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Tumor stemness is associated with tumor progression and therapy resistance. The recent advances in
sequencing, genomics, and computational technologies have facilitated investigation into the tumor
stemness cell-like characteristics. We identified subtypes of lung adenocarcinoma (LUAD) in bulk tumors
or single cells based on the enrichment scores of 12 stemness signatures by clustering analysis of their
transcriptomic profiles. Three stemness subtypes of LUAD were identified: St-H, St-M, and St-L, having
high, medium, and low stemness signatures, respectively, consistently in six different datasets. Among
the three subtypes, St-H was the most enriched in epithelial-mesenchymal transition, invasion, and
metastasis signaling, genomically instable, irresponsive to immunotherapies and targeted therapies,
and hence had the worst prognosis. We observed that intratumor heterogeneity was significantly higher
in high-stemness than in low-stemness bulk tumors, but significantly lower in high-stemness than in
low-stemness single cancer cells. Moreover, tumor immunity was stronger in high-stemness than in
low-stemness cancer cells, but weaker in high-stemness than in low-stemness bulk tumors. These differ-
ences between bulk tumors and single cancer cells could be attributed to the non-tumor cells in bulk
tumors that confounded the results of correlation analysis. Furthermore, pseudotime analysis showed
that many St-H cells were at the beginning of the cell evolution trajectory, compared to most St-L cells
in the terminal or later phase, suggesting that many low-stemness cells are originated from high-
stemness cells. The stemness-based classification of LUAD may provide novel insights into the tumor
biology as well as precise clinical management of this disease.
� 2022 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Bio-
technology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Background

Cancer stemness refers to stem cell-like characteristics in a frac-
tion of cancer cells that confer properties of cancer progression and
treatment resistance [1]. Like human embryonic stem cells (hESCs),
cancer cells possess the ability to self-renew and proliferate indef-
initely [2]. Acquisition of stem-cell-like characteristics in a fraction
of cancer cells promotes continuous cell proliferation and dediffer-
entiation. Furthermore, eliminating non-stem but not stem cancer
cells confers cancer resistance and relapse. The mixture of stem
cell-like and non-stem cell-like cancer cells endows a tumor with
intratumor heterogeneity (ITH). In addition, resistance to immune
elimination has been shown to be a property of stem-cell-like can-
cer cells [3]. Recently, with the advances in sequencing, genomics,
and computational technologies, mounting large-scale multi-
omics data for cancer have emerged, such as the Cancer Genome
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Atlas (TCGA, https://cancergenome.nih.gov). These multi-omics
data provide valuable resource for exploring cancer features, e.g.,
tumor stemness [1,4], ITH [5,6], and tumor immunity [7]. In fact,
multi-omics data analyses have shown that tumor stemness is
associated with dedifferentiated oncogenic phenotype, metastasis,
ITH, and immunosuppression across various cancers [1,4]. These
previous studies notwithstanding, the multi-omics data-based
investigation into the association between tumor stemness and
the response to cancer therapies, such as immunotherapies and
targeted therapies, remains insufficient. Furthermore, the explo-
ration of tumor stemness at the single-cell level remains lacking,
although a large amount of multi-omics data for single cancer cells,
particularly the transcriptomics data, have been publicly available
[8–13].

In this study, we identified subtypes of lung adenocarcinoma
(LUAD) bulk tumors or single cells based on stemness scores by
clustering analysis of their transcriptomic profiles. In five different
datasets, we consistently identified three stemness subtypes of
LUAD bulk tumors with high, medium, and low stemness signa-
tures, respectively. Likewise, we identified three stemness sub-
types of LUAD single cells in a single-cell RNA sequencing
(scRNA-seq) dataset for LUAD. We further characterized the molec-
ular and clinical features of these subtypes, as well as their associ-
ation with the response to immunotherapies and targeted
therapies. Our identification of the stemness subtypes of LUAD
may provide novel insights into the biology of this cancer and
potential clinical application for the management of this disease.
2. Methods

