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Background
Construction of undirected biological networks from continuous cross-sectional data 
for multiple features (nodes) is dominated by two approaches for determining edge exist-
ence and/or edge weights. The first, correlation networks, is based on thresholded pair-
wise Pearson correlations. Many recent methods, on the other hand, have been based on 
Gaussian graphical modeling (GGM), which prioritize estimation of conditional pairwise 
dependencies among nodes in the network. While this latter class of methods is widely 
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used, challenges remain on how specific paths through the resultant network contribute 
to the overall marginal or ‘network-level’ correlations. For biological applications, under-
standing these relationships is particularly relevant for parsing structural information 
contained in complex subnetworks. In this paper, we propose a method for interpreting 
GGMs at the level of individual network paths based on the relative importance of such 
paths in determining the Pearson correlation between their terminal nodes. The method 
is based on a representation of the marginal correlation between two nodes in terms of 
GGM topology that is developed in the “Methods” section. We will begin by giving some 
background on both correlation networks and GGMs to motivate this development.

Correlation networks are typically constructed by first computing the sample Pearson 
correlation between all pairs of nodes in a dataset, and then drawing an edge between 
those nodes whose correlation exceeds some threshold [1–7]. This method is easy both 
to understand and to implement, but it has a major drawback that is best illustrated with 
an example. Consider three biological compounds A, B, and C, where A upregulates B 
and B upregulates C. Figure 1a depicts the direct relationships among A, B, and C, but a 
correlation network might look different. Since A and B are positively correlated, there 
would be an edge between A and B, and likewise between B and C. However, an edge 
between A and C may also be observed, as depicted in Fig. 1b–for although A and C do 
not affect each other directly, they are nevertheless positively correlated through their 
relationship with B.

Edges like the one between A and C in Fig. 1b that don’t map to a direct biological 
dependency are a potential drawback to using sample Pearson correlations for network 
construction. As the example illustrates, the root of the problem is that the correlation 
between two nodes captures the net action of a complex network. In this sense, the Pear-
son correlation for a pair of nodes can be viewed as a network level statistic [6, 8]. To 
avoid this issue, many researchers construct networks based instead on the partial cor-
relation between two nodes: the correlation of the residuals for each node in the pair of 
interest after linear regression of the values of each node on the values of all other nodes, 
or, equivalently, the correlation of two nodes conditional on all other nodes [2, 8–13]. 
Such networks are known as Gaussian graphical models (GGMs). Because edges in these 

Fig. 1 a Network of direct interactions/graphical model. b Possible correlation network. c 10 node network 
used in simulation study



Page 3 of 23Gill et al. BMC Bioinformatics           (2022) 23:12  

networks represent independent relationships conditional on all other network features, 
they are often posited to represent underlying biological mechanisms [8]. In the example 
depicted in Fig. 1, because C does not depend on A when B is held constant, the partial 
correlation between A and C would be zero, and there is no edge between them.

This paper addresses two fundamental challenges in the use of correlation networks 
and GGMs for the analysis of biological data. The first challenge is the absence of a char-
acterization of the relationship between these two methods that is both precise and bio-
logically meaningful. It is well-established that correlation and partial correlation are 
related by matrix inversion [14]. If P = {πij} is a partial correlation matrix, where πij 
denotes the partial correlation between nodes i and j, then the correlation matrix C is 
given by

where the (i, j) entry of A is given by

and D is a diagonal matrix with dii equal to the square root of the (i,  i) entry of A−1 . 
(Note that A is the normalized precision matrix - we have presented it in this way to 
simplify computations later). Specifically, the correlation matrix can be obtained by 
inverting the partial correlation matrix with signs of the off-diagonal entries flipped, and 
normalizing by dividing row i and column j by the square roots of the ith and jth diago-
nal elements (i.e. the same normalization used to pass from covariance to correlation).

The relationship between P and C is fully mathematically characterized by (1), but the 
formula provides little insight for interpreting relationships among individual edges and 
nodes. In this paper, we demonstrate the ability to express correlation in terms of prod-
ucts of partial correlations that correspond to network topology.

The second challenge this paper addresses is the difficulty of interpreting the results 
of a GGM analysis. A description of overall network topology (e.g.  “scale-free”) is fre-
quently the stopping point, perhaps with some commentary on whether pairs of nodes 
of interest are connected or not. Depending on the scientific context, this may not be 
satisfying, especially if there is interest in parsing the structural information in complex 
subnetworks. With the goal of finer scale, i.e. path-level, interpretation in mind we lever-
age our characterization of the relationship between GGMs and correlation networks to 
propose the pair path subscore (PPS), a method of scoring individual network paths in a 
GGM based on their relative importance in determining the overall network-level cor-
relation between their terminal nodes.

The more interpretable relationship between correlation and partial correlation, as well 
as PPS, is developed in “Methods” section. The PPS methodology is demonstrated on both 
simulated data and metabolomics data from the Hyperglycemia and Adverse Pregnancy 
Outcome (HAPO) Study [15] in “Results” section. Many of the HAPO study metabolites 
have well-documented biological relationships, and these were used to validate the PPS. 
The hypothesis-generation potential of PPS is then demonstrated by comparing by compar-
ing networks obtained at different time points during an oral glucose tolerance test as part 

(1)C = D
−1

A
−1

D
−1,

(2)aij =
{

−πij i �= j
1 i = j

,
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of the HAPO study, as well as between mothers and newborn babies. Finally, “Discussion 
and conclusions” section provides a summary and discussion.

