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Abstract: Histopathological verification is currently required to differentiate tumor recurrence from
treatment effects related to adjuvant therapy in patients with glioma. To bypass the complications
associated with collecting neural tissue samples, non-invasive classification methods are needed to
alleviate the burden on patients while providing vital information to clinicians. However, uncertainty
remains as to which tissue features on magnetic resonance imaging (MRI) are useful. The primary
objective of this study was to quantitatively assess the reliability of combining MRI and diffusion tensor
imaging metrics to discriminate between tumor recurrence and treatment effects in histopathologically
identified biopsy samples. Additionally, this study investigates the noise adjuvant radiation therapy
introduces when discriminating between tissue types. In a sample of 41 biopsy specimens, from a
total of 10 patients, we derived region-of-interest samples from MRI data in the ipsilateral hemisphere
that encompassed biopsies obtained during resective surgery. This study compares normalized
intensity values across histopathology classifications and contralesional volumes reflected across
the midline. Radiation makes noninvasive differentiation of abnormal-nontumor tissue to tumor
recurrence much more difficult. This is because radiation exhibits opposing behavior on key MRI
modalities: specifically, on post-contrast T1, FLAIR, and GFA. While radiation makes noninvasive
differentiation of tumor recurrence more difficult, using a novel analysis of combined MRI metrics
combined with clinical annotation and histopathological correlation, we observed that it is possible to
successfully differentiate tumor tissue from other tissue types. Additional work will be required to
expand upon these findings.

Keywords: glioma; diffusion tensor imaging; generalized q-ball imaging; treatment-related effects;
multiple resections

1. Introduction

An important challenge facing the neuro-oncological treatment of gliomas is discriminating
between tumor recurrence and treatment-related effects using non-invasive diagnostic imaging [1].
Not only do tissue types appear similar on standard magnetic resonance imaging (MRI), but new
lesions are often a composite of tumor cells, gliosis, necrosis, inflammatory cells, and neovascularity,
which confounds characterization [2]. Moreover, targeted therapies like bevacizumab complicate
follow-up imaging even further by modifying vascular endothelial growth factor (VEGF), often causing a
“pseudoresponse” with vascular changes resulting in a subsequent decrease in contrast enhancement [3].
Similarly, changes related to radiation or immunotherapy can mimic tumor progression, including
changes in T1-weighted (T1w) contrast enhancement and T2-weighted (T2w) hyperintensity, once again
complicating imaging-based tissue discrimination [4]. Etiological characterization of lesions observed
on longitudinal follow-up scans factors into the clinical decision-making in the course of treatment and
prognostic decisions.
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While histopathology remains the gold standard for tissue type identification, it is not without
its problems, such as the need for additional surgery, sampling bias, and risks of neurological
complication [2,5]. Thus, a non-invasive method capable of distinguishing recurrence from treatment
effects must be established in order to reduce the dependency on biopsy and improve the efficacy of
patient follow-up with noninvasive imaging. Advanced MRI methods such as magnetic resonance (MR)
spectroscopy, MR perfusion, positron emission tomography (PET), single photon emission CT (SPECT),
diffusion weighted imaging (DWI), and diffusion tensor imaging (DTI) have been used to explore
the feasibility of differentiating tumor recurrence and treatment effects with varying success [6–11].
PET-based methods, which measure glucose metabolism, demonstrate some ability in distinguishing
glioma recurrence from radiation-induced necrosis. For example, increased fludeoxyglucose (FDG)
tracer activity, corresponding to enhanced uptake on post-contrast T1 imaging, is consistent with tumor
recurrence, while decreased FDG tracer activity is less specific, typically denoting vasogenic edema,
stemming from recurrence and treatment effects [12,13]. Amino acid transport PET-based imaging,
especially the use of tyrosine or tryptophan-based tracers, has also been studied to improve the ability
to distinguish tumor recurrence from treatment-related changes. O-(2-[18F]fluoroethyl)-L-tyrosine
(FET) has been studied since the 1990s and is believed to be more specific for tumor recurrence given
the enhanced uptake of glucose in all brain (FDG) versus less amino acids uptake [14]. This should
make FET PET more specific than FDG, and there have been a number of cases showing increased
uptake of FET in tumors, and it may also be useful at assessing pseudoprogression from true recurrence
in glioma [15–20]. However, several other tissue types can also have increased uptake, including
brain abscesses, demyelinating processes, epilepsy, and in tissue adjacent to cerebral ischemia or
hematomas, making some interpretation of results challenging [14,15,17]. MR perfusion techniques,
like dynamic contrast-enhanced (DCE) MRI and dynamic susceptibility contrast (DSC) MRI, yield
estimates of relative cerebral blood volume (rCBV) and vascular permeability (ktrans), reflecting
underlying microvasculature and angiogenesis [21–23]. Studies have indicated MR perfusion’s
utility in differentiating tumor progression from treatment effects and pseudoprogression [24–26].
However, these techniques are hindered by mixed results [27], model complexity [28], and sensitivity
to thresholds [29]. MR spectroscopy, estimating biomarkers like lactate and choline to creatinine ratios,
has demonstrated higher diagnostic accuracy than conventional MRI in detecting tumor progression
as well, reaching a sensitivity and specificity as high as 91% and 95%, respectively [30]. The diffusion
metrics fractional anisotropy (FA) and mean diffusivity (MD) have been useful in differentiating
between tissues types as well [31–33]. Recent research on glioblastoma demonstrated that MD can help
differentiate between tumor recurrence and radiation-induced necrosis, as it is known that more free
water lies within necrotic tissue than enhancing solid tumor [34]. Also, Apparent Diffusion Coefficient
(ADC) ratios and mean ADC of tumor recurrence are significantly lower than those of radionecrosis,
since higher cellularity (tumor recurrence) contributes to more restricted diffusion [35]. Verma et al.
(2013) suggests the combination of low ADC values and high FA values help define the presence of
tumor recurrence [2].

