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ABSTRACT Cell growth is driven by the synthesis of proteins, genes, and other cellular components.
Defining processes that limit biosynthesis rates is fundamental for understanding the determinants of cell
physiology. Here, we analyze the consequences of engineering cells to express extremely high levels of
mCherry proteins, as a tool to define limiting processes that fail to adapt upon increasing biosynthetic
demands. Protein-burdened cells were transcriptionally and phenotypically similar to mutants of the
Mediator, a transcription coactivator complex. However, our binding data suggest that the Mediator was
not depleted from endogenous promoters. Burdened cells showed an overall increase in the abundance of
the majority of endogenous transcripts, except for highly expressed genes. Our results, supported by
mathematical modeling, suggest that wild-type cells transcribe highly expressed genes at the maximal
possible rate, as defined by the transcriptionmachinery’s physical properties. We discuss the possible cellular
benefit of maximal transcription rates to allow a coordinated optimization of cell size and cell growth.
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Cell physiology is characterized by global parameters such as cell
growth rate and cell size. These global parameters depend on the
integrated function of biochemical, molecular processes that function
inside cells to synthesize its various components. Cells coordinate
synthesis rates by controlling the fraction of proteins allocated to each
process. This allocation is defined by the proteome composition that
best optimizes cellular fitness. In microorganisms, maximal growth
rates are particularly important for fitness, which is optimized in
combination with additional demands such as a rapid response to
changing environments. Given these constraints, a fundamental, yet
poorly understood question is what restricts the typical values of cell
growth rate and size: why do rapidly growing bacteria or yeast divide
at time scales of tens of minutes, rather than seconds or days? What

sets the typical size of these microorganisms to tens of microns, rather
than millimeters or centimeters?

One possibility is that the typical quantitative parameters char-
acterizing cell physiology are set by mechanistic constraints that limit
the biosynthesis rates within the cell. Ribosome elongation rate, for
example, defines the absolute minimal division time: during balanced
growth, doubling time must be long enough to allow one translation
complex to reproduce itself. This theoretical upper boundary cannot
be realized in cells since the translation of additional endogenous
proteins other than ribosomes is required for performing the various
cellular activities. Still, the measured growth rate in rapidly growing
yeast and bacteria do fall in the range (30–50% deviation) predicted
by this theoretical maximum of ribosome-only production (Scott
et al. 2010; Metzl-Raz et al. 2017).

Thus, the mechanistic values of ribosome elongation rate and
ribosome size play a fundamental role in setting the typical value, or
scale, of cell growth rate. Translation elongation, however, is only one
of the biochemical processes that lead to protein synthesis, raising
the possibility that additional mechanistic parameters similarly re-
strict cell physiological parameters.

We hypothesized that, given the fundamental contribution of cell
growth rate to cell fitness, processes that contribute to maximizing
growth would be driven by evolution to function at their maximal
possible capacity. Accordingly, processes that operate at their max-
imal possible capacity, defined by physical constraints, will fail to
increase further when demands increase. In the context of protein
expression, limiting processes that function at maximal capacity
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would fail to fully adapt if, for instance, production demands were to
increase. Following this reasoning, we employed cells engineered to
express increasing amounts of mCherry proteins as a tool to examine
processes that are limiting for protein production in wild-type cells.
We rationalized that a failure of limiting processes to adapt in these
protein-burdened cells fully would be recognizable based on the
cellular regulatory and phenotypic response. For example, if nu-
trients were limiting, forcing excess protein production would
further exacerbate nutrient limitation, and lead to the induction of
the known cellular response to this limitation. Similarly, if trans-
lation factors were depleted in the mCherry producing cells, it
would lead to a response similar to that found in cells deleted of the
corresponding translation factors.

We previously showed that cells burdened with excessive protein
production grow at reduced rates. By separately burdening the
translation or transcription processes, we showed that both pertur-
bations reduce growth, to the extent that depends on the environ-
mental conditions (Kafri et al. 2016). During balanced growth, the
specific growth rate is set by the proteome fraction dedicated to
producing translating ribosomes (Waldron et al. 1977; Maaløe 1979;
Metzl-Raz et al. 2017). We, therefore, examined the burdened-cells’
proteome to distinguish the basis of their reduced growth rate. This
analysis revealed four processes that contribute to the growth-rate
reduction of burdened cells. First, the mere production of mCherry
proteins increases the number of cellular proteins and, accordingly,
decrease the proteome fraction dedicated to translating ribosomes.
This is mostly a passive effect, in the sense that it happens in the
absence of any cellular regulatory change. Second, we observed that
burdened cells increase in size in proportion to the burden, and
thereby, also increase the levels of their endogenous proteins. This
effect is compensatory since it reduces the relative abundance of the
mCherry proteins and its passive impact on growth rate (Kafri et al.
2016; Jonas et al. 2018). Third, mCherry expressing cells increase the
fraction of translating ribosomes (reduce their ribosome ’reserves’), as
compared to wild-type cells, and by this, more efficiently use their
available ribosomal capacity (Metzl-Raz et al. 2017). Again, this effect
is compensating, moderating the consequences of the increase in
mCherry levels. Finally, in some conditions, changes in the overall
proteome allocation also contribute to the change in the proteome
fraction of translating ribosomes.

In this study, we wished to more directly define the molecular
biosynthesis processes that are limiting for protein production,
hypothesizing, as described above, that these processes will fail to
adapt to the excessive demand for protein production in burdened
cells under balanced growth. We analyzed the transcription signature
of these cells, as a sensitive probe to internal processes responding to
the burden perturbation. This analysis revealed that forcing high
mCherry expression altered the gene expression pattern, namely, the
relative abundances of different genes. The altered expression pattern
most closely resembles that of deletion mutants that lack elements of
the general transcription machinery, including the deletion of sub-
units of the Mediator complex (specifically the Head and Tail sub-
complexes), SAGA complex, and the SWI/SNF complex. By contrast,
the transcription signature of burdened cells had no apparent re-
semblance to that of cells deleted of translation factors, including
ribosomal components. We confirmed the phenotypic relevance of
the correlation between burdened cells and mediator mutants by
demonstrating epistatic interactions between the burden and medi-
ator mutants. Of note, only �5% of the DNA-bound Mediator
localized to the engineered mCherry locus. The relative mediator
binding to the rest of the genome was mostly unchanged, refuting the

possibility that the burden phenotype resulted from competition for
limiting Mediator. Examining the overall absolute transcript abun-
dance, we find that burdened cells increase the amounts of endog-
enous transcripts, perhaps as a consequence of their larger size. The
increase in endogenous transcript abundances was mostly uniform
between genes, but the proportional increase failed at highly expressed
genes, and genes associated with bursty transcription. This lower relative
abundance of rapidly transcribed genes explained the similar transcrip-
tional signature between burdened cells and mediator mutants.