Methods
To motivate the general relationship between correlation and partial correlation, consider a 
simple three node GGM with partial correlation matrix P , such that,

Application of equation (1) results in correlation matrix C defined by

Consider the (1, 2) entry of this matrix,

The numerator has a nice interpretation in terms of the network topology: it is a linear 
combination of the products of the partial correlations along every path in the network 
connecting nodes 1 and 2. A “path” is an ordered (but not directed) list of nodes, such 
that each node in the list is connected by an edge to the previous node in the list, and no 
edge appears more than once (i.e. there are no loops). The length of a path p , denoted |p| , 
is the number of edges in the path. In particular, a single edge is a path of length 1. In the 
formula above, the first term, π12 , is the product of partials along the length 1 path con-
sisting of the edge between nodes 1 and 2. The second term, π13π32 , is the product of the 
two partials along the path of length 2 from node 1 through node 3 to node 2. The same 
interpretation holds for the other entries of C (see Fig. 2).

A similar pattern holds for networks of arbitrary size. Suppose the partial correlation 
matrix of an n-node GGM is

Using the notation (2) from the introduction, let

(3)P =





1 π12 π13

π12 1 π23

π13 π23 1
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Let Pij denote the set of all possible paths between nodes i and j in the network. For 
p ∈ Pij , let τp ∈ R denote the product of entries of the partial correlation matrix P along 
the path p , that is,

The notation (k , l) ∈ p means that nodes k and l appear sequentially in path p . Let Ap∗ 
denote the submatrix of A with the nodes appearing in path p removed. In particular, 
Ai∗ is the submatrix of A with only row and column i removed. Note that because Ap∗ 
is a principal submatrix of the positive definite matrix A , it is also positive definite, and 
hence full rank. Let | · | denote the determinant. Then

A detailed derivation is provided in the appendix.
We emphasize that the novelty here is not in the mathematics itself, which is little 

more than matrix inversion, but in the algebraic representation of that matrix inversion 
in terms of the network topology. When expressed this way, the correlation between 
two nodes has the same intuitive representation seen in the three-node case as a sum 
of terms each corresponding to a (suitably weighted) product of partial correlations 
along a particular network path connecting those nodes. In other words, it is a signed 
and weighted linear combination of products of partial correlations along all paths in the 
network that connect the two nodes. From a biological point of view, this formulation 
gives clarity on how correlation measures the combined action of the entire network. 
It is similar in spirit to Wright’s method of path coefficients [16], which uses directed 
acyclic graphs to determine the contributions of a set of independent variables to the 

(7)A =













1 − π12 − π13 · · · − π1n

−π12 1 − π23 · · · − π2n

−π13 − π23 1 · · · − π3n

...
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−π1n − π2n − π3n · · · 1













.

(8)τp = �(k ,l)∈pπkl .

(9)Cor(i, j) =
∑

p∈Pij

τp
|Ap∗ |

√

|Ai∗ ||Aj∗ |
.

Fig. 2 The three panels show the possible pairings of nodes in the simple case of a three node network, with 
πij denoting the partial correlation between nodes i and j. In each case, the marginal correlation between 
the nodes is proportional to the sum of the products of partial correlations along the two network paths 
connecting them
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variance of a dependent variable. This is done via products of regression coefficients 
along paths in the graph. However, the setting here is an undirected GGM rather than a 
directed, possibly causal graph, and we are interested in a symmetric decomposition of 
the correlation between two variables rather than regression.

The pair‑path subscore

We propose using an algebraic score based on (9) relating correlation and partial cor-
relation to probe network structure at the level of individual paths. For a fixed pair of 
nodes i and j , and a path p ∈ Pij , let

Then (9) can be written as

where Cor(i, j) ∈ [−1, 1] . For any path p ∈ Pij (the set of all paths with i and j as termi-
nal nodes), we associate a pair-path subscore (PPS) given by

PPS measures the relative contribution of path p to the correlation between nodes i and 
j . It has the properties that 0 ≤ sp ≤ 1 and 

∑

p∈Pij
sp = 1 . A path with PPS near 1 plays a 

large role in determining the correlation between its terminal nodes, while a path with 
PPS near 0 plays a small role. By scoring in this way, we can identify which paths among 
many in a complicated network play the largest role in determining network level corre-
lation between a given pair of nodes (Fig. 3).

PPS and other GGM interpretation techniques

The PPS provides a way to understand which paths between a fixed pair of nodes in a GGM 
are the most important. In this sense, it is most similar to a technique like weighted shortest 
path, which minimizes the sum of a positive score along the edges connecting two nodes. 

(10)γp = τp
|Ap∗ |

√

|Ai∗ ||Aj∗ |
.

(11)Cor(i, j) =
∑

p∈Pij

γp,

(12)sp = |γp|
∑

p∈Pij
|γp|

.

Fig. 3 A schematic showing how different paths in a GGM can contribute to the correlation between two 
nodes a and b. Panel a shows the paths connecting a and b, while panel b shows the same paths with 
possible PPS values (note that these sum to 1). From PPS, we learn that the edge between a and b, and the 
path through node d, are the largest contributors to the marginal correlation between nodes a and b 
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Both methods are capable of identifying key paths between a fixed pair of nodes in a GGM, 
but PPS provides more context, and is directly interpretable as the fraction of the marginal 
correlation between two nodes attributable to that path. This is because it is based on the 
precise mathematical relationship (9) between partial and marginal correlation, rather than 
an edgewise loss function that may not take the entire GGM topology into account.