High grade gliomas, the most prevalent intracranial neoplasm, are highly heterogenous in the
lesion area, have an invasive nature, and often require additional multimodality treatment later
in the course of the disease. For these reasons, noninvasive diagnosis, monitoring, and prognosis
strategies, such as MRI, must be sought and refined. With the goal to improve the noninvasive
diagnostic utility of advanced MRI for gliomas, we studied a group of patients who had imaging
localized histopathology. Through the combination of both conventional and advanced MRI modalities,
we demonstrate improved efficacy in diagnosing recurrent tumor versus imaging effects related to
treatment. These results demonstrate the potential for refining multi-modal MRI assessment of glioma
tissue classification, thereby facilitating the clinical decision-making process.
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2. Experimental Section

2.1. Patient Information

All procedures and protocols for this study were reviewed and approved by the Colorado
Multi-Institutional Review Board (COMIRB 17-1136). Subjects included in this study were patients
undergoing repeat resective surgery after radiologically defined tumor progression between August
and November 2018 at the University of Colorado Hospital. The patient set consisted of 10 subjects
who received prior resection(s) for recurrent glioma with detailed histopathology recorded for 2 or
more biopsies (41 biopsies collected in total). Data were collected retrospectively from patient chart
review. Two patients received two prior resections; all others received one prior resection. The patient
set is divided into two groups: those that underwent radiation therapy prior to repeat resection (RT,
n = 7) and those that did not (No RT, n = 3). For each patient, biopsy samples were collected during
surgery from the radiologically-defined tumor region and examined by an expert neuropathologist
(B.K.D.). The neuropathologist classified each sample and an expert neurosurgeon (D.R.O.) designated
each classification as primarily consisting of abnormal, nontumor tissue (Abnormal), or tumor tissue
(Tumor). Patient information is summarized in Table 1.

Table 1. Clinical data of the patient set.

Age Sex Location & Pathology IDH/MGMT/EGFR
Status

Time between
Imaging and

Surgery (Days)