2.1. Datasets

We downloaded five gene expression profiling datasets for
LUAD, including TCGA-LUAD, GSE31210, GSE72094, GSE37745,
and OncoSG. The TCGA-LUAD data were downloaded from the
genomic data commons (GDC) data portal (https://portal.gdc.can-
cer.gov/), the OncoSG data were from cBioportal (https://www.
cbioportal.org/), and the other data were downloaded from the
NCBI gene expression omnibus (GEO) (https://www.ncbi.nlm.nih.-
gov/geo/). From GDC, we also obtained the data of somatic copy
number alterations (SCNAs) (‘‘SNP6” files). We downloaded data
of gene expression profiles in 1,018 pan-cancer cell lines and drug
sensitivities (IC50 values) of these cell lines to 265 compounds
from the Genomics of Drug Sensitivity in Cancer (GDSC) project
(https://www.cancerrxgene.org/downloads). Besides, we down-
loaded a single-cell RNA sequencing (scRNA-seq) dataset (LUAD-
scRNA) for LUAD from a recent publication [10]. In addition, we
obtained gene expression profiling and clinical data for five cancer
cohorts treated with immune checkpoint inhibitors (ICIs) from
their associated publications, including the Jung cohort (non-
small-cell lung cancer (NSCLC)) [14], Braun-Miao cohort (clear cell
renal cell carcinoma (ccRCC)) [15,16], Kim cohort (bladder carci-
noma (BLCA)) [17], Ulloa-Montoya cohort (melanoma) [18], and
Liu cohort (melanoma) [19]. A description of these datasets is
shown in Supplementary Table S1.
2.2. Collection of stemness signatures

We collected 12 stem cell (or stemness) signatures (Homo sapi-
ens) from the StemChecker webserver (http://stemchecker.sysbio-
lab.eu). These stemness signatures were derived by multiple
approaches, including gene expression profiles, computationally
derived, literature curation, transcription factor target genes, and
RNAi screening [20]. The 12 stemness signatures and their marker
genes are presented in Supplementary Table S2.
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2.3. Single-sample gene-set enrichment analysis

We evaluated the enrichment score of a gene set representing a
stemness signature, biological process, pathway, or phenotypic
feature in a bulk tumor or single cancer cell by the single-sample
gene-set enrichment analysis (ssGSEA) [21]. The ssGSEA calculates
a gene set’s enrichment score in a sample based on their expression
profiles. We performed the ssGSEA with the ‘‘GSVA” R package. We
obtained the gene sets from their associated publications and pre-
sented them in Supplementary Table S2.

2.4. Combination of different gene expression profiling datasets

We merged two gene expression profiling datasets for ccRCC
(Braun cohort [15] and Miao cohort [16]) using the merge() func-
tion in the ‘‘base” R package. We adjusted for batch effects and nor-
malized combined data using the normalizeBetweenArrays()
function in the ‘‘limma” R package.

2.5. Clustering analysis

We used hierarchical clustering to identify LUAD subtypes
based on the enrichment scores of 12 stemness gene sets. We per-
formed clustering analysis using the ‘‘hclust” R package.

2.6. Survival analysis

Kaplan–Meier curves were used to compare the survival time,
and the log-rank tests were utilized to evaluate the significance
of survival time differences. We implemented survival analyses
using the survfit() function in the ‘‘survival” R package.

2.7. Evaluation of tumor mutation burden (TMB), SCNA, and ITH

TMB was defined as the total number of somatic mutations in
the tumor. We used GISTIC2 [22] to calculate arm- and focal-
level SCNAs and G-scores in tumors with the input of ‘‘SNP6” files.
The G-score represents the amplitude of the CNA and the fre-
quency of its occurrence across a group of samples [22]. We used
the DITHER algorithm [6] to evaluate ITH levels, which scores
ITH based on the entropies of somatic mutation profiles and SCNA
profiles in the tumor.

2.8. Class prediction

We utilized the Random Forest (RF) algorithm [23] to perform
class prediction. In the RF model, the number of trees was set to
500, and the features were the 12 stemness gene sets. We reported
accuracy and weighted F-score for prediction performance. We
performed the RF algorithm by the ‘‘randomForest” R package.