Our results, together with data from the literature and mathe-
matical modeling, suggest that transcription is limiting in wild-type
cells growing in standard conditions. We demonstrate that wild-type
cells transcribe some genes at rates that are close to the maximal
possible rate, as defined by the elongation velocity of the RNA
polymerase and its footprint on the DNA. Consequently, transcrip-
tion rates at rapidly transcribed genes cannot increase further,
together with the general transcriptional increase we observed in
the burdened cells. To rationalize this finding, we asked what the
benefit of maximizing mRNA production could be. Modeling these
effects, we suggest that transcribing close to the biochemical limit
allows cells to maximize cell size while maintaining the evolution-
arily-optimized proteome composition that defines the allocation of
proteins between the different cellular functions.

MATERIAL AND METHODS

Media and Strains
All strains of S. cerevisiae used in this study were constructed on the
genetic backgrounds of: BY4741 (MATa his3-Δ1 leu2-Δ0 met15-Δ0
ura3-Δ0), BY4742 (MATa; his3-Δ1 leu2-Δ0 met15-Δ0 ura3-Δ0), or
Y8205 (MATa; his3Δ1; LEU2Δ0; ura3Δ0; can1Δ::STE2pr-SP_his5;
lyp1Δ::STE3pr-LEU2)(Brachmann et al. 1998; Tong and Boone 2007)
using standard genetic manipulations (see Table S1). Strains were
grown in SC medium (Sherman and Miner 2002) or SC medium
depleted of a specific nutrient. SC limiting media were prepared from
YNB without the relevant nutrient (Low Phosphate medium -
ForMedium, CYN0804, Low Nitrogen medium - BD 3101130). Phos-
phate depleted medium was made by adding phosphate in the form of
KH2PO4 to a final concentration of 0.2mM. The level of potassiumwas
preserved by adding KCl (instead of KH2PO4) in corresponding
amounts. Nitrogen limiting medium was prepared from YNB without
amino acids and ammonium sulfate (BD 3101130) by supplementing
50mMof ammonium sulfate and the essential amino acids. The various
media’s pH values were: SC = 5.0 (except for low N, where the natural
pH was about 4.9).

Deletion and double deletion strains created for validation ex-
periments were derived from BY4741 using the LiAc/SS DNA/PEG
method described (Gietz and Woods 2002). In each strain, the gene
deleted was replaced with the kanMX cassette (geneD::KANMX)
using UPTAG and DNTAG primers as described in the Yeast
Deletion Project (http://www-sequence.stanford.edu/group/yeast_
deletion_project/usites.html). The deletion was then validated with
primers A, B, and kanB.

Plasmids
p34_TDH3 and p69_TDH3 were crated as described in (Kafri et al.
2016). Plasmids and their sequences are available upon request.

Protein burden libraries creation
Protein burden libraries were generated as described in (Kafri et al.
2016). Briefly, the pTDH3-driven mCherry plasmid was integrated
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into the yeast genome after linearization by the restriction enzyme
MfeI. Following selection, single colonies were handpicked to create
several hundred candidates. The candidates’ fluorescence levels were
measured by flow cytometry. A representative library of the different
fluorescence levels (indicating different copies of burden plasmid
integration) was then created (each library typically contains tens of
strains). Nine copies of the Myc epitope were integrated into the C
terminus of Med15,16 and 22 for the generation of the strains used
for the ChIP analyses (plasmid pYM21 (Janke et al. 2004)).

Flow cytometry
Flow cytometer measurements and analysis were done using the BD
LSRII system (BD Biosciences). mCherry flow cytometry was con-
ducted with excitation at 488nm and emission at 525 6 25nm for
GFP samples. For mCherry markers, excitation was conducted at
594nm and emission at 610 6 10nm. The average number of cells
analyzed was 30,000.

Competition assays
Cells were grown overnight to stationary phase. A wild-type reference
GFP positive strain was then co-incubated with each of the mCherry
burden strains at 30�C. The initial OD was set to �0.05, and the WT
initial frequency was�50% of the total population. Following growth
in the specific condition, the number of generations was calculated
from the dilution factor. Frequencies of GFP vs. mCherry cells were
measured by flow cytometry. The cells were diluted once a day and
may have reached a stationary phase. A linear fit of the log2 for the
WT frequency dynamics was used to calculate the slope for each
competition assay. The relative fitness advantage is derived from the
slope divided by log2. The ‘% of WT division rate (m)’ is 1 + fitness
advantage. Each strain percentage of m-WT was presented against its
mCherry levels from the second day of the experiment or against its
copy number calculated from the mCherry levels. Experiments were
performed in 96 well plates.

Epistatic interactions
Epistatic interactions were performed as described previously (Segrè
et al. 2005). Briefly, we calculated the scaled epistasis between the
deletion mutants relative growth rate (Figure S4B) and the burden
effect per one integrated copy (1 - the slope of the linear fits (S), Figure
S4C) according to the equation:

~e ¼ wxy 2wxwy
�
�~wxy 2wxwy

�
�

Where Wx, Wy, Wxy are the burden relative growth rate, deletion
mutant relative growth rate, and burden relative growth rate on the
background of the deletion mutant, respectively.

Due to the burden’s small effects, we calculated ~wxy as
min  ðwx;wyÞ for wxy .wxwy .