The modularity coefficient is another GGM interpretation technique, in which cluster-
ing based on a particular classification of nodes is assessed. However, this classification 
must be prespecified, whereas PPS makes no assumptions about which nodes consti-
tute important paths. If a particular grouping of nodes is found to be a cluster based 
on its modularity coefficient, PPS could be applied to pairs of nodes from that cluster 
to identify crititcal paths through the cluster. For example, for the acylcarnitine sub-
network of our example HAPO metabolic network, the modularity coefficient is 0.36, 
indicating some clustering. However, it is the subsequent PPS analysis that allows us to 
pick out important paths between nodes in the cluster (see “Results” section, specifically 
Fig. 9). More broadly, any clustering algorithm could be applied prior to PPS analysis. 
Pairs of nodes in an identified cluster would serve as natural endpoints for PPS analysis 
and probing of network relationships at the finer scale of individual paths. This approach 
may be particularly useful for settings in which there is minimal prior structural knowl-
edge about the network.

Note also the difference in using PPS vs the partial correlation to analyze length 1 
paths, i.e. edges, between two nodes. The partial correlation is the correlation condi-
tional on the other nodes - it tells us whether or not there is an association between the 
nodes independently of all the others. What (9) shows, however, is that this conditional 
relationship is only one component of the total marginal correlation, which is influenced 
by all the paths in the network connecting the nodes in question. The PPS measures how 
large this component is relative to the others. For example, two pairs of nodes could both 
have a partial correlation of 0.1, say, but a PPS for the edge between them of 0.1 and 0.8 
respectively. The low edge PPS of the first pair would indicate that the partial correlation 
is a relatively small component of the total correlation, and many other network paths 
contribute as well. On the other hand, the large edge PPS of the second would indicate 
that the direct edge is itself responsible for a large proportion of the association. In fact, 
we observe behavior like this in our example HAPO metabolic network. Edges connect-
ing acylcarnitines tend to have a low PPS, while those connecting two amino acids tend 
to have a large PPS (see “Results” section, specifically Fig. 7).

Estimation of PPS from empirical data

Generally, the partial correlation matrix P of a GGM of interest is unknown, and must be 
estimated from empirical data. Given such an estimate P̂ = {π̂ij} of the partial correla-
tion matrix, we can form estimates γ̂p of the γp in (10) by substituting π̂ij for πij . We can 
then estimate the PPS sp of a path p by

In the next section, we will demonstrate this estimation procedure on both real and sim-
ulated data using two different GGM estimation techniques: inversion of the estimated 

(13)ŝp = |γ̂p|
∑

p∈Pij
|γ̂p|

.
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Pearson correlation matrix (when n > p ) and graphical lasso [17], a widely-used L1

-penalized method for estimating sparse Gaussian graphical models.

Computational considerations

For large and/or complex networks, exhaustively computing Pij , and consequently 
∑

p∈Pij
|γp| , the denominator in (13), can be very expensive. In order to make computa-

tion of (13) feasible, we recommend only computing paths up to a certain length, rather 
than all possible paths. In other words, we replace (13) with

where K is a positive integer chosen by the user, and P K
ij = {p ∈ Pij : |p| ≤ K } . In doing 

so, we reduce the worst-case (i.e. a fully-connected network) complexity from O(N !) to 
O(N !/(N − K )!) , a considerable reduction. This of course leads to the question of how 
to choose K, which we address below. In a sparser network, of course, the complexity 
will depend on the two nodes chosen as endpoints (those from denser clusters will have 
larger runtimes), but if the mean degree of the network is D , then on average the com-
plexity will be more like O(D K ) . (The Additional file  1 contains figures showing the 
runtime for our example metabolic network and simulated networks of various sizes for 
different values of K).

Choice of K

In order to assess how K affects the accuracy of ŝKp  , we simulated datasets of varying size 
( n = 102, 103, 104 ) from a N (0,�) , where � is the variance-covariance structure sug-
gested by the GGM in Fig. 1, using the MASS package [18] in R. In particular, all nodes 
have a marginal N(0, 1) distribution (see the Additional file 1 for the full variance-covar-
iance matrix). The GGM in Fig. 1 was randomly generated, with edges assigned between 
nodes with probability 0.2, and partial correlations chosen uniformly from (−1, 1) . For 
each dataset, we computed the max PPS spmax for every pair of nodes in the network 
using values of K ranging from 2 to 6. We excluded the small number of pairs that were 
connected by paths of length 7 or greater, so that ŝKp = ŝp exactly. We then compared the 
estimates with the truth. The results are shown in Fig. 4. Each row represents the results 
from 100 runs at a fixed sample size. The separate panels within each row stratify the 
results by |pmax| (this is for visualization purposes). The y-axis in each plot is the percent 
error, |ŝKpmax

− spmax |/spmax . The mean error over the 100 runs is plotted, and error bars 
represent one standard deviation.

The results provide a good illustration of the influence of K and n on estimation of 
PPS. First, recall that K governs how close ŝKp  is to ŝp , not sp itself (i.e. the truth). There-
fore, we don’t expect the error to go to zero for fixed n as K grows - it can only be as 
small as the sample size allows. However, the error does approach zero as n increases.