2.9. Pseudotime analysis

To infer the phylogenetic relationship between high- and
low-stemness bulk tumors or cancer cells, we constructed their
trajectory paths by using Monocle2 [24]. We derived
differentially expressed genes from each subtype by using the
differentialGeneTest() function. The genes with an adjusted
P-value < 0.0001 were utilized to order the tumors or cells in
pseudotime analysis.

2.10. scRNA-seq data analysis

We analyzed a LUAD scRNA-seq (SMART-seq2) dataset, which
invloved gene expression profiles in 3704 cancer cells and 1231
non-cancer cells from 19 LUAD patients [10]. Before subsequent
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Fig. 1. Identification and characterization of stemness subtypes of LUAD in bulk tumors. A. Hierarchical clustering identifying three stemness subtypes: St-H, St-M, and St-L,
consistent in five different datasets, based on the enrichment scores of 12 stemness gene sets. B. Comparison of the enrichment scores of a stemness signature composed of
109 genes [1] among the stemness subtypes of LUAD. C. Kaplan–Meier curves showing that St-H and St-L likely have the best and worst 5-year overall survival (OS) and/or
disease-free survival (DFS) prognosis, respectively. D. Comparisons of tumor purity among the stemness subtypes. Comparisons of proportion of late-stage tumors (E),
mutation rates of TP53 and EGFR (F), and proportion of smokers (G) between St-H and St-L. (H) Comparisons of the enrichment scores of five biological processes in TCGA-
LUAD. (I) Pseudotime analysis showing the trajectory paths of the stemness subtypes in TCGA-LUAD. The one-tailed Mann–Whitney U test (B), log-rank test (C), Kruskal–
Wallis test (D, H), and Z test (E, F, G) P-values are shown. * P < 0.05, ** P < 0.01, *** P < 0.001, ns not significant.
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Fig. 2. Comparisons of genomic instability and intratumor heterogeneity (ITH) levels among the stemness subtypes of LUAD. Comparisons of the enrichment scores of DNA
damage repair pathways (mismatch repair and homologous recombination) (A), the expression levels of DNA damage response genes (B), tumor mutation burden (TMB) and
homologous recombination deficiency (HRD) scores (C), G-scores (D), ITH levels (E), and global methylation levels (F) among the stemness subtypes of LUAD. The Kruskal–
Wallis test (A), one-way ANOVA test (B), one-tailed Mann–Whitney U test (C, E, F) P-values are shown. ** P < 0.01, *** P < 0.001.
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Fig. 3. Comparisons of immune signatures and immunotherapy response among
the stemness subtypes of LUAD. Comparisons of the expression levels of human
leukocyte antigen (HLA) genes (A) and predicted response rates to immune
checkpoint inhibitors (ICIs) (B) among the stemness subtypes of LUAD. C.
Comparisons of the response rates to ICIs in five cancer cohorts treated with ICIs.
The one-way ANOVA test P-values are shown in (A). NSCLC: non-small-cell lung
cancer; ccRCC: clear cell renal cell carcinoma; BLCA: bladder carcinoma. * P < 0.05,
** P < 0.01, *** P < 0.001, ns not significant.
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analyses, we normalized gene expression values by log2 (TPM + 1).
We used the single-cell consensus clustering (SC3) method to per-
form unsupervised clustering of cancer cells in each stemness sub-
type [25]. We utilized SingleR [26] to identify cell types from the
scRNA-seq data. SingleR is a method for computational recognition
of cell types by the reference of transcriptomic datasets of individ-
ual cell types. We used the inferCNV algorithm [27] to infer large-
scale DNA copy number variations (CNVs) in cancer cells relative to
normal cells. We re-standardized the CNV values of cells by con-
verting all values in the matrix of inferCNV to 0, 1, or 2, with ‘‘000

representing neutral, ‘‘1” loss or addition of one copy, and ‘‘2” loss
or addition of two copies. The CNV score of each cell was defined as
sum of the CNV value for each gene. We utilized the t-distributed
stochastic neighbor embedding (t-SNE) algorithm [28] to cluster
single cells. t-SNE generates a single map to display structure at
different scales, particularly useful for high-dimensional data [28].
2.11. Statistical analysis