~e denote the epistatic interaction:~e � 0, when there is no epistasis,
~e � 21 for negative epistasis and ~e � 21 for positive epistasis.

RNAseq transcription protocol and analysis
As described in Voichek et al.,(2018). Briefly: Cells were grown to
OD600 of 0.2-0.4 after.6hr in exponential growth and flash-frozen in
liquid nitrogen after centrifugation and media removal. RNA was
extracted using the Nucleospin 96 RNA kit with modifications for
working with yeast. Lysis was performed by mixing the cells with
300 ml lysis buffer [1M sorbitol (Sigma S1876), 100 mM EDTA 0.5 M,
and 100 U/ml lyticase]. The lysis mixture was transferred to a 96-well

plate that was incubated at 30� for 30 min. The plate was then
centrifuged for 10 min at 3000 rpm, and the supernatant was trans-
ferred to a 96-well plate provided by the Nucleospin 96 RNA kit,
followed by extraction as described in the kit protocol. Labeled cDNA
was created from RNA extracts, and cDNA was barcoded and then
sequenced in the Illumina HiSequation 2500 system, using a Truseq
SR Cluster Kit v3 -cBot-HS cluster kit and a Truseq SBS Kit v3-HS
run kit (50 cycles).

Processing and analysis of sequenced RNA
Processing and analysis of sequenced RNA were as described in
Voichek et al.,(2018). The analysis was based on the median of
6-8 exponentially growing biological repeats for each genomic
copy number (SC/Low N – 8; Low Pi – 6).

Flocculation assay
Flocculation assays were performed on the background ofmed12D as
follows: several double deletion strains were created as described
above in Strains in addition to burden library generated as described
above in Protein burden libraries creation. Strains were grown over-
night at 30� with shaking until saturation. Next, at time point 0, the
tubes were strongly vortexed for 30sec following OD600 measure-
ment every few seconds, as indicated in Figure 4B. OD values were
normalized to time point 0.

ChIPseq
Cells were grown overnight at 30oC, with shaking to �OD0.6-0.8.
Next, cells were washed in ice-cold PBS without Ca++ and Mg++

followed by resuspension in 2mM DSG (TS-20593, Rhenium, 50mg
DSG in DMSO, PBS without Ca++ andMg++) and agitation for 30min
at room temperature. 1% formaldehyde was added, and cells were
crosslinked for an additional 5 min. The crosslinking was stopped by
adding glycine to a final concentration of 125mM and incubating at
room temperature for 5 min. Cells were washed twice with ice-cold
DDW (3800 rpm, 4oC, 2-5 min) and flash frozen. ChIP was per-
formed as in Voichek et al.,(2018) using Dynabeads Protein G
(Invitrogen) that were incubated overnight with the Myc 9E10
antibody. Cells were resuspended in lysis buffer (50mM HEPESKOH
pH = 7.5, 140mMNaCl, 1mM EDTA, 1% Triton X-100, 0.1% sodium
deoxycholate with freshly added Protease Inhibitor Cocktail IV
(Calbiochem)) on ice and lysed mechanically with zirconium oxide
beads in a BBX24-Bullet Blender (Next Advance). Lysates were then
sonicated using a Diagenode Bioruptor Plus (35 cycles, high intensity,
30’’ on, 30’’ off). 30ml out of a total of 600ml was taken for Input
samples from each lysate. The sonicates were pre-cleared by in-
cubation with Dynabeads Protein G incubated in binding/blocking
buffer (PBSx1, 0.5% Tween, 0.5% BSA) for 1 hr at 4oC and sub-
sequently incubated with antibody-coupled beads overnight. Later,
lysates were washed on magnet with five rounds on lysis buffer, twice
with cold buffer W1 (50 mM HEPES-KOH pH = 7.5, 500 mM NaCl,
1 mM EDTA, 1% Triton X-100, 0.1% sodium deoxycholate), twice
with cold buffer W2 (10 mM Tris-HCl pH = 8.0, 250 mM LiCl,
0.5% NP-40, 0.5% sodium deoxycholate, 1 mM EDTA) and twice
with cold TE (10 mM Tris-HCl pH = 8.0, 1 mM EDTA). Then
lysates were eluted with direct elution buffer (10 mM Tris-HCl pH
= 8.0, 1 mM EDTA, 1% SDS, 150 mM NaCl, 5 mM DTT) at 65oc,
O.N with maximal shaking. Finally, DNA was purified by the
addition of 2ml RNaseA (10mg/ml), 37oc, 1hr, followed by the
addition of 1ml glycogen and 2.5ml Proteinase K (20mg/ml) to
each sample, 37oc, 2 hr. Proteinase K Inactivation by incubation at
80�c for 20min.
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ChIP libraries
DNA from the previous step subjected to SPRI cleanup with SPRI
beads 2.3x and eluted with 10mM Tris-HCL pH 8. DNA libraries for
Illumina NextSeq 2500 sequencing were prepared as in Yaakov et al.
(2017).

Processing and analysis of ChIP-seq
Reads were aligned to a joined genome of S. cerevisiae (SGD, R64-1-1)
and pBS69 plasmid. Genomic tracks were created from the sequence
reads, representing the enrichment on each position of the joined
genome. Physical fragment length was estimated by the shift best
aligning the mapped sequenced reads from both 6 strands, and
single-end sequence reads were then lengthened accordingly (in the
range of �100-130bp). The signal regions are defined as -500bp
before the TSS to the TTS (TSS to TTS coordinates taken from
(Xu et al. 2009)). Accordingly, the background regions are defined as
everything except the signal. Background removal was performed as
follows: (1) Each sample was normalized to 1,000,000 reads. (2) Signal
and Background regions were defined as above. (3) For each sample,
the mean Background value was calculated and subtracted from the
entire sample data (Signal and Background regions) (4) Negative
values were substituted with 0. Percentage occupancy on the in-
tegrated plasmid (corresponding to the amount of Mediator associ-
ated with the burden) was measured as the sum of reads on the entire
plasmid sequence from the total amount of reads in each sample.