Months
Since
Prior

Resection

RT
Prior to
Latest

Resection

CT
prior to
Latest

Resection

No. of
Abnormal
Biopsies

No. of
Tumor

Biopsies

59 M Right occipital,
glioblastoma multiforme WT/−/lo 2 4.0 Yes Yes 1 3

34 F Left frontal, diffuse
astrocytoma MT/NA/NA 2 14.8 No No 0 4

32 M Left frontal, anaplastic
oligodendroglioma MT/NA/NA 0 70.4 Yes Yes 0 4

62 M Right temporal,
glioblastoma multiforme WT/+/moderate 4 49.2 Yes Yes 4 1

36 F Right frontal,
glioblastoma multiforme

MT/−/No/BRAF
V600E mut 24 27.7 Yes Yes 6 0

32 M Right frontal,
glioblastoma multiforme MT/NA/neg 7 62.6 Yes Yes 0 4

32 F Right frontal,
oligodendroglioma MT/NA/NA 7 21.5 No Yes 1 4

58 M Right tempoparietal,
glioblastoma multiforme WT/+/hi 2 2.8 Yes Yes 1 2

31 M Right frontal, diffuse
astrocytoma MT/−/lo 0 51.6 No No 2 0

42 M Right frontal,
glioblastoma multiforme WT/NA/lo 10 26.0 Yes Yes 0 4

Abbreviations: M = male, F = female, MT = mutant, WT = wild type, NA = not available, lo = low
expression, hi = high expression, + = methylated, − = unmethylated, IDH = isocitrate dehydrogenase,
MGMT = O-6-methylguanine-DNA-methyltransferase, EGFR = epidermal growth factor receptor, BRAF = v-Raf
murine sarcoma viral oncogene homolog B, RT = radiation therapy, CT = chemotherapy.

2.2. Imaging Sequence Parameters

All images were obtained using a 3.0-T whole-body MR imager (Signa HDxt; GE Medical Systems,
Milwaukee, Wisconsin, USA) between 0–24 days prior to repeat surgical intervention. Acquisition times
were 2.5, 5.4, 4.6, 7.8, and 9.0 minutes for non-enhanced T1-weighted (T1w), gadolinium-enhanced
T1-weighted (T1ce), T2-weighted (T2w), T2-FLAIR (FLAIR), and diffusion-weighted (DW) images,
respectively. For T1w, TE = 2.3 ms, TR = 5.5 ms, and flip angle = 8◦. Data were recorded as a
256 × 256 matrix with 1 mm × 1 mm pixel spacing, a slice thickness of 1.2 mm, and zero slice gap.
For T1ce, TE = 2.5 ms, TR = 6.8 ms, and flip angle = 8◦. Data were recorded as a 512 × 512 matrix with
0.5 mm × 0.5 mm pixel spacing, a slice thickness of 1.2 mm, and zero slice gap. For T2w, TE = 6333 ms,
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TR = 80 ms, and flip angle = 142◦. Data were recorded as a 512 × 512 matrix with 0.5 mm × 0.5 mm
pixel spacing, a slice thickness of 2 mm, and zero slice gap. For FLAIR, TE = 6000 ms, TR = 128 ms,
and flip angle = 90◦. Data were recorded as a 512 × 512 matrix with 0.5 mm × 0.5 mm pixel spacing, a
slice thickness of 1.2 mm, and zero slice gap. For DW images, TE = 85 ms, TR = 16,000 ms, and flip
angle = 90◦. The diffusion gradient was encoded in 32 directions at b = 1000 s/mm2 and an additional
measurement without the diffusion gradient (b = 0 s/mm2). DW data were recorded as a 128 × 128
matrix with 0.9375 mm × 0.9375 mm pixel spacing. A total of 50 sections were obtained with a slice
thickness of 2.6 mm and zero slice gap.

2.3. Image Processing

Images were processed using a combination of open-source software packages: MRtrix [36],
FSL [37], and greedy [38]. Standard MR images (T1w, T1ce, T2w, and FLAIR) were non-linearly
registered to the MNI152 (Montreal Neurological Institute, MNI) atlas [39] space using the deformable
registration package greedy. Automated tissue-type segmentation was performed on T1w image sets
using FSL-FAST (FMRIB’s Automated Segmentation Tool) [40]. DT images were preprocessed to remove
noise and corrected for distortion and field-bias using MRtrix’s dwidenoise [41], dwipreproc [42],
and dwibiascorrect [40,43] scripts. After preprocessing, DT images were linearly registered into
T1w-space using FSL-FLIRT (FMRIB’s Linear Image Registration Tool) [44] and then transformed into
MNI-space by applying the affine matrix generated to register the T1w image. Lastly, all image sets
were downsampled by a factor of 0.45 with cubic interpolation using MRtrix to avoid oversampling
(voxel size: 1.75 mm3).