In class comparisons, we used the Mann–Whitney U test or
Kruskal–Wallis (K–W) test for non-normally distributed data
(Shapiro–Wilk test, P < 0.05) and Student’s t test or ANOVA test
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for normally distributed data. We used Z test to assess whether
there is a significant difference between two proportions. We uti-
lized the Benjamini-Hochberg method [29] to calculate the false
discovery rate (FDR) for adjusting for multiple tests. We performed
all statistical analyses in the R programming environment (version
4.0.2).
3. Results

3.1. Identification of stemness subtypes of LUAD in bulk tumors

Based on the ssGSEA scores of 12 stemness signatures (gene
sets), we hierarchically clustered LUAD bulk tumors in five datasets
(TCGA-LUAD, GSE31210, GSE72094, GSE37745, and OncoSG),
respectively. Consistently in these datasets, three clusters were
clearly identified, termed St-H, St-M, and St-L, which had high,
medium, and low scores of stemness signatures, respectively
(Fig. 1A). We further demonstrated that the stemness levels fol-
lowed the pattern: St-H > St-M > St-L, by comparing the enrich-
ment scores of a stemness signature composed of 109 genes [1]
among the subtypes (one-tailed Mann–Whitney U test, P < 0.001)
(Fig. 1B). Survival analyses showed that St-H and St-L likely had
the best and worst 5-year OS and/or DFS prognosis, respectively
(Fig. 1C). It is consistent with that high stemness is associated with
poorer survival in cancer [30,31]. Furthermore, we found that
tumor purity followed the pattern: St-H > St-M > St-L (P < 0.05)
(Fig. 1D). It indicates that high-stemness bulk tumors involve a
higher proportion of tumor cells than low-stemness bulk tumors.
St-H harbored a higher proportion of late-stage tumors than St-L
(Z test, P = 0.007, 4.09 � 10�7, 0.286, 0.5 and 0.254 for TCGA-
LUAD, GSE31210, GSE72094, GSE37745, and OncoSG, respectively)
(Fig. 1E). St-H had a higher mutation rate of TP53 than St-L (P = 2.
2� 10�16, 1.04� 10�8 for TCGA-LUAD and GSE72094, respectively)
(Fig. 1F). In contrast, St-H had a lower mutation rate of EGFR than
St-L (P = 0.088, 0.002, and 5.04 � 10�5 for TCGA-LUAD, GSE31210,
and GSE72094, respectively) (Fig. 1F). Previous studies have shown
that TP53 mutations are associated with a worse prognosis [32],
while EGFR mutations are associated with a better prognosis in
LUAD [33]. In addition, St-H harbored a higher proportion of smok-
ers than St-L (P = 1.45 � 10�4, 0.281, and 0.093 for GSE31210,
GSE72094, and OncoSG, respectively) (Fig. 1G). We further com-
pared several biological processes associated with tumor progres-
sion among the LUAD subtypes, including cell proliferation,
epithelial-mesenchymal transition (EMT), invasion, and
metastasis. Consistently, these biological processes displayed the
highest enrichment scores in St-H and the lowest enrichment
scores in St-L, and followed the pattern: St-H > St-M > St-L (K–W
test, P < 0.05) (Fig. 1H and Supplementary Fig. S1). In contrast,
the differentiation signature enrichment scores followed the pat-
tern: St-H < St -M < St -L (K–W test, P < 0.05) (Fig. 1H). Altogether,
these results support that high stemness is associated with unfa-
vorable clinical outcomes in cancer.

Pseudotime analysis demonstrated that most St-H tumors were
in the onset or early phase of the trajectory, while most St-L
tumors were in the terminal or later phase of the trajectory
(Fig. 1I). It indicates that high-stemness cancer cells are likely to
be the origin of low-stemness cancer cells.
3.2. The stemness subtypes of LUAD have different levels of genomic
instability and ITH

We found that DNA damage repair pathways, such as mismatch
repair and homologous recombination, had the highest and lowest
enrichment levels in St-H and St-L, respectively (one-tailed Mann–
Whitney U test, P < 0.01) (Fig. 2A). In addition, many DNA damage