Total mRNA
S. cerevisiae strains and wild-type S. paradoxus were grown overnight
at 30oC to OD600 �0.3. Cell size and count for each sample were
individually assayed: Next, the cultures were diluted 1:40 with 0.5M
NaCl and immediately measured in Multisizer4 COULTER COUNTER
(Beckman Coulter). A fixed amount of ODs of S. paradoxus cells was
added to twice as many ODs of each S. cerevisiae sample, such that
the OD ratio between them is constant throughout the samples. The
mixed samples were then flash frozen.

RNA extraction and library preparation were performed as de-
scribed above, and the fastq files were then processed by a pipeline for
RNAseq data that was created by Gil Hornung (INCPM, Weizmann
Institute of Science, Israel), as described in (Herbst et al. 2017). Total
reads were normalized to the ratio between the S. cerevisiae and
S. paradoxus sum-of-reads and then to the number of cells as measured
in the experiment, as described earlier. Twelve repeats in SC and six
repeats in Low Pi/N. Shown is the mean value with +- SE.

GFP fused library

Setup and procedure: Query strains for screens (Y8205 background;
mCherry burdened cells) were constructed on a synthetic genetic
array ready strain and were integrated into yeast libraries using the
synthetic genetic array method (Tong and Boone 2006; Cohen and
Schuldiner 2011). A RoToR bench-top colony array instrument
(Singer Instruments) was used to handle libraries (Tong and Boone
2006; Cohen and Schuldiner 2011). Strains from opposing mating
types harboring mCherry burden and single GFP fused protein
were mated, and diploid cells were selected. Sporulation was in-
duced (by moving the yeast to nitrogen starvation media for seven
days), and haploid cells were selected using canavanine and thialysine
(Sigma-Aldrich). By moving the haploid cells to plates containing
selections for the combination of manipulations desired, a final
library containing GFP labeled proteins on the background of low
and high burden was created.

For the screening, two 1536 well plates (plates corresponding to
the same genes in the control library and the protein burden library)
were taken out from the 4�C, and a single quarter was replicated
separately into 80ml SC 386 well plate. The 386 well plates were left
shaking at 30oC overnight. The following day, the plates were diluted
1:80 and mixed 1:3 (low:high burden) using TECAN Freedom EVO©

robot. The mixed plate was left shaking at 30oC for �4-4.5 hr for a
final OD of �0.5-1.5. Then the plate was read in FACS in a
“high-throughput” mode for GFP and mCherry with an average of
�50,000 cells.

Two biological repeats of the whole GFP-burden libraries were
produced (Figure 5E and S5F).

Analysis
For each protein in the two biological repeats, cells were divided
In Silico according to their mCherry level by manual gating, and for
each subpopulation, the median GFP was calculated. The ratio of the
two libraries was plotted against the control protein abundance, and
a trend line was calculated using MATLAB MALOWESS function
for the proteins whose fluorescence was above the autofluorescence
(�200[A.U]).

Data availability
Strains and plasmids are available upon request. The paper’s raw data
are available in fileS1 at: https://doi.org/10.6084/m9.figshare.12014937
and fileS2-4 at https://doi.org/10.6084/m9.figshare.12093624.

RESULTS

The transcriptional response to protein burden
Cells modify their gene expression when subjected to genetic or
environmental perturbations. Often, the expression signature of such
cells provides a sensitive probe of the perturbation. Accordingly,
the expression signature of cells forced to express excessive amounts
of inert mCherry protein could reveal the internal pathways and
limitations inflicted by this burden. We previously constructed a
library of budding yeast cells, with each strain containing a different
copy number (between 1-20 copies) of genomically integrated
pTDH3-mCherry constructs. These strains produce mCherry pro-
teins at increasing levels (Figure 1A), peaking at �30% of the total
cellular proteins for 20 copies. Further, these strains exhibit a linear
increase in size concomitant with a linear decrease in growth rate
(�50% and �30%, respectively, (Kafri et al. 2016)). To define the
transcription changes inflicted by the burden, we grew strains with
increasing copy number to logarithmic phase and measured their
gene expression. We repeated this profiling experiment in three
conditions: standard media (SC), media low in nitrogen (Low N),
andmedia low in phosphate (Low Pi). As expected, the overall pattern
of gene expression changed gradually with mCherry copy amounts
(Figure 1B-C).

Distinguishing expression changes specific to protein
burden from changes common to slow-growing cells
Previous studies described genes whose expression correlates with the
growth rate over a wide range of genetic or environmental per-
turbations (Hughes et al. 2000; Gasch et al. 2000; Zurita-Martinez
and Cardenas 2005; Regenberg et al. 2006; Levy et al. 2007; Brauer
et al. 2008; O’Duibhir et al. 2014). Since forced expression of
unneeded proteins reduces growth rate in proportion to the added
burden (Dong et al. 1995; Shachrai et al. 2010; Scott et al. 2010;
Makanae et al. 2013; Kafri et al. 2016), transcription changes
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Figure 1 The transcription signature of burdened cells: (A) Engineering libraries of burdened cells: Transforming yeast with a linearized plasmid
harboring TDH3 promoter-driven mCherry results in a variable number of genomic tandem integrations per cell. Individual clones with increasing
copy number are taken for further analyses. See methods for details. (B) Cellular transcription response changes gradually with the level of forced
expression: Shown are the Pearson correlations rbetween the transcription profiles of cells burdenedwith the indicatedmCherry copy number, grown
in the indicated conditions. Expression levels were normalized by their mean value in the specific condition and log2-transformed. (C) Expression
levels: The top and bottom1000 affected genes were selected and sorted by the strongest changewith the relative growth rate in standardmedia SC.
The expression is shown as a function of cell growth rate (x-axis) relative to WT, corresponding to the indicated burden copy number.
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observed in these cells could result from their slow-growth
phenotype. To distinguish expression changes that are specific
to the burden from those that are general consequences of slow
growth, we compared our data to two published compendiums
reporting transcription profiles and growth rates. The first dataset
described wild-type cells grown in chemostat-based environments
(“Environmental Perturbations” (Brauer et al. 2008)). The second
described 1,484 viable deletion mutants grown in non-stress con-
ditions (“Genetic Perturbations” (O’Duibhir et al. 2014; Kemmeren
et al. 2014)). In each dataset, we defined the degree at which gene
expression changes with growth rate (Eg, Figure 2A, Figure S1A).
This analysis provided us with three directly comparable gene-
specific measures for each dataset (“Burden,” “Genetic,” and
“Environmental” perturbations).

