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Introduction
Stroke is the second commonest cause of death and leading 
cause of adult disability worldwide (Bonita et al., 2004). It 
is also a serious public health problem in China. It was esti-
mated that about 1.5–2 million new strokes occurred each 
year in China (Liu et al., 2007). Ischemic stroke is the most 
prevalent type of stroke (representing 62.4% of strokes in 
China and 87% of strokes in the USA), and hemiparesis is 
its most common consequence (Zhang et al., 2003; Go et al., 
2013). Because the most common type of ischemic stroke 
occurs in the middle cerebral artery (Dobkin, 2004) and 
primarily affects the upper limbs, many stroke survivors 
lose upper-limb function, which substantially limits their 
ability to engage in basic activities of daily living. Moreover, 
there are only 14,000 registered rehabilitation therapists in 
all of China (Jones and Skinner, 2013), which translates into 
one therapist for every 62,400 Chinese people who suffer 
an ischemic stroke). This gap between the number of post-
stroke hemiplegia patients and therapists is extremely large. 
Therefore, it is imperative for China to develop effective, 
self-administered, home-use rehabilitation training systems 
that focus on the upper limbs for these patients.

Several advanced rehabilitation techniques have been de-

veloped. Studies suggest that active, repetitive, task-specific 
movement of the impaired limb is important for facilitating 
motor recovery after stroke (Taub et al., 1993, 1999). Con-
tinued therapy with advanced rehabilitation techniques, 
such as constraint-induced movement therapy (Taub et al., 
1999; Grotta et al., 2004), robot-assisted movement (Lum et 
al., 2002; Kwakkel et al., 2007), electromyography-triggered 
neuromuscular electrical stimulation of paretic muscles 
(Cauraugh et al., 2000), motor imagery techniques (Dickstein 
and Deutsch, 2007), and bilateral symmetric exercise (Cau-
raugh and Summers, 2005; Lin et al., 2010) may improve 
motor function in the paretic limbs of stroke survivors for 
more than 6 months after stroke. However, many emerging 
therapies require residual movement of the impaired limb, 
which limits their application. Moreover, some of these tech-
niques require long intensive therapy sessions or expensive 
equipment, which make them difficult to implement in the 
current health care environment (Knutson et al., 2007). 
Therefore, these principles and techniques may be inappro-
priate for self-administered, home-use, rehabilitation train-
ing systems. 

Contralaterally controlled functional electrical stimula-
tion (CCFES) (Knutson et al., 2007, 2012) is another prom-
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ising therapy for hemiplegia rehabilitation after stroke. 
This method uses signals from bend sensors placed on 
the non-paretic side of the body to regulate the intensity 
of electrical stimulation delivered to the paretic muscles 
of the homologous limb on the opposite side of the body. 
The advantages of this therapy, such as being applicable to 
severely disabled stroke survivors and not requiring long 
intensive therapy sessions or equipment, have been pre-
viously discussed (Knutson et al., 2007). However, in the 
original system, the intensity of electrical stimulation only 
depends on the angle of the limb, which is detected by the 
bend sensor, and not on the force exerted by the unaffected 
limb. Moreover, in these FES systems (Knutson et al., 2007; 
2012), hemiplegic patients can only practice one training 
movement at a time. In contrast, the stimulation intensity 
in our new system proposed here is modulated by force and 
the system is designed for multi-movement rehabilitation 
training.

Methods 
Modulation of stimulation intensity 
We used surface electromyography (SEMG) as an indicator 
of limb force. Here, we propose a stimulation-generating al-
gorithm. Briefly, a threshold for the magnitude of the SEMG 
and a maximum frequency are set within the algorithm. 
When the amplitude of the SEMG exceeds the threshold, 
one electrical pulse for stimulation is triggered. The maxi-
mum frequency determines the maximum intensity of the 
generated pulse sequence. To maximize the performance of 
the algorithm, the threshold and maximum frequency need 
to be chosen carefully. 