Next, notice that in each trajectory, there is an optimal value of K past which the error 
increases. This may seem counterintuitive, but recall that computing the denominator 
in (13) requires estimation of γp for very long paths, many of which will be much smaller 
than the precision of γ̂p we can expect based on n (this is because the τp component of (10) 

(14)ŝKp =







|γ̂p|
�

p∈P K
ij

|γ̂p| |p| ≤ K

0 |p| > K
,
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decreases in absolute value as path length increases, particularly when partial correlations 
are small, as they often are in biological data). In that case, an estimate of 0 is actually bet-
ter in the sense of MSE than γ̂p . Since ŝKp  effectively estimates γ̂p = 0 for |p| > K  , the accu-
racy decreases slightly when K begins to exceed the length of such paths. See [19] for an 

Fig. 4 Dependence of PPS estimation accuracy on sample size n and K. Results are stratified by length of the 
max PPS path and sample size to aid visualization. Note that in this simulation, K = 6 corresponds exactly to 
ŝp from (13). Error decreases with n, but actually increases for a given n if K is large enough. However, if n is not 
too small (at least 1000, say) the increase in error if K is too large is quite small compared to the increase in 
error if K is too small. It is therefore better to err on the side of choosing K too large than too small
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analogous effect in the estimation of large covariance matrices, where covariances that are 
expected to be small are set to zero to exploit the same kind of behavior.

Despite the existence of an optimal K, in practice we won’t be able to determine it, since 
we won’t know the ground truth like we do in the simulation setting. Nevertheless, our 
observations from the simulated data can guide our choice. Notice that if the sample size 
is not too small, increasing K initially produces a large improvement in accuracy. However, 
past this point, although performace can drop slightly, the results are not nearly as sensitive 
to K. We therefore recommend choosing K large enough that the numerical results are rela-
tively stable. This ensures that we are in this low-sensitivity regime of the trajectory.

Based on these observations, we recommend K = 4 or 5 as an all-purpose choice of K. 
For a wide range of realistic sample sizes, this allows for the gain in accuracy achieved by 
increasing K while still reaping the variance-stabilizing (and complexity-reducing) benefits 
of setting γ̂p = 0 for |p| > K  . Crucially, for commonly encountered network topologies like 
scale-free and Erdos-Renyi, the recommended K exceeds the expected path length in many 
cases. For scale-free networks, where the degree distribution follows the power law

the network diameter is on the order of log logN  , where N is the number of nodes, when 
2 < � < 3 [20]. This range for the power law exponent is the most frequently encoun-
tered in naturally occuring networks [21]. Thus the expected path length between two 
nodes will be smaller than 4 or 5 unless the network is very large. For an Erdos-Renyi 
network, the expected path length is given by

where p is the size of the network, γ = 0.577 is the Euler-Mascheroni constant, and D is 
the mean degree of the network [21, 22]. For a 100 node Erdos-Renyi network, for exam-
ple, the mean degree would have to fall below 2.4 for the expected path length to exceed 
5.

Finally, we point out that the relative ranking of the PPS for two paths does not depend on 
K, provided both paths have length at most K. Notice that the numerator of (14) does not 
depend on K, and that the denominator is the same for all paths. Hence, for two paths p1 
and p2 between nodes i and j , with |p1|, |p2| ≤ κ , |ŝp1 | ≤ |ŝp2 | if and only if |ŝpK1 | ≤ |ŝpK2 | for 

any K ≥ κ . This means that the relative ranking of paths up to length K  is the same whether 
we use K = κ , K > κ , or (13). This is useful if we are only interested in identifying the high-
est PPS paths, rather than precisely estimating the PPS of those paths.

Results
Simulation study

PPS estimation will first be demonstrated on the small 10 node GGM shown in Fig. 1c. 
The small size makes it possible to systematically estimate the PPS of every path between 
every pair of nodes in the network, and to call attention to the subtleties of PPS estima-
tion. For a variety of sample sizes, we generated 100 datasets from this network using 
a multivariate normal distribution with mean 0 and covariance matrix chosen so that 

(15)P(d) ∝ d−�, d = 0, 1, 2, . . . ,

(16)
log p− γ

logD
+ 1

2
,
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applying (1) yielded the partial correlation structure depicted in Fig. 1c, which was gen-
erated by randomly assigning edges between nodes with probability 0.2 and randomly 
selecting partial correlations for the edges uniformly from (−1, 1) . Each node was mar-
ginally N(0, 1) distributed (see the Additional file 1 for the the full covariance matrix). 
Data were generated using the MASS package [18] in R. Then, for every pair of nodes in 
the network, we estimated the PPS of every path between those nodes using (14), K = 4 , 
and P̂ equal to the inverse of the empirical Pearson correlation. (The results were simi-
lar for K = 3 and K = 5 , see Additional file 1). To judge performance, for each distinct 
pair of nodes, we compared the true highest PPS path (from our knowledge of the true 
partial correlation matrix) with the highest estimated PPS path, declaring a success if 
they were the same, a failure otherwise, for each of the 100 datasets at each sample size. 
Figure 5a shows the success rates plotted against sample size for this simulation, with 
subpanels separated by target path length for readability (target path lengths of 4 and 5 
are shown in the Additional file 1). Each point represents the number of successes out of 
100 for a particular path.

The simulation demonstrates that the ability to identify the highest PPS path between 
a given pair of nodes depends primarily on three factors: sample size, length of the target 
path, and the magnitudes of the partial correlations in the target paths. As the sample 
size increases, accuracy rapidly improves for most paths, but a larger proportion have 
slower rates of improvement as the path length increases. Because of this, a large sample 
size ( n > 1000 ) is needed to ensure high accuracy for all paths.