The growth-rate responses observed in the genetic and envi-
ronmental external datasets were highly correlated (Figure 2B). By
contrast, the burden response was notably different (Figure 2C-D).
Therefore, the majority of expression changes observed in the
burdened cells resulted explicitly from the forced production of
proteins. To understand these changes, we tested for classes of
genes preferentially affected. We checked the enrichment of gene
groups defined by GO-slim, binding to the same transcription
factors, and co-expression in multiple datasets (Ihmels et al. 2002,
2004) (Figure 2E, Figure S2A). Hsf1-dependent chaperones were
consistently induced in the burdened cells throughout conditions.
However, the induction of this gene group was not unique to the
burden but also seen in the other slow-growing perturbations. We did
not detect any other group using this enrichment test. In particular,
neither GCN4-dependent genes, reporting on amino-acid depletion,
nor oxidative-phosphorylation genes, related to energy balance, showed
a consistent change with the increasing burden. Indeed, the specific
rates of glucose uptake and ethanol production remained invariant
to the burden, suggesting that central metabolic fluxes remained
mostly unaltered in response to the protein burden (Figure S2B-C).

Burdened cells correlate with mutants perturbing
transcription initiation
As a complementary approach to predict cellular processes perturbed
in burdened cells, we measured the correlations between the tran-
scription changes caused by the burden and the transcription sig-
natures of the 1,484 gene-deletion mutants (O’Duibhir et al. 2014;
Kemmeren et al. 2014) (Figure 3A “Burden Effect”, Figure S3A).
To control for growth-related changes, we also correlated the
mutants with the growth-related transcription response, namely
the expression changes that correlate with the change in growth
rate (Figure 3A “Growth Effect”).

Burdened cells reallocate ribosomes for translating the mCherry
protein. This, together with the fine-tuning of ribosome content
with growth rate found in wild-type cells, led us to expect that the
burdened cells will show a transcription signature that best corre-
lates with that of translation-perturbing mutants, such as deletion of
ribosomal components. However, this was not the case: there was
little similarity between the transcription signature of the burdened
cells and that of translation mutants (Figure 3B, left; Figure S3B-C).
The “translational buffer” we have reported (Metzl-Raz et al. 2017)
might allow cells to partially compensate for the effective (passive)
dilution of ribosomes. Thus, cells do not sense significant depletion
of the translation machinery, hence the lack of correlation with
translation mutants. It may also be that the translation regulatory
response is below our detection limit and that the more substantial
effect of transcriptional machinery depletion dominates. Correlations

between the burden signature and the signature of mutants associated
with the protein or mRNA degradation were also low (Figure S3B).

The majority of mutants that correlated most strongly with the
burdened cells were associated with gene transcription. These include
deletions of RPB9, the only non-essential component of the RNA-
Polymerase II profiled in the compendium, and of components of the
chromatin-remodeling complexes SAGA and SWI-SNF. Particularly
high correlations were found with mutants of the Mediator complex
(Figure 3B, middle and right; Figure S3B, D). The Mediator plays a
central role in transcription initiation and re-initiation by physically
linking specific transcription factors with the general machinery. The
mediator complex is composed of a tail sub-complex, which binds
Upstream Activating Sequences (UASs) and recognizes particular
transcription factors, a head sub-complex, which binds RNA poly-
merase II, and a middle sub-complex that bridges the head and tail
sub-complexes (Sikorski and Buratowski 2009; Ansari and Morse
2013; Allen and Taatjes 2015; Malik and Roeder 2016; Tantale et al.
2016; Jeronimo and Robert 2017; Soutourina 2017; Haberle and Stark
2018). An additional inhibitory sub-complex of the Mediator, the
Kinase, competes with the RNA polymerase for the same binding site
on the Mediator complex and needs to dissociate to allow polymerase
binding and transcription initiation (Andrau et al. 2006; Aristizabal
et al. 2013; Gonzalez et al. 2014; Clark et al. 2015; Jeronimo et al. 2016;
Petrenko et al. 2016). Of the seven subunits of the Mediator tail or
head sub-complexes whose signature is available in the compendium,
six were correlated with the burden response. By contrast, mutants
of the middle or inhibitor kinase sub-complexes showed no such
correlation (Figure 3B, right. Except for MED31, whose subunit
association is somewhat ambiguous (van de Peppel et al. 2005)).

Phenotypic similarity between burdened cells and
mediator mutants
To verify that the similarities in gene expression between burdened
cells and mutants of transcription initiation reflect shared internal
perturbations, we focused on mutants of the Mediator complex. As a
validation of our screen, we re-engineered the respective mutants and
profiled their gene expression, verifying the correlation between their
transcription signature and that of the burdened cells (Figure S3B-D).
Mutants that affect the same process often exhibit epistatic interactions
(Elena and Lenski 1997; Lenski et al. 1999; Hartman et al. 2001;
Phillips 2008). To examine whether this is also the case for protein
burden and Mediator mutants, we prepared burden libraries in the
background of mediator mutants (Figure S4B-C,F). We measured the
relative fitness of cells in these libraries and quantified their epistatic
interactions using the formalism suggested by Segrè et al. (2005).
Negative epistasis was observed between the burden andmediator tail
or head mutants, consistent with the similarity in their transcription
profiles (Figure 4C). Conversely, mutating the middle sub-complex
did not result in a negative epistatic interaction and showed a positive
(alleviating) interaction with the burden (Figure 4C, Figure S4D).

