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TECHNICAL NOTE

EntropyExplorer: an R package 
for computing and comparing differential 
Shannon entropy, differential coefficient 
of variation and differential expression
Kai Wang1, Charles A. Phillips1*, Arnold M. Saxton2 and Michael A. Langston1

Abstract 

Background:  Differential Shannon entropy (DSE) and differential coefficient of variation (DCV) are effective met-
rics for the study of gene expression data. They can serve to augment differential expression (DE), and be applied in 
numerous settings whenever one seeks to measure differences in variability rather than mere differences in magni-
tude. A general purpose, easily accessible tool for DSE and DCV would help make these two metrics available to data 
scientists. Automated p value computations would additionally be useful, and are often easier to interpret than raw 
test statistic values alone.

Results:  EntropyExplorer is an R package for calculating DSE, DCV and DE. It also computes corresponding p values for 
each metric. All features are available through a single R function call. Based on extensive investigations in the litera-
ture, the Fligner-Killeen test was chosen to compute DCV p values. No standard method was found to be appropriate 
for DSE, and so permutation testing is used to calculate DSE p values.

Conclusions:  EntropyExplorer provides a convenient resource for calculating DSE, DCV, DE and associated p values. 
The package, along with its source code and reference manual, are freely available from the CRAN public repository at 
http://cran.r-project.org/web/packages/EntropyExplorer/index.html.
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Background
Shannon entropy (SE) and coefficient of variation (CV) 
are used to measure the variability or dispersion of 
numerical data. Such variability has potential utility in 
numerous application domains, perhaps most notably in 
the analysis of high throughput biological data. Variabil-
ity has been applied, for example, to study gene expres-
sion data in the context of human disease [1]. Increased 
entropy in particular, in both gene expression and protein 
interaction data, has been observed to be a characteristic 
of cancer [2]. Numerous other examples typify the utility 
of entropy [3–8] and coefficient of variation [9–12].

Shannon entropy is famously rooted in information 
theory [13]. To avoid confusion, we emphasize that we 
use the term “differential entropy” to denote a difference 
between two Shannon entropy values. This is distinct 
from information-theoretic terminology, in which “differ-
ential entropy” often means the entropy of a continuous, 
rather than a discrete, random variable [14].

We are particularly interested in differential analysis. 
In [15], we studied differential Shannon entropy (DSE) 
and differential coefficient of variation (DCV), and found 
them highly effective in identifying genes of potential 
interest not found by differential expression (DE) alone. 
DSE and DCV are applicable to other types of biological 
data as well, such as that produced by RNA-Seq technol-
ogies, although the usual caveats about careful interpre-
tation apply. The usefulness of DSE and DCV is of course 
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not limited to biological data. They may be applied to any 
numerical data for which normalized measures of differ-
ential variability are relevant.

Implementation
EntropyExplorer is implemented in R [16]. All features 
are wrapped into a single function call, which takes as 
input up to eight arguments. Two of these arguments are 
numerical matrices, with identical labels for each row. 
The output is a matrix with two, three or five columns 
that contains in each row two SE, CV or mean values; a 
DSE, DCV or DE value; and/or two p values, one raw and 
one adjusted. Output rows can be sorted by value, raw p 
value or adjusted p value, and can be filtered to show only 
the top-ranked rows.

Permutation testing for DSE is accomplished with the 
help of the R function sample.int. The default number of 
tests to be employed is set to 1000, which the user can 
override. The p value for DCV is calculated by applying 
the Fligner-Killeen test for homogeneity of variances, 
implemented via the R function fligner.test, to the log-
transform of the input data. The R function t.test is used 
to find a p value for DE. Adjusted p values are calculated 
using the p.adjust function in R, which provides false 
discovery rate and multiple testing corrections. A more 
thorough explanation of p value calculations is provided 
in the discussion section.

EntropyExplorer checks that all matrix entries are posi-
tive. This is because calculations of a DSE value/p value 
and a DCV p value involve taking logarithms, which 
are undefined on data containing zeros or negative val-
ues. Also, CV becomes less meaningful when means 
approach zero or are negative. Experimental data may be 
noisy, however, and so EntropyExplorer provides mecha-
nisms to handle non-positive values. An optional two-
value argument permits the user to add a positive bias to 
all elements of one or both matrices prior to performing 
any other calculations. The argument can also be set to 
make this adjustment automatically, based on the least 
non-positive value in each matrix.

Metrics
Let x1, x2, . . . , xn represent a list of n positive numbers, 
and let x =

∑

n

i=1 xi denote their sum. The Shannon 
entropy of this list is

The coefficient of variation is

SE =
−
∑

n

i=1
xi
x
log2

xi
x

log2 n
.