Fig. 4. Prediction of the stemness subtypes of LUAD based on the enrichment scores of 12 stemness gene sets. The model for predicting the stemness subtypes of LUAD was
trained in TCGA-LUAD and tested in the other four datasets by the Random Forest algorithm. The prediction accuracies and weighted F-scores are shown. In TCGA-LUAD, the
10-fold cross-validation accuracy and weighted F-score are shown.
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response genes, including MSH2, MSH6, POLE, and POLD1, showed
the highest and lowest expression levels in St-H and St-L, respec-
tively (two-tailed Student’s t test, P < 0.05) (Fig. 2B). TMB also fol-
lowed the pattern: St-H > St-M > St-L (P < 0.01) (Fig. 2C).
Homologous recombination deficiency (HRD) may result in tumor
aneuploidy [34]. Likewise, HRD scores showed the pattern: St-H >
St-M > St-L (P < 0.01) (Fig. 2C). The G-scores of copy number ampli-
fications and deletions were likely the highest and lowest in St-H
and St-L, respectively (Fig. 2D). Furthermore, the ITH levels were
the highest in St-H and the lowest in St-L, namely satisfying St-H
> St-M > St-L (one-tailed Mann–Whitney U test, P < 0.01)
(Fig. 2E). Taken together, these results suggest that tumor stem-
ness is positively associated with genomic instability and ITH.
Interestingly, global methylation levels [14] were the lowest in
St-H while the highest in St-L (P < 0.05) (Fig. 2F).

3.3. The stemness subtypes of LUAD have different tumor immune
microenvironment and immunotherapy response

Human leukocyte antigen (HLA) genes encode the major histo-
compatibility complex (MHC), which are responsible for immune
regulation [35]. We found that the expression levels of numerous
HLA genes showed the pattern: St-H < St-M < St-L (two-tailed Stu-
dent’s t test, FDR < 0.05) [36] (Fig. 3A and Supplementary Fig. S2). It
indicated that St-L and St-H had the most and least active anti-
tumor immune microenvironment, respectively. We predicted
the response rates to ICIs in the stemness subtypes of LUAD by
the TIDE algorithm [37]. Interestingly, St-H tended to have the low-
est response rate, while St-L likely had the highest response rate
among the subtypes, consistently in the five datasets (Fig. 3B). Fur-
thermore, we compared the response rate to ICIs in five cancer
cohorts receiving anti-PD-1/PD-L1/CTLA-4 immunotherapy,
including the Jung cohort (NSCLC) [14], Braun-Miao cohort (ccRCC)
[15,16], Kim cohort (BLCA) [17], Ulloa-Montoya cohort (me-
lanoma) [18], and Liu cohort (melanoma) [19] (Fig. 3C). In three
cohorts (Braun-Miao, Ulloa-Montoya, and Liu cohorts), the
response rate followed the pattern: St-H < St-M < St-L. In the Jung
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cohort, St-H had the lowest response rate of 0%, compared to 41.7%
in St-M and 37.5% in St-L. In the Kim cohort, St-L had the highest
response rate of 85.7%, compared to 44.4% in St-H and 43.5% in
St-M (Fig. 3C). Altogether, these results support that tumor stem-
ness inhibits anti-tumor immune response and immunotherapy
response.
3.4. The stemness subtypes of cancer have different responses to
targeted therapies

Based on the ssGSEA scores of the 12 stemness signatures, we
hierarchically clustered 1,018 pan-cancer cell lines and obtained
three clusters with high, medium, and low stemness scores, also
termed St-H, St-M, and St-L, respectively. We compared drug sen-
sitivities (IC50 values) of 265 anti-tumor compounds between St-H
and St-L. Strikingly, we found 223 (84.2%) of the 265 compounds
showing significantly higher IC50 values (lower drug sensitivities)
in St-H than in St-L (one-tailed Mann–Whitney U test, FDR < 0.05)
(Supplementary Table S3). In contrast, only 6 (2.3%) compounds
displayed significantly lower IC50 values (higher drug sensitivities)
in St-H than in St-L (FDR < 0.05) (Supplementary Table S3). These
results support that tumor stemness likely confers resistance to
targeted cancer therapies.
3.5. Prediction of the stemness subtypes of LUAD

We trained the model for predicting the stemness subtypes of
LUAD in TCGA-LUAD and tested it in the other four datasets. The
10-fold cross-validation (CV) accuracy in TCGA-LUAD was
92.01%. The prediction accuracy in GSE31210, GSE72094,
GSE37745, and OncoSG was 90.71%, 80.54%, 63.21%, and 81.07%,
respectively (Fig. 4). The weighted F-score in the predictions was
92.00%, 91.20%, 87.50%, 69.50%, and 82.50% in TCGA-LUAD,
GSE31210, GSE72094, GSE37745, and OncoSG, respectively. These
results indicate that the subtyping of LUAD based on stemness
scores is reproducible and predictable.