Six male healthy subjects (aged 25–30 years) were recruited 
randomly for testing the stimulation-generating algorithm, 
and informed consent was obtained from each subject. Note 
that none of the subjects in this part of the study were stroke 
patients. Each subject participated in four sessions. During 
each session, subjects were comfortably seated and instruct-
ed to keep their wrists in a certain position as 0, 1, 2, or 3 kg 
weights were applied to them (Figure 1A). The weight in the 
first session was 0 kg, and this was increased by 1 kg in each 
subsequent session. Subjects rested for 3 minutes between 
each session to prevent muscle fatigue. During each session, 
subjects were instructed to maintain their wrist positions for 
5 seconds, and the SEMG signal of the extensor carpi radialis 
longus muscle was recorded using a Bagnoli-16 EMG system 
(Delsys Inc., Natick, MA, USA) with 10-kHz sampling rate 
(Figure 1B). To obtain a stable signal, SEMG signals in a 3- 
to 4-second time window were used for analysis. Because 
maintaining wrist position with different weights can be 
considered an isometric contraction of the extensor carpi 
radialis longus muscle, the weight may be considered as an 
index of the muscle contraction. Therefore, the weight has 
been normalized to maximal voluntary contraction (MVC). 
The generated stimulation frequency (SF) (pulse number per 
second) at different MVCs can be seen in Figure 1C (black 
squares). Note that the SEMG threshold for each subject was 
different. 

The relationship between the MVC and the stimulation 
frequency generated by the stimulation-generating algo-
rithm can also be seen in Figure 1C. Linear and square fits 
were used to illustrate the relationship between the MVC 
and stimulation frequency, and the fitting result is presented 
in Table 1. The R-square value indicates the goodness of fit 
of the model, with higher R-square values indicating a better 
fit to the data (Draper and Smith, 1998). We also calculated 
the statistic linearity defined by equation (1), which indicates 
the residuals from the linear model. In equation (1), ΔSFmax 
is the maximal deviation between the data and the fitted line; 
SFmax and SFmin are the maximal and minimal stimulation 
intensities, respectively.

                                                                                             (1)

Figure 1 and Table 1 clearly show that SF increased with 
MVC, indicating that stimulation frequency can be modu-
lated by the force exerted by detected muscle. Note that, for 
some subjects, the SF was not zero even when the weight 
was zero because of the weight of the subject’s hand. The 
stimulation-generating algorithm can be implemented by 
a micro-controller unit (MCU) in real-time at a very low 
computing cost. The hardware implementation is based on 
the timer interrupt service request (ISR) of the MCU, and 
the implementation flowchart can be seen in Figure 2. 

The stimulation-generating algorithm is executed every 
500 μs when the timer interrupt of the MCU occurs. The 
digital to analog converter (DAC) updates the output ac-
cording to the execution result of the algorithm. The worst 
execution time of this algorithm was measured as 29.4 μs us-
ing an 8-MHz MCU clock with a 2-kHz sampling rate (only 
5.88% of the maximal computing capability of the MCU). 
Therefore, based on this finding and those presented in Fig-
ure 1 and Table 1, we concluded that at a very low comput-
ing cost, the proposed stimulation-generating algorithm can 
be used to modulate the intensity of the electrical stimula-
tion according to the force exerted by the muscle. 

Classifier for multi-movements 
To implement multi-movement FES training, the sin-
gle-channel stimulation-generating algorithm proposed 
above was improved using a support vector machine (SVM). 
The SVM is a supervised learning model with an associated 
learning algorithm that is used for classification and re-
gression analysis (Cristianini and Shawe-Taylor, 2000). The 
primary improvement in the algorithm was an increased 
number of SEMG recording channels, using the proposed 
stimulation-generating algorithm for each channel and 
the SVM to determine which channel should generate the 
output stimulation. We chose wrist extension and flexion to 
test the performance of the improved algorithm. The same 
subjects who tested the stimulation-generating algorithm 
(see “Modulation of stimulation intensity”) were recruit-
ed for the SVM training, and informed consent was again 
obtained from each subject. Ag/AgCl ECG electrodes with 
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Figure 1 Schematic representation of the experiment (A), signal acquisition software (B), and relationship between maximal voluntary 
contraction (MVC) and the generated stimulation frequency (SF) in six participants (C).
(1) Bagnoli-16 EMG system; (2) main amplifier; (3) EMG sensor; (4) sensor input module; Thr: threshold. 
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are denoted as Dj. The thresholds for CH1 and CH2 are de-
noted as thrx and thry. If Dj did not satisfy

                                                  or                ,                      (2)

it was discarded. The remaining Dj values were fed into the 
classifier, defined as 

                                                                                         ,                   (3)

where si are the support vectors, ai are the weights, b is the 
bias, and k(•) is a kernel function. In this case, we chose a 
linear kernel.