Differences in success rate within a given path length is due to the varying sizes of the 
partial correlations that compose the paths, as indicated by the colors of the trajectories 
in the figure. Paths composed of larger partials achieve good accuracy at moderate sam-
ple sizes. On the other hand, a relatively large sample size is needed for reasonable accu-
racy in paths with smaller partials. This is a result of the amount of noise in the 
estimation. Even true zeros (conditionally independent pairs of nodes) will still produce 
partial correlation estimates with a standard deviation of 1√

n
 . For example, if n = 100 , 

true partial correlations less than 0.2 are difficult to resolve (18). Longer target paths 
exacerbate the problem, since their smaller PPS values are harder to differentiate from 
noisy true zero edge estimates.

We can improve performance in this respect by imposing a sparsity-inducing penalty 
on the partial correlation estimation. We repeated the simulation using graphical lasso 
to obtain partial correlation estimates. We again varied the sample size from n = 20 to 
n = 1500 , and and chose the graphical lasso penalty � using cross-validation. The results, 
shown in Fig.  5b, demonstrate that large gains in accuracy can be made by reducing 
noise via penalized estimates.

We note that cross-validation is only one potential method of choosing the penalty 
parameter � . There are many other approaches developed for choosing � in the GGM 
setting, including EBIC [23], StARS [24], and methods based on false positive rate con-
trol [25]. We prefer cross-validation in this setting because it does not depend so much 
on model assumptions and tends to work well with large sample sizes [24, 26], but this is 
merely a preference.
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An additional benefit of regularization is reduction in computational complexity. 
The network based on the inverse Pearson correlation is fully connected, making enu-
meration of all possible paths linking two nodes very expensive. When many partial 

Fig. 5 a Probability of correct path identification over increasing sample size with no penalization. b 
Probability of correct path over increasing sample size with graphical lasso penalization, with � chosen by 
cross-validation. In both panels, each line corresponds to a single path, and color represents the magnitude 
of the smallest partial correlation contained in the path. The subpanels are separated by target path length 
for readability. These results are with K = 4
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correlation estimates are exactly zero, we can limit our search to paths not containing 
those edges, since for such paths ŝp = 0.

HAPO data

Analyses using PPS were also conducted using data from the Hyperglycemia and 
Adverse Pregnancy Outcome (HAPO) study, an observational, multinational, epidemio-
logical study conducted from 1999 to 2006 to explore associations of maternal glucose 
levels with adverse pregnancy outcomes [15]. As part of the study, targeted and non-
targeted metabolomics assays were performed to measure the concentrations of approx-
imately 130 metabolites present in maternal serum at ~28 weeks gestation (non-targeted 
assays were performed using gas chromatography–mass spectrometry and results were 
normalized [27] to account for potential batch variability). Blood samples were obtained 
from HAPO participants as part of a 75-g oral glucose tolerance test (OGTT). Metabo-
lites were assayed using samples obtained at fasting and 1-hr following consumption of 
the glucose load. Metabolite profiles from a subset of 1600 study participants, 400 each 
from four ancestry groups (Afro-Caribbean, Northern European, Mexican American, 
and Thai) were used for the analysis. All analyses were performed using the full cohort 
( n = 1600 ). Demographic variables controlled for included study field center, gestational 
age, maternal height, maternal mean arterial blood pressure, baby sex, number of prior 
pregnancies, and maternal smoking and drinking status. This dataset has been analyzed 
in a number of prior studies [13, 27–29].

As with the simulated data, we estimated the GGM underlying the HAPO metaba-
lomics data using both the inverse Pearson correlation matrix and graphical lasso (6). 
We then applied PPS to selected pairs of metabolites in each estimated GGM to see if 
the results aligned with known biology. In the sparse network estimated using graphical 
lasso, we used a maximum path length of 5 edges, i.e.  ŝ5p was used to estimate the PPS 
sp . Since the inverse Pearson correlation network was completely connected, we used a 
maximum path length of 2 edges for computational feasibility ( K = 3 already takes 10 
min to compute for a single pair of nodes). As explained earlier, while we don’t necessar-
ily expect it to be a good estimate of sp itself, we can still use ŝ2p as a measure of relative 
path importance.

Validation using known biological relationships

In this section, the PPS is validated using known biological relationships among metab-
olites in the HAPO Study. All networks in this section were constructed using fasting 
metabolite data.

Amino acids and acylcarnitines are the two most well-represented metabolite classes 
in the HAPO data and were measured using targeted assays. Acylcarnitines are respon-
sible for transporting long-chain fatty acids across the mitochondrial membrane. 
Although there are many varieties, they tend to be similar to one another in structure 
and function, and are often convertible. Amino acids, on the other hand, have distinct 
structures and functions and are not readily convertible except in specific cases [30, 31].

Based on this biological difference between the two metabolite classes, we might 
expect the PPS of edges connecting two amino acids to generally be larger than the PPS 
of edges connecting two acylcarnitines. This is because acylcarnitines tend to have more 
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complex relationships rooted in the combined action of many network paths [30, 31], 
each of which also contributes to the correlation between their terminal nodes. To see if 
this was the case, we computed ŝ5p for all edges connecting adjacent pairs of acylcarniti-
nes and adjacent pairs of amino acids in the sparse graphical lasso network (Fig. 6). The 
edges connecting two amino acids tended to have high PPS (Mean = 0.85, SD = 0.15, 
taken over all adjacent amino acid pairs), indicating a large relative contribution of that 
edge to the overall network-level relationship, compared to the edges connecting two 
acylcarnitines (Mean = 0.47, SD = 0.22, taken over all adjacent acylcarnitine pairs). The 
histograms in Fig. 7 show the full distribution of these scores for each group separately. 
Indeed, these results are consistent with the known biology.