Fig. 5. Identification of stemness subtypes of LUAD single cells in LUAD-scRNA. A. Hierarchical clustering identifying three stemness subtypes of LUAD single cells.
Comparisons of the enrichment scores of three biological processes (B), expression levels of DNA damage response genes (C), and inferred CNVs by inferCNV [27] (D) among
the stemness subtypes of LUAD single cells. E. Clustering analyses of LUAD single cells by SC3 [25] identifying 14, 15, and 18 cell clusters in St-H, St-M, and St-L, respectively.
F. Pseudotime analysis showing the trajectory paths of the stemness subtypes of LUAD single cells. G. Gene set enrichment analysis by Monocle2 [24] identifying the gene
ontology (GO) biological process (BP) terms enriched in the stemness subtypes of LUAD single cells. The one-tailed Mann–Whitney U test (B) and one-way ANOVA test (C) P-
values are shown. *** P < 0.001.
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Fig. 6. Characterization of immune and clinical features of the stemness subtypes of LUAD single cells in LUAD-scRNA. A. Clustering all single cells in LUAD-scRNA by t-SNE
[28]. Comparisons of the expression of immune signatures (B) and the ratios of immunostimulatory over immunosuppressive signatures (C) among the stemness subtypes of
LUAD single cells. Comparisons of the proportions of high-stemness cells between late-stage and early-stage LUAD patients (D) and between progressive and regressive or
stable LUAD patients (E). The one-tailed Mann–Whitney U test (B, D, E), two-tailed Student’s t test (B), and one-way ANOVA test P-values (B, C) are shown. *** P < 0.001.
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Fig. 7. A summary of molecular and clinical features of the LUAD stemness subtypes as well as their evolutionary relationship. The figure was created with BioRender.com.
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3.6. Identification of stemness subtypes of LUAD single cells

To explore the reproducibility of the stemness-based subtyping
method at the single-cell level, we analyzed a LUAD scRNA-seq
dataset (LUAD-scRNA) [10]. Based on the enrichment scores of
the 12 stemness signatures, we hierarchically clustered 3704 can-
cer cells. Likewise, these cancer cells were clearly clustered into
three subgroups, also termed St-H, St-M, and St-L, which showed
high, medium, and low enrichment scores of stemness signatures,
respectively (Fig. 5A). Consistent with the results in bulk tumors,
the stemness levels and enrichment scores of invasion and metas-
tasis processes followed the pattern: St-H > St-M > St-L (one-tailed
Mann–Whitney U test, P < 0.001) (Fig. 5B). These results support
that high stemness is associated with tumor progression pheno-
types in single cancer cells.

The DNA damage response genes, such as MLH1, MSH2, MSH3,
MSH6, PMS1, and POLD1, also showed the highest and lowest
expression levels in St-H and St-L single cells, respectively
(P < 0.01) (Fig. 5C). The inferred CNVs by inferCNV [27] were signif-
icantly higher in St-H than in St-L single cells and followed the
1699
pattern: St-H > St-M > St-L (one-tailed Mann–Whitney U test,
P < 0.001) (Fig. 5D). These results were consistent with those
obtained in bulk tumors, supporting that tumor stemness is asso-
ciated with genomic instability. We further performed unsuper-
vised clustering of cancer cells in each of the three stemness
subtypes by SC3 [25]. SC3 identified 14, 15, and 18 cell clusters
in St-H, St-M, and St-L, respectively (Fig. 5E). It suggests that
low-stemness cancer cells are more heterogeneous than high-
stemness cancer cells. We further analyzed the 3704 cancer cells
by pseudotime analysis [38]. We found that most of the St-H cells
were distributed in a branch and a few at another branch (Fig. 5F).
In contrast, single cells in St-M and St-L were evenly distributed in
three different branches. It again suggests that high-stemness can-
cer cells are the least heterogeneous among these subtypes. Pseu-
dotime analysis showed that many St-H cells were at the beginning
of the trajectory, while most St-L cells were at a later stage and
many St-L cells at a terminal state (Fig. 5F). It indicates that many
low-stemness cells are originated from high-stemness cells. In
addition, we found that few St-H cells were also at a terminal state,
suggesting that new cancer stem cells may arise with tumor
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development. GO analysis showed that low-stemness cancer cells
were enriched in immune and metabolic pathways, while high-
stemness cancer cells were enriched in cell cycle, DNA replication,
translational regulation, and chromatin remodeling pathways
(Fig. 5G).