Next asked whether burdened cells show phenotypes that are
similar to those exhibited by mutants of the Mediator’s head or tail
sub-complexes. Cells deleted of the Mediator Kinase inhibitory sub-
complex are pseudo-hyphal and flocculate when growing in liquid
media (Hengartner et al. 1995; Holstege et al. 1998). This phenotype
is reverted by deleting components of the Mediator tail or head sub-
complexes, but not by deletion of middle sub-complex components
(Palecek et al. 2000; van de Peppel et al. 2005; Gonzalez et al. 2014;
Law et al. 2015; Jeronimo et al. 2016) (Figure 4A). We, therefore,
asked whether protein burden will similarly revert the floccu-
lation phenotype of kinase-deleted cells. This was indeed the
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Figure 2 The transcriptional response to protein burden is distinct from the slow growth program: A) Growth-rate response (“Eg”): Shown are the
expression levels of SIS1 (black) and RPL16A (blue) measured in strains of the three indicated datasets as a function of the relative growth rate. The
gene-specific growth rate responses are defined by the slope (Eg) of this relation, as indicated. (B-D) Genome-wide correlations between growth
rate responses of burdened cells and perturbed cells: Shown are the values of the growth rate expression responses for all genes between the
specified datasets (B, C), with the Pearson r correlation indicated. Pearson correlations between all datasets are shown in (D). (E) Gene-groups
showing a coherent growth-rate response: The set of genes exhibiting the most significant growth rate response was defined for each dataset.
These sets of genes were compared with predefined gene groups associated with a joint function or regulatory properties. Shown are groups with
significant enrichment in at least one gene-set (See also Figure S2A).
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case: increasing mCherry expression in kinase-deleted cells progres-
sively reduced flocculation (Figure 4A-B, Figure S4A). Therefore,
the protein burden phenocopies the mediator tail or head mutant
phenotype, consistent with their similarity in gene expression.

Taken together, the pattern of epistatic interactions between
burden and mediator mutants is consistent with the similarities in
their gene expression profiles and flocculation phenotypes.

Protein burden does not depletemediator subunits from
endogenous promoters
The similarities in gene expression and phenotypes between bur-
dened cells and mediator mutants may be explained if mCherry
production depletes the Mediator from endogenous promoters. To
examine this, we measured the genome-wide binding profiles of three
Mediator head and tail subunits using ChIP-Seq. Binding patterns
at endogenous genes were insensitive to the burden (Pearson Cor-
relation of 0.98 Figure 4D-E, Figure S4E). Further, even in the strains
that expressed �15 copies of the mCherry gene and showed �25%
growth defect, only �5.5% of detected binding events were localized
to the integrated mCherry construct (Figure 4F). The binding levels

suggest that the Mediator is not depleted from endogenous promoters,
but we cannot rule out this possibility due to the complexities of
conventional ChIP (Teytelman et al. 2013; Jeronimo and Robert
2014; Paul et al. 2015; Hu et al. 2015). We also note that our relative
ChIP measurements cannot exclude the possibility that the total
amount of mediator binding is lower in burdened cells. We find this
unlikely, though, as we see no significant decrease inMediator’s genes
expression levels.

An increase in absolute total mRNA levels in burdened
cells leads to a transcription initiation dependent
differential expression pattern
Mutants of the mediator complex preferentially perturbed the ex-
pression of highly expressed and TATA-containing genes (Zenklusen
et al. 2008; Corrigan et al. 2016; Cho et al. 2016; Larsson et al. 2019).
This effect is attributed to the mediator role in transcription
initiation and re-initiation, which is expected to be particu-
larly important in highly expressed genes, and in genes that are
expressed in rapid bursts, as implicated for TATA-containing genes
(Tirosh et al. 2006; Contreras-Levicoy et al. 2008; Ravarani et al. 2016;

Figure 3 Transcription signature of burdened cells correlates with that of transcription-perturbing mutants: (A) Correlations between the
burden response and the transcription response to gene-deletion mutants: Shown are the Pearson r correlations between the growth-rate
response Eg (measured in the indicated dataset and condition, FileS4), with the transcription signature of each individual gene-deletion
mutant. Mutants are ordered by the correlation values with the burden response, averaged over the three conditions. Specific mutants are
highlighted, as indicated (see also Figure S3A). (B) Distinguishing mutants that correlate specifically with the burden response: Correlations
between mutant signature and burden response (as in A, averaged over the three conditions) are plotted as a function of the correlations between
mutant signature and growth-rate response (as in A, averaged over the genetic and environmental responses). Each dot is a mutant, color-coded
as indicated. See also Figure S3B.
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Urban and Johnston 2018; Wang et al. 2019). We reasoned that the
same signature characterizes the burden transcriptional response,
explaining its similarity with the mediator mutants. This was indeed
the case: the relative expression of highly expressed genes, and in
particular, those containing TATA in their promoters appeared to
decrease in burdened cells as compared to wild-type (Figure 5A-C,
Figure S5G). Of note, the same signature was also found in slow-
elongating RNA polymerase II mutants (e.g., mutants of the PAF1
transcription elongation complex (Figure 5D, Figure S5C)), but was not
a general consequence of slow growth, as this expression signature was
not seen in the majority of slow-growing mutants (Figure S5A).

The expression signature we measure defines the relative gene
expression, namely the abundance of each transcript relative to that of
all other transcripts. The reduction of highly expressed genes in
relative expression could indicate their lower relative induction.
Alternatively, this signature can be a consequence of a global increase
of absolute expression levels, which fails to increase the expression of
the highly transcribed genes (Figure S5G). The fact that burdened
cells increase in size and in protein content (Figure 5E, Figure S5E-F,

(Kafri et al. 2016; Metzl-Raz et al. 2017)) led us to consider this
second possibility. Indeed, previous studies have shown that mRNA
abundance scales with cell size in response to different perturbations
(Mitchison 2003; Zhurinsky et al. 2010; Marguerat and Bähler 2012).

To examine if burdened cells increase the overall abundance of
endogenous genes, we compared the total mRNA amounts using an
S. paradoxus spike-in as a normalization standard. As we hypoth-
esized, total absolute mRNA content in the burdened cells was
significantly (�75%, SC) higher than in wild-type (Figure 5F) and
verified the absolute increase we observed for each protein (Figure
5E). Therefore, the majority of gene transcripts increase in abundance
in the burdened cells, to the extent that exceeds the size increase of
these cells.