The relationship between tyrosine and phenylalanine ( r = 0.440 ) is particularly illus-
trative. The dominant biological relationship between these two amino acids, which dif-
fer only by a single hydroxyl group, is direct conversion from phenylalanine to tyrosine. 
At first glance, the network topology isn’t consistent with this—there is indeed a direct 
edge between the two amino acids, but there are also many other network paths con-
necting them. Figure 8 shows the paths connecting tyrosine and phenylalanine and their 
corresponding PPS in the graphical lasso network. With a much larger PPS, the direct 
edge dominates the other paths as expected. In the inverse Pearson correlation network, 
the direct edge remains the highest PPS path between tyrosine and phenylalanine.

The saturated acylcarnitines C10, C12, C14, C16, and C18 provide a good illustra-
tion of the structure of the complex acylcarnitine subnetwork (Fig.  9). These metabo-
lites are known to convert by addition and, especially, removal of two-carbon units. 
Indeed, between C10 and C14 ( r = 0.514 ), the highest scoring path in the graphical 
lasso network is the expected length 2 path C10-C12-C14, with ŝp = 0.299 (the next 
highest path has ŝp = 0.053 ). The results are similar for paths between C12 and C16 
( r = 0.390 ), and C14 and C18 ( r = 0.412 ). The highest scoring path between C10 and 

Fig. 6 GGM estimated by graphical lasso from the HAPO maternal fasting data. Singletons (degree zero 
nodes) are depicted smaller
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C16 ( r = 0.296 ) is the expected length 3 path C10-C12-C14-C16, though between C12 
and C18 ( r = 0.308 ), C12-C14-C16-C18 is second highest. Figure 9 shows the acylcarni-
tine subnetwork of the graphical lasso HAPO network, with the edges comprising these 

Fig. 7 Distributions of PPS for edges connecting pairs of amino acids or acylcarnitines. Edges connecting 
two amino acids tend to have larger PPS, indicating large relative importance of that edge and the direct 
connection it signifies (Note there were no differences between polar and apolar amino acids). Edges 
connecting two acylcarnitines have smaller PPS, suggesting less importance of these direct connections 
compared to the net effect of other network paths

Fig. 8 Amino acid subnetwork containing tyrosine and phenylalanine. Conversion (a) is the dominant 
relationship based on PPS
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paths highlighted. In the fully-connected inverse Pearson correlation network, the high-
est scoring paths remain the ones we expect. This result in particular demonstrates that 
while shorter paths do tend to have higher ŝp (since there are fewer factors in ap ), it is 
not always the case that a path of length 1 (an edge) will have a higher ŝp than a path of 
length 2 or higher.

Fatty acid metabolism is also featured prominently in the HAPO metabolomics data. 
Consider the subnetwork of the graphical lasso network in Fig. 10. There are two net-
work paths connecting the 18-carbon stearic acid and the 16-carbon palmitic acid 
( r = 0.702 ). One is the direct edge, and the other passes through heptadecanoic acid (17 
carbons). The most common biological mechanism of fatty acid metabolism is β-oxida-
tion, in which fatty acids are broken down two carbons at a time [30, 31]. Hence, we 
expect the direct edge connecting the 18-carbon stearic acid to the 16-carbon palmitic 
acid to carry more weight. The PPS aligns with this expectation: the edge has a PPS of 

Fig. 9 Acylcarnitine subnetwork of the graphical lasso HAPO network. The saturated acylcarnitines C10, 
C12, C14, C16, and C18 are labeled with carbon numbers, and edges corresponding to addition/removal of 
two-carbon units are highlighted. These edges comprise the highest PPS paths among these metabolites

Fig. 10 Subnetwork of three saturated fatty acids. The higher PPS path (b) corresponds to addition or 
cleavage of a 2-carbon unit, the more common pathway between stearic and palmitic acid
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0.883, while the path through heptadecanoic acid has a PPS of 0.117. This latter path is 
likely due to common dietary sources of these three fatty acids as well as lipolysis, since 
direct conversion of stearic or palmitic acid to heptadecanoic acid is not a known meta-
bolic pathway in humans [32].

Figure  11 shows a subnetwork containing palmitic acid and palmitoleic acid 
( r = 0.725 ), two fatty acids that are directly convertible. We expect the edge connecting 
them to have a high score, and the many other possible paths to have low score. This is 
indeed what we observe, with the edge having a PPS of 0.955. Like the others, this exam-
ple demonstrates that the PPS reflects known biology.

It is important to note that our interpretations of the preceding results in terms of 
conversions between metabolites is based on a priori knowledge of the metabolic path-
ways involved. As discussed in the “Methods” section, a high PPS for the edge between 
two metabolites indicates only that there is a large component of their correlation that 
cannot be explained by the other metabolites in the network. Further interpretation 
requires additional assumptions outside of the data itself, and in general the same cave-
ats apply here as for interpretations of coefficients in a multiple regression. For example, 
a common source for two or more metabolites that is not controlled for before comput-
ing the graphical model, such as diet in the fatty acid example above, would be a poten-
tial confounder. Correlations could also result from the biochemical factors identified in 
[3]–in particular, a strong partial correlation between two metabolites does not neces-
sarily mean that they are neighbors in a chemical reaction or biochemical pathway. This 
means that any paths identified by PPS, or any other correlation-based method, cannot 
be mapped onto biochemical pathways without additional biological information.