We clustered all single cells in LUAD-scRNA by t-SNE [28].
Again, most St-H cells were in one cluster, compared to St-M and
St-L cells evenly distributed in two or more clusters (Fig. 6A). Inter-
estingly, we found that the St-H cluster was closer to the T cells
cluster and dendritic cells cluster than the St-L clusters (Fig. 6A).
Furthermore, we found that both immunostimulatory and
immunosuppressive signatures, such as antigen processing and
presentation, JAK-STAT signaling, TGF-b signaling, and PD-L1, were
more enriched in St-H versus St-L cells and also followed the pat-
tern: St-H > St-M > St-L (one-tailed Mann–Whitney U test,
P < 0.001) (Fig. 6B). CXCL16 is a chemokine for recruiting T cells
and was also expressed by tumor cells [39]. We found that CXCL16
expression levels were significantly higher in St-H than in St-L
(P < 0.001; fold change greater than 47) and followed the pattern:
St-H > St-M > St-L (one-tailed Mann–Whitney U test, P < 0.001)
(Fig. 6B). Based on the clustering result in LUAD single cells, we
classified a LUAD patient into one class of St-H, St-M, and St-L,
which contained the most cancer cells of the patient. Finally, 7, 6,
and 6 LUAD patients were classified into St-H, St-M, and St-L,
respectively. We compared the enrichment of several T cell sub-
populations, including activated CD8 + T cells, exhausted CD8 + T
cells, activated CD4 + T cells, and resting CD4 + T cells, between
St-H and St-L LUAD patients. The enrichment of an immune cell
was the ssGSEA score of its gene markers. We observed that acti-
vated CD8 + T cells, exhausted CD8 + T cells, and resting CD4 + T
cells were significantly enriched in St-H compared with St-L
(Fig. 6C). However, the ratios of immunostimulatory over
immunosuppressive signatures (activated/resting CD8 + T cells,
activated/resting CD4 + T cells, and activated CD8 + T cells/resting
CD4 + T cells) were significantly lower in St-H than in St-L (Fig. 6C).
Altogether, these results implicate that compared with
low-stemness cancer cells, high-stemness cancer cells are more
immunogenetic but are more enriched in immunosuppressive
versus immunostimulatory signatures.

For each LUAD patient, its cancer cells were clustered into St-H,
St-M, or St-L. We calculated the proportion of St-H cells in all single
cells in each LUAD patient. We found that the proportions of St-H
cells were higher in late-stage than in early-stage LUAD patients
(one-tailed Mann–Whitney U test, P = 0.094) (Fig. 6D). Moreover,
the proportions of St-H cells were higher in the progressive LUAD
patients than in the regressive or stable patients (P = 0.086)
(Fig. 6E). Again, these results support that high stemness is associ-
ated with unfavorable clinical outcomes in LUAD.
4. Discussion