The mechanistic limit restricting transcription rates
Our results suggest a parsimonious explanation for the transcription
signature of burden cells: forced protein production increases cell size
and concomitantly increases overall transcription capacity. A pro-
portional increase in the abundance of most endogenous transcripts

Figure 4 Genetic interaction between burden and Mediator mutants: (A-B) Protein burden phenocopies mutants deleted of mediator head or
tail components: Shown are flocculation phenotypes, quantified as described in Methods. Deletion of the mediator kinase subunit MED12 induces
flocculation, but this is reverted when deleting components of the head or tail sub-complexes, or by introducing protein burden. Note the gradual
effect of increasing burden in this phenotype (B and Figure S4A). (C) Epistatic interactions between burden and mediator mutants: Burden
libraries were prepared in the background of the indicated mutants, and growth rates were quantified using sensitive competition assays. Epistatic
interactions were defined, according to Segrè et al. (2005) (methods). (D-E) ChIP-Seq suggests that binding of the Mediator to endogenous
promoters is invariant to protein burden: Genomic binding profiles of the indicated mediator components were profiled in high and low burden
strains usingChIP-Seq. Read coverage along chromosome IX (left) and at themCherry locus (right) are shown in (D), and promoter-averaged binding
strengths in the high vs. low burden strains are shown in (E). Background signal was removed, see Methods. Note the increased binding to the
TDH3-mCherry promoter in the high-burden cells. The fraction of the Mediator that binds to the burden constructs is shown in (F) for the three
indicated Mediator subunits in three repeats.
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Figure 5 Transcription-promoting feedback activated in burden cells: (A-C) Relative expression of high-abundance genes tends to decrease in
burdened cells: Shown are the relative changes in gene expression in burdened cells as a function of absolute mRNA abundance in wild-type cells
(A). This effect is accentuated in TATA containing genes (B), with the lines showing the linear fit and the shading the SEM. The expression-
dependent bias was quantified by the slopes (d) of these dependencies. Averaged values of this bias, calculated in the different datasets, are also
shown (C). Error bars represent SEM. (D) Mutant strains preferentially affect highly-expressed, TATA-containing genes: The expression-dependent
bias (d) was calculated for each deletion mutant, as in B. Shown are the values of this bias as a function of the mutant growth rate. Genes associated
with transcription initiation and elongation are marked. (E) Cells burdened with mCherry production increase their endogenous protein levels:
Shown are individual measurements of each protein-GFP fusion in the GFP library in the high burden strain vs. low burden. The mean increase in
GFP across all informative proteins (above the detection limit marked by the vertical dashed line) is�15%. Smoothed data are shown in green using
Lowess (malowess, MATLAB 2018a). (F) Burdened cells increase the overall amounts of endogenous transcripts: The total amount of mRNA was
measured using sequencing, calibrated by an external spike-in reference. Values from the literature are indicated; see text for details. (G) The
maximal possible limit of transcription initiation rate: A new initiation event can only occur once the polymerase has elongated away from its
initiation site. This elongation rate, therefore, defines an upper bound on the possible rates of transcription initiation. (H-I) Simulation of the
transcription initiation process: The model assumes that initiation attempts are stochastic, characterized by some attempt rate. An attempt is
deemed successful if it occurs at a sufficient delay from a previous successful attempt. This delay corresponds to the time required for the
polymerase to clear the initiation site. Shown is the frequency of successful initiation events as a function of the attempt rate (H). The consequence of
increasing the frequency of the overall attempts, as we assume it happens in burdened cells, is shown in (I), where the blue line is cubic smoothing
spline. Note the limited efficiency of this feedback at genes transcribed at high rates.
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and proteins follows. This increase, however, fails at rapidly tran-
scribed and bursty genes. Our interpretation is that wild-type cells
transcribe highly expressed genes at rates that approach the maximal
possible limit, and are thus incapable of further increasing their
transcription in burdened cells.

We examined the consistency of this model with published data.
The rate of transcription initiation is limited by the time required for
the polymerase to elongate away from its initiation site (Ehrensberger
et al. 2013; Choubey et al. 2015). Considering the polymerase
footprint on DNA (�35bp) (Brabant and Acheson 1995; Selby et al.
1997), this imposes a maximal initiation rate of �1.2 sec/transcript,
corresponding to an average elongation rate of 2 kb/min ((Edwards
et al. 1991; Mason and Struhl 2005; Pérez-Ortín et al. 2007; Darzacq
et al. 2007; Swinburne and Silver 2008; Zenklusen et al. 2008; Ko�s and
Tollervey 2010; Pelechano et al. 2010), FileS2 & FileS3, Figure 5G).
Initiation rates are expected to vary widely between genes, depending
on their expression levels and burst frequencies, with measured
initiation rates available for only a few genes. Still, several of these
measurements report initiation rates that are on par with this maximal
limit: The Drosophila hsp70 transcript, for example, is produced every
�1.5-3 sec (Lengyel and Graham 1984), similar to the production rate
of the Dictostylium Act1 gene during transcription bursts (Corrigan
et al. 2016). In budding yeast, oxidant-exposed cells produce TRR1
transcript at estimated four-second intervals (Monje-Casas et al. 2004).
Similar rates were measured for the PDR5 gene during its transcription
bursts (Zenklusen et al. 2008) and estimated for HIS1 transcripts driven
by strong promoters (Iyer and Struhl 1996). Further, estimating
initiation rates based on measured values of mRNA abundance and
degradation rates are also consistent with these high initiation rates,
suggesting that highly expressed genes, and in particular those pro-
duced in bursts, are transcribed at rates that approach the theoretical
maximum (FileS3).

We next used mathematical simulations to examine if our model
of burdened cells can recapitulate the observed signature. Specifically,
we simulated stochastic transcription, where an attempt to initiate
transcription is successful only if it occurred at a sufficient delay from
the previous one, allowing clearance of the polymerase binding site.
We then considered genes whose transcription is initiated at different
frequencies and measured the frequency of successful events. As
expected, the rate of successful initiation events approaches satura-
tion at frequencies significantly lower than the theoretical maximal
rate (Figure 5H). Increasing the overall transcription capacity further
increases the expression of the majority of genes, but fails at highly
expressed gene, recapitulating the transcription signature of burden
strains (Figure 5I).