When equation (3) equaled 1, (xj, yj) was classified as 
‘wrist extension’, and when equation (3) equaled −1, it was 
classified as ‘wrist flexion’. Considering the complexity of the 
hardware implementation, from equation (3), we derive the 
boundary equation of the two classes:

                                                                                                                (4)

Figure 2 Hardware implementation flowchart of the stimulation- 
generating algorithm. 
OUT is the array storing the stimulating waveform; ou is a pointer 
of OUT indicating which element of OUT is being outputted by the 
digital to analog converter (DAC); BASE is the output baseline voltage 
of the DAC. The digital value of surface electromyography at this mo-
ment, labeled as x, is acquired by the analog to digital (A–D) conver-
sion. thr is the threshold for the amplitude, and non is the constraint 
for the maximum stimulating frequency. cnt is a counter for regulating 
the stimulating frequency.

Figure 3 Schematic representation of the surface electromyography 
recording procedure (A) and a scatter plot showing the analog to 
digital (AD) values for each channel (n = 5) (B).  
CH1: Channel 1; CH2: channel 2.
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a diameter of 10 mm were used as SEMG recording elec-
trodes because of their low half-cell potential (approximately 
220 mV), their accessibility, their ability to reject motion 
artifacts, and their response to defibrillation currents (Lee 
and Kruse, 2008). Three electrodes were placed on the flex-
or carpi radialis muscle (agonistic muscles for wrist flexion) 
and the extensor carpi radialis longus muscle (agonistic 
muscles for wrist extension), for a total of six electrodes on 
the left arm (Figure 3A). The SEMG signal was recorded 
using the prototype system (flexor muscle: channel 1 [CH1]; 
extensor muscle, CH2). Signals detected from subjects 1–5 
were used for training the SVM, and those from subject 6 
were used for testing the prototype system. 

A scatter plot of CH1 analog to digital (AD) values versus 
CH2 AD values is shown in Figure 3B (CH1, red; CH2, blue; 
n = 5). For each data point (xj, yj), xj and yj are the AD values 
at moment j of CH1 and CH2, respectively. The data (xj, yj) 
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Where six and siy are the respective x- and y-axis values of 
the support vector si. The values for six, siy, ai and b can be 
calculated with the SVM toolbox in Matlab (MathWorks 
Inc., Natick, MA, USA) based on the recorded experimental 
SEMG data. Substituting the calculated value into equation 
(4), we obtain the following boundary equation:

                                                     y = 0.5 x + 1,104 .                           (5)                         

Equation (5) can be easily implemented by hardware at a 
very low computing cost. The number of recording channels 
can be increased to improve the classifier accuracy. In this 
situation, the boundary equation will become a more com-
plicated hyperplane, and the computing cost will increase. 
The location of the electrodes is essential for the accuracy of 
the classifier, and we optimized the location for each subject. 
Because the agonistic muscles for wrist flexion and exten-
sion are separated in space, the classifier accuracy can be 
very high. For movements such as wrist extension and finger 
extension, a two-dimensional SVM may not yield accurate 
results because the extensor muscles of the wrist and fingers 
are in very close spatial proximity. We have developed a more 
efficient and complicated method for this situation, which 
will be published in the future.

System hardware
Figure 4 shows a block diagram and photograph of the 
prototype system. The main components include two EMG 
detecting circuits (EDCs), one digital signal processor (DSP), 
two functional electrical stimulators, a power management 
circuit, and a user interface.

The differential SEMG signal from the desired muscles of 
the non-paretic limb is amplified and filtered by the EDC. 
The EDC also contains a body potential driver (BPD) circuit 
to eliminate interference. The output analog signals of the 
EDCs are converted to digital codes by the analog-to-digital 
converters (ADCs) contained in the DSP. Because the com-
puting cost of the proposed algorithm is very low, we did 
not need to choose an expensive digital signal processor with 
high computing ability. An ultra-low power-consumption 
mixed-signal micro-controller MSP430F169 (Texas Instru-
ments Inc., Dallas, TX, USA) was chosen as the digital signal 
processor. This micro-controller also integrates 8-channel 
12-bit ADCs and 2-channel 12-bit digital-to-analog convert-

ers (DACs), which are used for arbitrary generation of stim-
ulating waveforms. The pulses generated by the DACs are 
transmitted to the stimulators, where current signals suitable 
for neuromuscular stimulation are generated. The current 
amplitude of the stimulating signals can be adjusted through 
the control panel. Additionally, the “non-paretic to paretic 
limb” or “normal electrical stimulation” modes can be se-
lected from the control panel. The entire prototype system 
is powered by a 12-V Li battery. The main functions of the 
power management circuit are to generate different voltages 
for the system and to indicate battery level.