CV =
s

|x̄|

where x̄ = x/n is the sample mean and s =
√

∑

n

i=1 (xi−x̄)2

n−1  
is the sample standard deviation. Given two such lists 
of positive numbers with Shannon entropies SE1 and 
SE2 , coefficients of variation CV1 and CV2, and means x̄1 
and x̄2, DSE = |SE1 − SE2|, DCV = |CV1 − CV2|, and 
DE = |x̄1 − x̄2|.

Shannon entropy falls in the range [0, 1]; DSE there-
fore also falls in the range [0, 1]. Lower (higher) SE corre-
sponds to more (less) variability. CV falls in the range [0, 
∞); DCV therefore also has a range of [0, ∞).

Application
EntropyExplorer is invoked as follows:

EntropyExplorer(expm1, expm2, dmetric, otype, ntop, 
nperm, shift, padjustmethod)

We refer the reader to the reference manual, included 
as Additional file 1 and available on the project webpage, 
for a detailed description of all arguments and options. 
Included with the package is a sample mRNA microarray 
dataset, consisting of a few rows from a dataset obtained 
from the Gene Expression Omnibus (GEO) [17]. This 
dataset, GSE10810, contains case/control data on breast 
cancer [18]. Figures  1 and 2 provide example uses of 
EntropyExplorer on the full data.

Discussion
In addition to calculating DSE, DCV and DE, Entropy-
Explorer can calculate both raw and adjusted p values for 
each. ANOVA-based tests are the standard way to obtain 
differential expression p values. We therefore use a t-test 
for this purpose. Certainly more sophisticated methods 
exist. See, for example, [19, 20]. Thus, we emphasize that 
EntropyExplorer includes DE only as a simple, convenient 
and straightforward point of comparison with the other 

Fig. 1  The output of EntropyExplorer on breast cancer data. The 
numerical matrices m1 and m2 have been read into R. The function 
call has specified “dse” for differential Shannon entropy, “v” for value, 
and 10 to return the top 10 values
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two metrics. For DCV p values, we observe that 11 tests 
of equal relative variation were compared in [21], with the 
conclusion that the Fligner-Killeen test [22] is usually the 
most appropriate. It strikes a balance between type I and 
type II errors, and is robust to non-normal distributions.

Obtaining reliable p values for DSE proved much more 
challenging. We found no known method in the literature 
specific to DSE p values. We therefore investigated the 
extent to which SE is correlated to variance. A high cor-
relation would suggest that they may be proxies for each 
other, in which case the p value of an F-test or some deri-
vation thereof might serve as suitable estimate of the DSE 
p value. Unfortunately, correlations between SE and vari-
ance, or between SE and a function of variance, were not 
high enough to justify using one as a surrogate for the 
other. Table 1 shows the correlation between SE and vari-
ance V, and between SE and the function 12 ln (2πeV ) as an 
attempt to linearize the relationship, using the 16 datasets 
from [15]. The only notably high correlation is found in the 
obesity dataset. The obesity data, however, contains a large 
number of missing values, rendering the high correlation 
less reliable. We conclude that standard statistical tests 
related to variance do not appear suitable for testing DSE.

We also examined the distribution of DSE on the 16 
datasets, with the goal of empirically determining a suit-
able reference distribution for DSE. From this, we could 
then estimate p values analytically. We applied the Kol-
mogorov–Smirnov (KS) test to compare the DSE dis-
tribution of each dataset to some of the more common 
reference distributions, such as normal, F, t, and Chi 
square. When performing a KS test, p values can be 
overly sensitive to deviations from the reference distri-
bution [23], so a D-statistic value below 0.1 was used to 

identify matching distributions. In our experiments, only 
the Parkinson’s dataset produced a D-statistic below 0.1 
when tested against a normal or standardized t distribu-
tion (Table  2). Figure  3 shows a sample distribution of 
DSE, in this case using prostate cancer data.

Fig. 2  Another use of EntropyExplorer on breast cancer data. The function call has specified “dcv” for differential coefficient of variation, “bv” to 
specify both value and p value, and to sort by value, and 12 to return the top 12 rows

Table 1  Correlations between  SE and  variance, and   
between SE and  1

2
ln (2πeV), on  16 microarray gene 

expression datasets

Datasets Correlation  
Between SE 
and Variance

Correlation 
between SE 
and 1

2
ln (2πeV)