Hypothesis generation using PPS

The preceding section used known biological relationships to validate the PPS, dem-
onstrating that expected pathways indeed score highly using the technique. This 
involved a targeted application of the PPS, where certain node pairs of interest were 
singled out for analysis. However, when working with a new or unfamiliar dataset, an 
investigator may not always know which node pairs will be of interest. The PPS can 
still be used in this setting in a systematic way, by being applied to all pairs of nodes in 

Fig. 11 Subnetwork containing palmitic and palmitoleic acid. Despite many possible network paths linking 
these two fatty acids (including many through metabolites not shown), the edge between them has a high 
PPS of 0.955. This indicates that the overall network-level relationship between palmitic and palmitoleic acid 
is dominated by direct conversion
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a network. Pairs where the PPS profile has certain characteristics can then be picked 
out, and can form the basis for new biological hypotheses.

As an example of this type of analysis, PPS was used to investigate differences in 
network structure between the fasting and 1-hr post glucose metabolite measure-
ments. The HAPO study includes metabolomics data from pregnant mothers in both 
states, and graphical lasso was used to estimate a network of metabolites for each 
dataset separately. Then, for each network separately, PPS was applied to every pair 
of metabolites, and for each pair the path with the highest PPS was selected. Table 1 
shows the pair with the largest difference in maximum PPS between the two states. 
Results are shown for K = 3, 4, and 5 . The pair contains two acylcarnitines, and has 
a much larger max PPS at 1-hr vs fasting. This could suggest critical involvement of 
these metabolites for glucose metabolism in the 1-hr vs fasting states.

For a second example, we used PPS to investigate differences in network structure 
between pregnant mothers and newborn babies. In order to identify metabolites that 
might play different roles in the two populations, we applied the same procedure as 
for the fasting and 1-hr datasets, only this time averaged the largest PPS for each 
metabolite over all the other metabolites it was connected with, in order to get a sin-
gle measure characterizing network involvement for each metabolite (to make one 
instance of the procedure concrete, for the maternal and newborn data separately, we 
computed the max PPS of lactate, say, with all the other metabolites. Then for each 
dataset we took the average of these values, and examined the difference). Metabo-
lites with a lower average PPS have greater network involvement, in the sense that 
their marginal correlations with other metabolites are the result of a variety of net-
work paths. On the other hand, metabolites with a higher average PPS have less net-
work involvement, in the sense that fewer network paths contribute to their marginal 
correlations with other metabolites. The metabolite lactate had the largest difference 
in average PPS between the maternal and newborn datasets (Table 2). This could indi-
cate a differential role of lactate in the metabolisms of newborn babies versus preg-
nant mothers.

Software

Our method is implemented in the R package pps, available at https:// github. com/ 
nathan- gill/ pps. It includes an interactive app to visualize subnetworks and high PPS 
paths in a user’s dataset. A guide for using the app can be found in the Additional 
file 1, and the data are available on the Northwestern Medicine DigitalHub at https:// 
doi. org/ 10. 18131/ g3- 4b37- y728.

Table 1 Metabolite pairs with largest differences in max PPS between 1-hr and fasting states

Confidence intervals are 95% nonparametric bootstrap confidence intervals

K Metabolite A Metabolite B Fasting max PPS 1‑HR max PPS

Max PPS in 1-HR vs fasting states

5 AC C18:1-OH/C16:1-DC AC C2 0.175 (0.141, 0.334) 0.727 (0.376, 0.871)

4 AC C18:1-OH/C16:1-DC AC C2 0.190 (0.153, 0.353) 0.756 (0.406, 0.882)

3 AC C18:1-OH/C16:1-DC AC C2 0.228 (0.206, 0.530) 0.824 (0.471, 0.917)

https://github.com/nathan-gill/pps
https://github.com/nathan-gill/pps
https://doi.org/10.18131/g3-4b37-y728
https://doi.org/10.18131/g3-4b37-y728
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Discussion and conclusions
In this paper, we developed a novel scoring method, PPS, for paths in a GGM that meas-
ures the relative importance of those paths to the network-level Pearson correlation 
between their respective terminal nodes. PPS can be used to probe network structure on 
a finer scale by investigating which paths in a potentially intricate topology are the most 
significant. Metabolomics data from the HAPO study was used to demonstrate that PPS 
analysis is consistent with well-documented biological relationships present in real data. 
PPS is based on the representation of the correlation between two nodes in a GGM as 
a sum of terms corresponding to network paths connecting those nodes. Adding PPS to 
the network analysis toolkit may enable researchers to ask new questions about the rela-
tionships among nodes in network data.

A limitation of our method is the relatively large sample size needed for reliable iden-
tification of the highest PPS path between two nodes in a network, a result of variability 
in the individual partial correlation estimates (especially the true zeros) propagating to 
the estimate of PPS itself. We recommend regularization using graphical lasso as a pos-
sible way to eliminate some of this variability. Other strategies could include restricting 
the path search space to a particular subset of nodes, or taking the top k estimated PPS 
paths instead of the single top path. Further research is needed to develop more efficient 
estimators of PPS.

Traditionally, correlation-based methods and partial correlation-based methods like 
GGMs have been treated as distinct approaches to network construction. While it is 
true that edges in these networks represent different relationships between their nodes 
(namely conditional vs unconditional), the findings in this paper shed light on the con-
nection between the two, making explicit how a partial correlation structure gives rise 
to its corresponding correlation structure. The representation (9) can in fact be used to 
show that in many cases, GGMs and correlation networks built from the same data can 
be quite similar. A careful study of this observation will be the subject of future work.