The EMG-detecting circuit 
Each EDC contained the following parts: a preamplifier, 
a high-pass filter, a low-pass filter, a two-stage amplifier, a 
DC-level control circuit, and a BPD circuit. Each part of the 
EDC is presented in Figure 5. 

Amplitudes of the SEMG signals vary from several μV to 
several mV (Basmajian and De Luca, 1985). Considering 
the precision (12-bits) and the reference voltage (3 V) of 
the ADC, the maximum and the minimum gain of the EDC 
(indicated as Gmax and Gmin in equations 6 and 7) can be cal-
culated as follows:
 
                                                                                                 (6) 
  

                                                                                                 (7)

Therefore, we chose

in which, GEDC
  is the gain of the EDC.

We set the bandwidth range of the EDC to 200–1,000 Hz, 
considering the frequency characteristics of SEMG signals 
(Basmajian and De Luca, 1985; De Luca, 2002; De Luca et al., 
2010) and potential sources of interference (De Luca, 2002; 
Huang et al., 2011; Pincivero, 2000), such as ambient noise, 
inherent noise in electronic components, inherent instability 
of SEMG, and motion artifacts. The AD sampling rate was 
set 2 kHz for each channel. Several measures were adopted 
to reduce noise and interference:

Table 1 Fitting result and linearity of the stimulation-generating algorithm

Subject number Linear fit equation[1] R-square[2] Linearity Square fit equation[1] R-square[3]

1 SF=0.448×MVC+34.8 0.9692 10.70% SF=–0.0023×MVC2+0.669×MVC+41.3 0.9913

2 SF=0.498×MVC+17.6 0.9191 11.60% SF=–0.0050×MVC2+0.993×MVC+12.1 0.9999

3 SF=0.693×MVC+11.6 0.9326 14.31% SF=–0.0056×MVC2+1.256×MVC+5.35 0.9873

4 SF=0.672×MVC+8.9 0.9073 12.39% SF=–0.0072×MVC2+1.392×MVC+0.9 0.9999

5 SF=0.861×MVC–2.3 0.9410 15.06% SF=–0.0011×MVC2+0.974×MVC–3.55 0.9424

6 SF=0.621×MVC+0.7 0.9613 11.90% SF=–0.0007×MVC2+0.689×MVC–0.05 0.9623

Average 0.9384 12.53% 0.9805

[1]: SF: Stimulation frequency; [2]: R-square value for linear model; [3]: R-square value for square model.
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(1) Because most interference is derived from common 
mode signals, an instrument amplifier configured as a dif-
ferential amplifier INA128 (Texas Instruments Inc.) with a 
high common mode reject ratio (CMRR) (about 120 dB at 
100 Hz) was used in the preamplifier. Considering the fact 
that many instrumental amplifiers have virtually no CMRR 
above 20 kHz (Kitchin and Counts, 2003), we included a fil-
tering network for reducing errors in the radio frequency in-
terference (RFI) rectification in the front of the instrumental 
amplifier. A BPD circuit was also used with the instrument 
amplifier to reduce the common mode voltage. Parameters 
of the BPD were chosen carefully because inappropriate pa-
rameters may cause instability (Winter and Webster, 1983).

(2) To combat compromised signal fidelity and noise/
interference suppression, an 8th-order high-pass filter with a 
cutoff frequency of 200 Hz was used to suppress the 1st, 2nd, 
and 3rd harmonics of the AC power supply, noise/interference 
introduced by motion artifacts, and inherent instability of 
the SEMG signal. This high pass filter was made from a four-
stage Sallen-Key high pass filter (Sallen and Key, 1955), and 
the parameters for each stage were optimized for filtering 
performance and stability. Because the single/multi-channel 
stimulation-generating algorithm is based on a threshold, its 
performance is susceptible to input signal drift. A high-pass 
filter with a proper cutoff frequency was thus essential for 
the system.