Case Control Case Control

Allergic Rhinitis −0.5515 −0.5769 −0.9703 −0.9658

Asthma_GSE4302 −0.4272 −0.4677 −0.1924 −0.2004

BreastCancer_GSE10810 −0.3942 −0.3378 −0.1810 −0.1265

CLL_GSE8835 0.2251 0.2522 −0.0806 −0.0624

ColorectalCancer_GSE9348 0.3122 0.4454 −0.0086 0.0206

CrohnsDisease_GSE6731 −0.2826 −0.2380 −0.1664 −0.4020

LungAdenocarcinoma_
GSE7670

0.0725 0.3360 −0.0173 0.0105

MS_GDS3920 −0.3615 −0.3320 −0.0515 −0.0559

Obesity_GSE12050 0.9998 0.9990 0.1584 0.5420

Pancreas_GDS4102 −0.4137 −0.4455 −0.1331 −0.0890

ParkinsonsDisease_
GSE20141

−0.1732 −0.2554 −0.0024 −0.0155

ProstateCancer_GSE6919_
GPL8300

0.2118 0.1552 −0.0562 −0.0699

Psoriasis_GSE13355 −0.6386 −0.6554 −0.5200 −0.6779

Schizophrenia_GSE17612 0.3632 0.3910 0.0170 0.0235

T2D_GSE20966 −0.6006 −0.5550 −0.4356 −0.4663

UlcerativeColitis_GSE6731 −0.3112 −0.2555 −0.1799 −0.1451
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We conclude from this that none of the distributions 
tested are close enough approximations to the observed 
DSE distribution to be used as a proxy for obtaining p val-
ues. Thus, without a known distribution function or suit-
able surrogate, we resort to resampling in order to obtain 
reliable DSE p values. While computationally demand-
ing, the following permutation test makes no assump-
tions about the underlying distribution of the data. Given 
two lists of numbers, containing n1 and n2 numerical ele-
ments respectively, we first calculate their DSE and then 

create a new list A containing all n1 + n2 numbers from 
the two lists. Next we randomly permute the elements of 
A, then recalculate DSE, treating the first n1 elements of 
A as one list and the last n2 elements of A as a second list. 
The resultant p value is simply the proportion of all recal-
culated DSEs that are at least as extreme as the original 
DSE.

In addition to raw p values, EntropyExplorer also cal-
culates p values adjusted for multiple testing. A user can 
choose to adjust based on FDR, Holm or another multi-
ple-testing adjustment.

Conclusions
We have produced EntropyExplorer, an R package for 
calculating differential Shannon entropy, differential 
coefficient of variation and differential expression. This 
package also calculates raw and adjusted p values for 
each metric. These measures have been shown to com-
plement one another [15], making this package an effec-
tive tool for users in search of more expansive suites of 
differential analysis methods.

Availability and requirements
Project name: EntropyExplorer.

Project home page: http://cran.r-project.org/web/pack-
ages/EntropyExplorer/index.html.

Operating system(s): Platform independent.
Programming language: R.
Other requirements: R version 3.0 or later is 

recommended.

Table 2  KS test D-statistic results comparing the DSE distribution against several common distributions

* The last column shows the results after first standardizing DSE by dividing each DSE by the standard deviation of all DSEs

Dataset Distribution

Normal Chi-square F t t (standardized DSE)*

Allergic Rhinitis 0.3109 1 1 0.4991 0.3526

Asthma_GSE4302 0.2795 1 1 0.4895 0.3117

BreastCancer_GSE10810 0.2115 1 1 0.4797 0.3944

CLL_GSE8835 0.1506 1 0.9975 0.4519 0.1596

ColorectalCancer_GSE9348 0.1232 1 0.9994 0.4514 0.2142

CrohnsDisease_GSE6731 0.2131 1 0.987 0.4691 0.2392

LungAdenocarcinoma_GSE7670 0.19 1 0.9999 0.4663 0.332

MS_GDS3920 0.2703 1 0.9994 0.4813 0.3397

Obesity_GSE12050 0.2352 1 0.9991 0.484 0.287

Pancreas_GDS4102 0.2606 1 0.9937 0.4532 0.3254

ParkinsonsDisease_GSE20141 0.0628 1 0.9361 0.3816 0.0582

ProstateCancer_GSE6919_GPL8300 0.1575 1 1 0.4739 0.2522

Psoriasis_GSE13355 0.3327 1 0.9999 0.4932 0.4195

Schizophrenia_GSE17612 0.183 1 0.9998 0.4705 0.2138

T2D_GSE20966 0.3271 1 0.9999 0.4936 0.3562

UlcerativeColitis_GSE6731 0.2397 1 0.998 0.4831 0.3608

Fig. 3  The distribution of differential Shannon entropy. The observed 
distribution of differential Shannon entropy in sample prostate cancer 
data is shown. Similar patterns were seen in all 16 data sets. None of 
the standard distributions tested matched the observed distribu-
tions closely enough to be considered as a reference distribution for 
obtaining p values

http://cran.r-project.org/web/packages/EntropyExplorer/index.html
http://cran.r-project.org/web/packages/EntropyExplorer/index.html
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License: GNU General Public License version 3.0 
(GPLv3).

Any restrictions to use by non-academics: None.
Additional availability: EntropyExplorer is integrated 

into the GrAPPA toolkit at http://grappa.eecs.utk.edu/.
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