Appendix
In order to derive (9) from the main text, we will use the following formulation of the 
determinant: For a matrix M = {mij} , the determinant is given by

(17)|M| =
∑

σ

sgn(σ )mσ(1),1 · · ·mσ(n),n,

Table 2 Differences in lactate PPS between mothers and babies

Results shown with K = 4 . The confidence intervals are 95% nonparametric bootstrap confidence intervals

Population Avg lactate max 
PPS over all other 
metabolites

Average max PPS of lactate with other metabolites in mothers and babies

Babies 0.275 (0.220, 0.401)

Mothers 0.543 (0.460, 0.695)
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where the sum is over all possible permutations σ of the set {1, . . . , n} . The determinant 
is thus a sum of n! terms, each of which is a product of n entries of the matrix chosen so 
that each row and column is represented exactly once. An analogy can help make this 
formula concrete. Imagine walking across the matrix, proceeding from column to col-
umn from left to right. Each time, we must visit a new row that we haven’t visited before 
(note that since the matrix is square this ensures that every row is visited exactly once). 
During the walk, we keep a running product of the entries of the matrix we visit. Each 
such product, multiplied by the sign of the permutation to which it corresponds, is a 
summand in the determinant formula.

We now consider an arbitrary partial correlation matrix P = {πij} . Recall that we can 
obtain the correlation from the partial correlation using the equation

where

and D is a diagonal matrix with dii equal to the square root of the (i, i) entry of A−1 . We 
will begin by focusing on the structure of A−1 . The (i, j) entry of A−1 is given by

where A(i,j)∗ denotes the submatrix of A with row i and column j removed. Since 1
|A| is 

common to all entries of A−1 , it will eventually be canceled when we normalize to obtain 
the correlation. Hence, we can ignore it, and focus on the numerator |A(i,j)∗ |.

By symmetry, it suffices to consider |A(1,2)∗ | , that is,

Consider the individual terms that appear in this determinant (i.e. the individual (n− 1)! 
summands in (17) applied to A(1,2)∗ ). In every summand in the determinant, the indices 
1 and 2 will each appear exactly once. This is because the index 1 appears in all entries 
of column 1, but nowhere else, and similarly, the index 2 appears in every entry of row 1 
but nowhere else. Since we choose one and only one entry from column 1, and one and 
only one entry from row 2, indices 1 and 2 will each appear exactly once (note that their 
appearances could coincide if we choose a12 ). On the other hand, each of the indices 
3, . . . , n appears in every entry of both a row and a column. For example, the index 3 
appears in every entry of row 2 and every entry of column 2. So either we choose a33 , or 
we visit row 2 and column 2 separately, each time picking up the index 3 (and similarly 
for the others up to n).

Based on this insight, we can split each product into two parts. The first is a chain of 
indices beginning with node 1 and ending with node 2. We begin with a1,k1 . If k1  = 2 , 
we find the second term in which k1 appears, ak1,k2 . Then if k2  = 2 , we find ak2,k3 , and 

(18)C = D
−1

A
−1

D
−1,

Aij =
{

−πij i �= j
πij i = j

,

(19)(−1)(i+j) |A(i,j)∗ |
|A| ,

(20)

∣

∣

∣

∣
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so on. The second is the terms containing indices not appearing in the chain. Denot-
ing the chain by c = {1, k1, k2, . . . , km, 2} , we can rewrite every product aσ(1),1 · · · aσ(n),n 
as

Let σc∗ denote the permutation σ restricted to those indices not appearing in chain c . 
Note that σc∗ is itself a permutation, since for each j /∈ c , we also have σj /∈ c . Let c(σ ) 
denote the chain associated with permutation σ , and let Kc = {σ : c(σ ) = c} . Finally, 
noting that sgn(σc∗) = (−1)msgn(σ ) , we have by applying (17)

Some of the chains c between nodes 1 and 2 will contain consecutive nodes whose par-
tial correlation is zero. In fact, if P12 is, as in the main text, the set of network paths con-
necting nodes 1 and 2, then

Therefore, letting τ be as in the main text, and replacing c with p to emphasize that now 
we are dealing only with the subset of chains corresponding to network paths,

Normalizing then gives the desired result.

Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s12859- 021- 04542-5.

Additional file 1: Demonstration file for the PPS RShiny application.

Additional file 2: Supplementary Information and Figures.

(21)aσ(1),1 · · · aσ(n),n = a1,k1ak1,k2 · · · akm ,2�j /∈caσ(j),j

(22)= (−1)m+1π1,k1πk1,k2 · · ·πkm,2�j /∈caσ(j),j .

(23)(−1)(1+2)|A(1,2)∗ | = −
∑

σ

sgn(σ )aσ(1),1 · · · aσ(n),n

(24)= −
∑

c

∑

σ∈Kc

sgn(σ )(−1)(m+1)π1,k1πk1,k2 · · ·πkm,2�j /∈caσ(j),j

(25)= −
∑

c

∑

σ∈Kc

sgn(σc∗)(−1)2m+1π1,k1πk1,k2 · · ·πkm,2�j /∈caσc∗ (j),j

(26)=
∑

c

π1,k1πk1,k2 · · ·πkm,2(
∑

σ∈Kc

sgn(σc∗)�j /∈caσc∗ (j),j)

(27)=
∑

c

π1,k1πk1,k2 · · ·πkm,2|Ac∗ |.

P12 = {c : π1,k1πk1,k2 · · ·πkm,2 �= 0}.

(−1)(1+2)|A(1,2)∗ | =
∑

p∈P12

τp|Ac∗ |.

https://doi.org/10.1186/s12859-021-04542-5
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