(3) High input impedance reduces interference (Metting 
van Rijn et al., 1990). Therefore, a field-effect transistor 
(FET)-input operational amplifier OPA132 (Texas Instru-
ments Inc.) with an input impedance of 1013Ω||2pF was used 
as the buffer stage. A guarding technique was also used to 
improve the impedance of the system.

(4) The prototype system was powered by a Li battery, 
which provides safety and power frequency rejection. Shield-
ing was used to reduce the capacitance between the AC pow-
er supply and the system and between the ground and the 
system.

Functional electrical stimulator design
A schematic representation of the two-channel, arbi-
trary-output, isolated high-compliance voltage stimulator 
is presented in Figure 6. The non-isolated sides of CH1 and 
CH2 share the power and ground with the DSP. The isolat-
ed side of each channel has a separate power and ground 
(denoted as GND1 and GND2). Additionally, GND1 and 
GND2 are isolated from each other. A precision low-cost 
isolation amplifier ISO124 (Texas Instruments Inc.) was 
used as A11 and A21. Filters made up of A12 and A22 were 
added to eliminate the output ripple without decreasing the 
50-kHz signal bandwidth of the isolation amplifier. A13, 
A14, A23, and A24 comprise the voltage-current convert-
ers for stimulation, which are based on the advantage of a 
current-source-based stimulator (Merril et al., 2005). For 
obtaining high voltage output without decreasing the signal 
bandwidth, a high-voltage, high-current dual operational 
amplifier OPA2544 (Texas Instruments Inc.) was used for 
A13, A14, A23, and A34. The high voltages HVCC1, HVEE1, 

HVCC2, and HVEE2 were provided by two commercial DC-
DC modules. The maximum/minimum compliance voltage 
of a single channel was ± 34 V, and the maximum current 
was 2A. The outputs of the DACs for the DSP were used as 
the inputs to the stimulator, and were denoted as DAC1 and 
DAC2 for arbitrary waveform generation. Considering effec-
tive action potential initiation and tissue damage (Merril et 
al., 2005), a charge-balanced stimulating waveform was used 
for functional electrical stimulation.

Results
The prototype system was tested on subject 6 as illustrated 
in Figure 3A. The left and right arms of the participant were 
considered the non-paretic and paretic arms, respectively. 
CH1 detection electrodes were placed on the flexor carpi 
radialis muscle (agonistic muscle for wrist flexion) of the 
non-paretic arm, and CH2 detection electrodes were placed 
on the extensor carpi radialis longus muscle (agonistic mus-
cle for wrist extension) of the non-paretic arm. CH1 and 
CH2 stimulating electrodes were placed on the agonistic 
muscles for wrist flexion and wrist extension, respectively. 
The placements of both the detecting and stimulating elec-
trodes were determined experimentally and with the analysis 
of the agonistic muscles. The outputs of EDC CH1, EDC 
CH2, DAC1, and DAC2 (inputs of stimulator CH1 and CH2, 
separately) were recorded during alternating extension and 
flexion of the non-paretic wrist (Figure 7).

As shown in Figure 7, the stimulating pulse sequence 
generated by either DAC1 or DAC2 depends on the move-
ment of the wrist. When the unaffected wrist flexes, the 
stimulator, which is connected to the agonistic muscles for 
wrist flexion, stimulates the flexor muscle of the affected 
limb, causing it to contract. Thus, wrist flexion of the af-
fected wrist can be achieved. The wrist extension of the 
affected wrist can be achieved in the same manner. Figure 
7B shows an enlargement of the inset highlighted as ‘part 
I’ in Figure 7A. The figure depicts an SEMG that exceeded 
the amplitude threshold and triggered a charge-balanced 
biphasic and slow reversal waveform with a 500-μs width 
stimulating pulse. The stimulating waveform was not trig-
gered during the refractory period (about 8 ms). This pe-
riod determined the maximal stimulating frequency of the 
prototype system. From the data depicted in Figure 7, we 
preliminarily conclude that we succeeded in implementing 
a self-administered, force-regulated, and multi-movement 
FES prototype system. The clinical trial based on this proto-
type system is in progress at Zhong-Da hospital, Southeast 
University, as shown in Figure 8. The results will be pub-
lished in the future.