DISCUSSION
In this work, we set out to determine processes that limit protein
synthesis in cells.We approached this by examining the consequences
of forcing cells to express high levels of unneeded proteins. Our
guiding hypothesis was that processes that are limiting and therefore
carried out at maximum capacity in wild type cells would fail to adapt
to this increasing demand. To identify such processes, we compared
the transcription signature of burdened cells with the respective
signatures of hundreds of gene-deletion mutants. We initially
expected that the need to translate high levels of mCherry proteins
will deplete ribosomes from endogenous transcripts and will, there-
fore, reflect conditions of insufficient translation, corresponding to
deletions of translation factors or ribosome subunits. This, however,
was not the case. Rather than translation-perturbing mutants, we
found that the burdened cells mostly resemble mutants deleted of

components of the general transcription machinery, most notably the
head and tail mediator subunits. We examined if this shared signature
resulted from the depletion of Mediator subunits from endogenous
promoters and found this unlikely as only �5% of the bound
Mediator localized to the burden constructs and mediator binding to
endogenous loci remained invariant. Our data suggest that Mediator
is not depleted from endogenous promoters, but we cannot rule out
this is a possibility due to the complexities of conventional ChIP
(Teytelman et al. 2013; Hu et al. 2015).

Modeling the transcription process highlighted a limitation of a
very different nature: a physical limit that restricts the maximal
possible rate of transcription initiation. This limit is set by the
polymerase’s molecular properties: its DNA footprint and the rate
by which it elongates along the transcript to clear the promoter for
another incoming polymerase (promoter clearance). Available data
suggest that this limit is relevant for in-vivo transcription rates, as
highly transcribed genes appear to be transcribed close to this limit
(FileS2 & FileS3). We found that protein-burdened cells increase the
amount of endogenous mRNA, probably as a consequence of their
larger size, caused by perturbed size-regulation. This increase, how-
ever, is limited in highly expressed and bursty genes. The transcrip-
tion signature of burdened cells can, therefore, be explained by their
inability to induce further the expression of genes that are already
transcribed close to their limit. However, we do not think that the
majority of growth defects we describe come from this change in
expression. Multiple factors contribute to growth reduction, includ-
ing the (passive) dilution of ribosome concentration, as discussed in
our previous study (Metzl-Raz et al. 2017).

Why would cells transcribe genes close to this upper bound of
maximal transcription? Could there be a functional benefit in max-
imizing mRNA production?

We suggested that this optimization allows cells to grow in steady-
state conditions to maximize their overall protein content (and cell
size) while maintaining the internal distribution of proteomic groups
that are compatible with optimal growth. Indeed, as part of this
optimal growth, the proteome fraction dedicated to translating
ribosomes is defined. The ribosomes will be able to translate
efficiently only as long as sufficient mRNAs are available as a sub-
strate (Figure 6, below the “Critical Size”). Therefore, maximizing the
number of available transcripts defines the number of ribosomes that
can simultaneously translate, which in turn, defines the maximal
number of cellular proteins (and cell size) compatible with conditions
of optimal growth.

Note that the relationship between cell size (protein content) and
cell growth relates to evolutionarily optimized conditions. It does not,
however, capture changes in cell growth or cell size caused by genetic
perturbations. Indeed, the later does not comply with optimal
conditions, and accordantly, shows varying relationships depending
on the precise perturbation.

Whether cells work close to this limit of maximizing the ribosome
number is not clear: Budding yeast expresses an estimated 200,000
ribosomes, compared to 35,000 transcripts (FileS2 & 3 and Miura
et al., (2008)). If ribosomes bound all mRNAs at the same efficiency,
this would amount to an average of�8 ribosomes per mRNA (Arava
et al. 2003; Zenklusen et al. 2008). Considering the footprint of a
ribosome on mRNA (�35bp (Brabant and Acheson 1995; Selby et al.
1997)), we expect a rather low ribosome density on most transcripts.
However, the extent to which mRNA restricts ribosome numbers
should be evaluated based on the highest ribosome densities found
at rapidly translated genes. Ribosome densities are higher at gene
beginnings, where elongation is slower. Indeed, it was estimated that
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20% of ribosomes are positioned adjacent to another ribosome, being
detected as a single footprint in ribosome profiling experiments
(Diament et al. 2018). At least in some transcripts, this high density
may argue that ribosome number is adjusted to mRNA abundance, to
utilize the available transcripts, and maximize cell size fully.

We note that our model considers conditions of balanced steady-
state growth. It has been previously reported that increased cell size
(and decreased cell growth rate) are also caused by cell cycle arrest
(Zhurinsky et al. 2010; Neurohr et al. 2019). As these conditions
diverge from steady-state growth, we do not expect transcription rates
to retain their typical values.

S. Pombe mutants with an increased size grew �10% slower, with
the transcription rate/protein decreasing by a similar fraction (Zhurinsky
et al. 2010). Still, the total RNA transcription rate per DNA almost
doubled in these large cells. In these conditions, we would indeed
expect to see a specific effect on high-expressing genes. This could
indicate that s. pombe did not evolve to co-maximize cell size and growth
rate (at least in the conditions tested in this paper where wild-type
growth is relatively slow). Alternatively, it could be that the microarray
technology available at the time was not sensitive enough to observe
the relative reduction in the expression of highly expressed genes.

Taken together, we propose that maximizing transcript produc-
tion, under steady-state and balanced growth, may serve to increase
the maximal cell size (or protein content), for which cells can still
maintain optimal growth. The maximal possible initiation rate, which
limits this production, may, therefore, serve as a fundamental phys-
ical constraint, limiting cell size. This is analogous to the time of
ribosome translation, which is the fundamental unit defining the cell
growth rate. These two physical constraints on transcription and
translation, set by the basic biochemical parameters inherent to these
processes, may define the characteristic values of the division time
and size of rapidly proliferating cells.
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