
x2

2s2x
þ y2

2s2y
þ t2

2s2
t is a Gaussian filter with a spatial

standard deviation (SD), σx = σy = 34 μm, and temporal SD, σt = 100 ms. After smoothing,
pixel values below 10 were set to zero. Thus, a single time bin inMs might have several domains
of non-zero pixels. To track the COM of different waves, a boundary was drawn around each
domain of activity in time bin k and the COM within the boundary calculated, where mass
refers to the firing rates within the same boundary inM(x,y,t = k). Two domains, colored blue
and orange, and their COMs (purple and green, respectively) are shown in S7 Fig, and the fir-
ing rates given in greyscale. Each domain was assigned a wave identification number (ID) but,
if the COMs at two domains were less than 680 μm apart, they were given the same ID. If the
COM of one domain was within a 680 μm radius from the COM of another domain in the pre-
vious time bin (purple lines extending from the COM in S7 Fig), it was given the same ID. In
this way, wave COMs were tracked according to their ID. The COM trajectory of each wave
was zero-padded and smoothed in time by a Gaussian filter with a SD of 0.1 s, and the first two
and last two COM locations discarded. Thus, wave speeds and sizes were only computed for
waves that lasted for more than 0.5 s. We used the path length of a COM trajectory as the dis-
tance travelled by a wave, and computed the wave speed from this by dividing it by the time
taken to travel that trajectory.

RGCs near the edges of the model retina received fewer lateral inputs from SACs and were
less active than those in the centre. Within the central 44 × 44 RGCs, the total level of spiking
activity was comparably uniform. Accordingly, waves with a time-averaged centre of mass
(COM) that resided in the outer 10 neurons were discarded from any further analysis. Occa-
sionally, small segments of waves were isolated from larger waves. These were discarded from
the analysis by removing waves that covered fewer than 1000 space-time bins.

The COM tracking algorithm performed well in separating waves that eventually merged
with, or split from, other waves, and allowed us to perform analysis on almost every wave that
had a unique ID by removing concurrent waves from that analysis. A total of 797 waves were
isolated in the 2000 s segment, of which 779 lasted long enough to compute the wave speed
and distance travelled.

All analysis was performed with Matlab R2012a using built-in and custom built functions.

Computing numerical solutions
Concordance of the spiking model with analytical results is verified by numerically integrating
Eq 6 using the forward Euler method. Synaptic strengths were initialized in the same way as in
the spiking simulation. However, as there was no spiking noise when solving Eq 6 numerically,
low amplitude Gaussian white noise was added to the initial synaptic strengths. To further
align numerical integration with the simulations, nonlinearities that were present in the simu-
lations were also incorporated in the numerical integration by: 1) restricting synaptic strengths
to the range [0, 1]; 2) alternating the direction of the wave by replacing the wave speed, v, with
(−1)n v for the nth iteration; 3) applying the arbor function in Eq 23 when the initial condition
of w(x) supported a RF structure. To prevent numerical solutions from becoming chaotic, the
learning rate, η, was varied depending on the values of τ+ and v.

Robustness measures
To measure the robustness,Cw, with which a periodic structure emerged in a connectivity pat-
tern, we computed the discrete power spectrum, P(ki), of the connectivity pattern, with the DC
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component removed, and determined the ratio of the power at the dominant spatial frequency
to the total power:

Cw ¼ Pðk�i ÞXkN
i¼�kN

PðkiÞ
; ð29Þ

where kN is the Nyquist limit. As a predictor of robustness in the connectivity patterns, a theo-
retical robustness measure,Cκ, was computed for the power spectrum of the real component
of ~kðkÞ: j Re½~kðkÞ�j2, which was obtained by first numerically computing κ(x) with a spatial
resolution of 0.6 μm. The theoretical robustness was therefore:

Ck ¼
jRe½~kðk�i Þ�j2XkN

i¼�kN

jRe½~kðkiÞ�j2
: ð30Þ

Converting between visual angle and retinal distance
To set up simulations of RF refinement, we use data from experimental studies regarding
receptive fields, or traveling wave speeds, for example, which require conversion between
degrees of visual angle and units of distance along the retinal surface. The precise conversion
relationship between visual angle and retinal distance depends on the geometry of the eye,
which differs for different animals. We therefore use a general conversion factor to provide a
useful estimate. We assume that the retina covers two thirds of the circumference of a horizon-
tal section through the center of the eye [116], and that this maps to 180° of visual angle. This
means that distance in millimeters, R, corresponds to visual angle, A, according to R = πrA/
135, where r is the radius of the eyeball. We used the following values for the radii of eyes in dif-
ferent animals at different stages of development: mouse, 1–7 days old: r� 1.1 mm (Table 1 in
[117]); mouse, adult: r� 1.7 mm (Table 1 in [117]); ferret, eye opening: r� 2.8 mm (Fig. 8 in
[118]); cat, 4 weeks old: r� 5 mm (Fig. 3 in [119]).