Discussion
The proposed FES prototype system is a promising train-
ing device for patients with hemiplegia after stroke. The 
proposed system has three advantages over existing systems 
that are widely used in China. (1) It incorporates several 
important rehabilitation principles, such as intention-driven 
movement (Nudo et al., 1996) and bilateral movement (Luft 
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Figure 4 Block diagram (A) and photograph (B) of the prototype system with the detection and stimulation EMG electrodes.
 In B, (1) the prototype system; (2) the detecting electrode; (3) the stimulating electrode. EMG: Electromyography;  CH1: channel 1; CH2: channel 2.

Figure 5 Schematic diagram of the electromyography (EMG) detecting circuit (EDC).

Figure 6 Schematic diagram of the 2-channel stimulator. 
DAC: Digital-analog converter; CH1: channel 1; CH2: channel 2.

Figure 8 A patient with hemiplegia caused by stroke practicing with 
the proposed electrical stimulation-prototype system.

A B
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et al., 2004), and creating a strong perception of restored 
motor control (Knutson et al., 2012). (2) It is a self-adminis-
tered FES system, which may reduce the therapist’s workload 
during rehabilitation. (3) The cost of the system is low and 
the system is small, which make it suitable for home use.

During voluntary contractions, the central nervous system 
controls muscle force by modulating both the activation fre-
quency and the number of motor units (Person and Kudina, 
1972; Thomas and Del Valle, 2001). In contrast, most clinical 
FES systems use a constant frequency, and only modify the 
stimulation intensity (the number of recruited motor units) 
to control the muscle force (Lyons et al., 2000; Peckham and 
Knutson, 2005;  Chou et al., 2008). However, it has been re-
ported that modulating stimulating frequency was effective 
in maintaining muscle force production during repetitive 
electric stimulation (Kebaetse and Binder-Macleod, 2004; 
Kebaetse et al., 2005; Chou et al., 2008). Our proposed FES 
prototype implements stimulating-frequency modulation at 
a very low computational cost. The modulation algorithm 
for both stimulation intensity and frequency is also being 
studied in our research group.

Because the detection and stimulating electrodes are both 
placed on the body, the stimulating signals are coupled with 
the detecting electrode. Therefore, positive feedback can 
be easily established, which leads to self-oscillation. In the 
experiments, we found that the ground ring on the non-pa-
retic limb (Figure 3A), which connects to the ground for the 
detecting electrodes (GND in Figure 6), effectively restricted 
self-oscillation. Moreover, we found that self-oscillation also 
depended on waveform parameters of the stimulating pulse, 
such as its width. For example, a wider pulse width was as-
sociated with a higher likelihood of self-oscillation. In future 
studies, the EDC should be improved to limit detection of 
stimulation artifacts via an artifact elimination circuit.

The use of a Li battery as the power supply solves many 
safety issues and eliminates certain aspects of safety tests, 

such as power line voltage dips, interruptions, and variations 
(IEC-61000-4-11), electrical fast transients (EFTs) (IEC-
61000-4-4), and surges (IEC-610000-4-5). Additionally, use 
of a Li battery also improves interference suppression over 
that of AC-powered systems, which is important for weak 
signal detection. Our prototype system has been tested in 
many complex electromagnetic environments, and the bat-
tery-powered system performs well.

Although an arbitrary waveform, high-voltage, isolated 
electrical stimulator can be achieved based on a DAC and 
an integrated power-operational amplifier, the adoption of 
a power-operational amplifier results in large static power 
consumption, and the absolute maximum supply voltage 
of the amplifier limits the output voltage of the stimulator. 
In future studies, a new FES circuit with lower static power 
consumption and a higher output voltage will be developed.

Taken together, in this study we developed and successfully 
tested a self-administered, multi-movement, force-modula-
tion FES prototype system for rehabilitating hemiplegia after 
stroke. The efficacy of the proposed system is being evaluat-
ed in current clinical trials, and the results will be published 
in the future. 
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Figure 7 Experimental result of the prototype system recorded during alternating extension and flexion of the non-paretic wrist.
(A) 1: Output of EDC CH1; 2: output of EDC CH2; 3: output of DAC1 (input of the CH1 functional electrical stimulator); and 4: output of DAC2 
(input of the CH2 functional electrical stimulator). (B) Inset showing the magnification of part I in (A). EDC: EMG detecting circuit; CH: channel; 
DAC: digital to analog converter; EMG: electromyography. 
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