Based on the enrichment scores of 12 stemness gene sets, we
identified three stemness subtypes (St-H, St-M, and St-L) of LUAD.
We demonstrated that this classification method was stable and
reproducible in five transcriptome datasets for bulk tumors and a
transcriptome dataset for single cells. Notably, 11 of the 12 stem-
ness gene sets showed significantly higher enrichment scores in
cancer tissue versus normal tissue and in cancer cells versus
non-cancer cells (P < 0.001). It supports that at least a fraction of
cancer cells are endowed with stem cell-like characteristics [40].
Among the 19 LUAD patients in the scRNA-seq dataset, we
observed the percentage of high-stemness cells ranging from 0%
to 92.8%, with 5 and 2 patients whose numbers of high-stemness
(St-H) cells were <10% and greater than 70%, respectively. It indi-
cates both intratumor and intertumor heterogeneity.
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An interesting finding is that high-stemness cancer cells appear
to be more immunogenetic than low-stemness cancer cells in the
single cell transcriptome data analysis. A potential explanation
for this is that high-stemness single cancer cells are less heteroge-
neous than low-stemness single cancer cells, while tumor hetero-
geneity may dilute tumor neoantigens [41]. Nevertheless,
because high stemness is associated with elevated genomic insta-
bility that plays a role in tumor immune evasion, it is justified that
high-stemness single cancer cells have a stronger positive correla-
tion with immunosuppressive than with immunostimulatory sig-
natures. However, in the bulk tumor transcriptome data analysis,
we found that high-stemness cancers were less immunogenetic
and had a less active anti-tumor immune microenvironment than
low-stemness cancers, an observation conflicting with that in
single cancer cells. The main reason behind this could be that
high-stemness bulk tumors have higher tumor purity and hence
lower immune cell infiltration than low-stemness bulk tumors.
Furthermore, our results showed that the association between
tumor stemness and ITH was inconsistent between bulk tumors
and single cancer cells in LUAD. That is, high-stemness bulk
tumors had significantly higher ITH than low-stemness bulk
tumors, while high-stemness single cancer cells had significantly
lower ITH than low-stemness single cancer cells. Again, this
difference could be attributed to the different tumor microenviron-
ment between high- and low-stemness bulk tumors. Overall, we
argue that the results for tumor stemness analysis at the
single-cell level are likely more reasonable than those at the
bulk-tumor level.

Abundant evidence has demonstrated that cancer cells often
derive from normal or premalignant cells that gradually lose a dif-
ferentiated phenotype and acquire progenitor cell-like or stem
cell-like features [42]. Our analysis showed that most high-
stemness cancer cells were at the beginning of the evolutionary
trajectory in cancer cells, indicating that the high-stemness cancer
cell population is enriched at the stage of cancer initiation. It is in
agreement with previous findings [42]. In addition, our analysis
showed that high tumor stemness was associated with inferior
responses to immunotherapy and targeted therapy, supporting
the characteristics of cancer stem cells conferring drug resistance
[43,44]. The reason why tumor stemness contributes to
immunotherapy resistance could be that tumor stemness pro-
motes the formation of immune-deprived TME [1]. Furthermore,
multiple factors may contribute to the resistance of cancer stem-
ness cells to targeted therapy and chemotherapy, such as a hyper-
active DNA repair capacity, a resistance to apoptosis,
overexpression of ATP-binding cassette (ABC) transporters, quies-
cence, EMT, and acquired genetic changes [45].

Based on immunogenomic profiles, Thorsson et al. identified six
immune subtypes of TCGA pan-cancer, namely C1 (wound heal-
ing), C2 (IFN-c dominant), C3 (inflammatory), C4 (lymphocyte
depleted), C5 (immunologically quiet), and C6 (TGF-b dominant)
[7]. We observed that St-H tumors mainly belonged to C2 and C1
(61.2% and 31.9%, respectively). It is consistent with that both C2
and C1 had a high proliferation rate and high adaptive immune
infiltrate [7]. In contrast, St-L tumors mainly belonged to C3
(70.2%), which was characterized by low proliferation rate and
low SCNAs. Again, it is consistent with the characteristics of low-
stemness tumors we described.

In conclusion, LUAD can be classified into three stemness sub-
types with high, medium, and low stemness signatures, respec-
tively. High stemness is associated with tumor progressive
phenotypes, unfavorable prognosis, therapy resistance, and geno-
mic instability in LUAD (Fig. 7). A dissection of tumor stemness-
associated features (such as tumor immunity and ITH) at the
single-cell level could be more precise than at the bulk-tumor
level.
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