Supporting Information
S1 Movie. A 90 s extract of simulated slow waves demonstrate the performance of the COM
tracking algorithm. Black and colored pixels correspond to RGCs that fired at least one spike
in a 100 ms time bin. Each isolated wave is assigned a new color. Activity that was not assigned
to any wave is in black.
(AVI)

S1 Text. Full derivation of Eq 5 in the main text.
(PDF)

S1 Fig. Examples of κ~ðkÞ for three burst durations, d = 0.01 s (cyan), 0.1 s (orange) and 1.0 s
(black), where α(t) has been modeled using a smooth function: aðtÞ ¼ t

d
e�t=d. All other

parameters are the same as for Fig 4D. The power is distributed across a broad range of high fre-
quencies for a 0.01 s burst, and within a small band of the lowest frequencies for a 1.0 s burst,
yielding the strong negative lobe in the black curve. The negative lobe in the black curve extends
beyond the horizontal axis and has been cut for clarity. However, for 0.1 s bursts, the power is
concentrated in between these two extremes, around the dominant spatial frequency, k�.
(TIFF)
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S2 Fig. Predicted spatial frequencies as a function of the IWI for regular waves. Black cir-
cles: predicted spatial frequencies. Horizontal dashed grey line: predicted spatial frequency for
a single wave in isolation. Vertical dashed grey line: critical IWI, IWIcrit = 1/vk�. Insets: exam-
ples of Re ~kðkÞ½ � for different IWIs, including IWIs of 0.15 s (top left) and 0.2 s (second from
top left). The dominant spatial frequency for regular waves varies around ~ 0.91 cycles/mm,
which is the dominant frequency for an isolated wave, as a result of different peaks in ~a IIIðvkÞ
being picked out by ~KvðkÞ. When the IWI falls below IWIcrit, the dominant frequency increases
monotonically with decreasing IWI.
(TIFF)

S3 Fig. Emergence of the periodic connectivity pattern from an initial RF when the network
has no arbor.
(TIFF)

S4 Fig. The structure of 2D RFs reflects the axes along which waves travel in the simula-
tions. Top row: example RFs using wave speeds of 1 mm/s and τ+ = 20 ms. An arbor of 0.66
mm was used. Bottom row: 2D power spectra of the RFs with DC component removed, aver-
aged over four repeated trials of the simulation, and normalized to the peak power. The orange
circle denotes the predicted dominant spatial frequency for waves traveling in all directions. A.
Waves traveling along the horizontal axis yield RFs that exhibit vertically aligned subfields and
that are indicative of simple cell RFs in primary visual cortex. B. Waves travel along the hori-
zontal and vertical axes. C. Waves travel along three equally spaced axes.
(TIFF)

S5 Fig. Predicted spatial frequencies as a function of the wave speed and STDP time scale
for burst durations of 2 s. Solid black contours denote spatial frequencies equal to 10 raised to
integer exponents. Spatial frequencies were obtained by locating the maximum in ~kðkÞ as a
function of v and τ+, using an asymmetric STDP rule and a burst duration of 2 s for α(t). Sharp
transitions in spatial frequency along the τ+ axis are due to κ(x) having several peaks of near
equal amplitude (c.f. black curve in Fig 4D), such that small changes in τ+ can change which
peak is the global maximum. Solid red rectangle: given a typical STDP rule with τ+ = 20 ms, the
connectivity pattern associated with retinal wave speeds would have a dominant spatial fre-
quency of ~ 11 cycles/mm, or a wavelength of 0.9 mm. Dashed red rectangle: RFs in the SC
require a characteristic wavelength of ~ 0.51 mm, which corresponds to a spatial frequency
of ~ 2 cycles/mm. Given the speed of retinal waves, the required STDP time scale is predicted
to be 0.1–0.2 s.
(TIFF)

S6 Fig. Spatial frequency and velocity tuning of cat simple cells dictate a plausible range of
STDP parameters at geniculocortical synapses. Using a burst duration of 100 ms, which
matches the impulse response duration of immature LGN cells in the kitten [111], we com-
puted a spatial frequency map as a function of the STDP decay times, τ+ and τ-, for four condi-
tions: the STDP amplitudes were either A−/A+ = 0.3 (top row) or A+/A− = 0.7 (bottom row),
and the wave speed was either 3°/s (left column) or 10°/s (right column) [94]. We further
restricted our analysis to STDP rules that had a reasonable bias for either weakening or
strengthening by ignoring any rule for which the DC power exceeded that at the dominant spa-

tial frequency, i.e. cases when j~kð0Þj2 > j~kðk�Þj2. We also restrict the spatial frequency maps to
frequencies that lie in the range observed in adult cats: 0.2–2 cycles/° [54, 93].
(TIFF)
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S7 Fig. Schematic for COM tracking algorithm. The two images depict activity that was gen-
erated with the complex wave model at time bins k (left) and k + 1 (right). The solid blue areas
mark the domains inMs(x, y, t) that were assigned to one isolated wave, and the solid orange
areas mark domains that were assigned to another isolated wave. Greyscale pixels illustrate the
firing rates of RGCs inM(x, y, t) within each domain. Solid purple and green dots denote the
COM for the first and second wave, respectively, in the current time bin. To illustrate how the
COMs moved between time bins, the open purple and green dots (right) denote the COM of
each wave in the previous time bin (left). Domains with COMs that are separated by less than
680 μm (purple circle around the blue wave), in the same time bin or in adjacent time bins, are
assigned to the same wave.
(TIFF)
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