2.4. Image Normalization

MR image intensities are acquired in arbitrary units, introducing noise when comparing scans
taken at different times. To compensate for artifacts between scans, each MR and DW sequence
were normalized across the patient set. Standard MR sequences were normalized using the RAVEL
method [45] implemented with the intensity-normalization library [46]. The DW sequence was
normalized using MRtrix’s dwiintensitynorm.

2.5. Diffusion Feature Space

All diffusion features were calculated using DSI Studio (http://dsi-studio.labsolver.org) on
processed and normalized diffusion-weighted images. The diffusion information was reconstructed in
two fashions using diffusion tensor [47] and generalized q-space imaging [48]. Diffusion tensor imaging
(DTI) determines three primary diffusion directions (and magnitudes) using a tensor, from which the
standard diffusion metrics fractional anisotropy (FA) and mean diffusivity (MD) were determined.
Generalized q-ball imaging (GQI) is a model-free method that calculates the orientation distribution of
the density of diffusing water. Using GQI, the non-standard diffusion metrics quantitative anisotropy
(QA) and generalized fractional anisotropy (GFA) were determined. A diffusion sampling length
ratio of 1.25 was used. The b-table was checked by an automatic quality control routine to ensure its
accuracy [49]. Diffusion feature (FA, MD, QA, and GFA) maps were extracted for each subject from
normalized diffusion images.

2.6. Regions of Interest (ROI)

During resective surgery, the locations of biopsies on the patient’s MRI were identified using
a Medtronic StealthStation S8 Surgical Navigation system (Medtronic, Minneapolis, MN, USA) and
application software (Version 1.1.0-39). The biopsy locations were recorded via screenshots. With this
information, voxel locations were manually identified on our analytical setup and transformed into
MNI-space by applying the patient’s transformation affine. A one-half cubic centimeter sphere was
used as a facsimile for the biopsy in MR image space.

http://dsi-studio.labsolver.org
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2.7. Data Analysis

All data analysis was performed using the programming language Python with NiBabel, Numpy,
Pandas, Seaborn, Scipy, and Statsmodels modules.

3. Results

3.1. Image Analysis of Biopsy Classifications

The image data analyzed in this study is summarized in Figure 1. Eight MR/DW image features
(T1w, T1ce, T2w, FLAIR FA, MD, QA, and GFA) were collected from each patient prior to re-resection.
Each image feature was normalized across patients to account for fluctuations in signal acquisition due
to environmental and equipment variations (Figure 1A). The image intensities were extracted from
ROIs representing the locations of surgical biopsies along with their contralaterally Normal analogs
(Figure 1B). Example photomicrographs of the Abnormal and Tumor biopsy classifications from one
patient are displayed in Figure 1C.J. Clin. Med. 2019, 8, x FOR PEER REVIEW 6 of 13 

 

 
Figure 1. A 59-year old male patient with glioblastoma multiforme. (A) Axial slices of the image 
modalities explored in this study, comprised of four standard MRI metrics (T1w, T1ce, T2w, FLAIR = 
fluid-attenuated inversion recovery) and four diffusion MRI metrics (fractional anisotropy (FA) and 
mean diffusivity (MD) quantitative anisotropy (QA) and generalized fractional anisotropy (GFA)). 
(B) Depiction of biopsies from the patient shown in (A). Filled circles indicate the locations of 0.5 mm3 
Regions of Interest (ROIs) representing tissue extractions. Open circles indicate the locations of 
anatomically similar locations of 0.5 mm3 ROIs in the normal appearing (“healthy”) contralateral 
hemisphere. For this patient, one biopsy (red) consisted primarily of abnormal tissue and three 
biopsies (magenta, cyan, and yellow) consisted primarily of tumor tissue. (C) Example slides of 
histopathology used in classification. (Left image) Tumor: Infiltrating high-grade glioma is seen with 
cytologically pleomorphic nuclei with large areas of necrosis and thick hyalinized blood vessels (20× 
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Figure 1. A 59-year old male patient with glioblastoma multiforme. (A) Axial slices of the
image modalities explored in this study, comprised of four standard MRI metrics (T1w, T1ce, T2w,
FLAIR = fluid-attenuated inversion recovery) and four diffusion MRI metrics (fractional anisotropy
(FA) and mean diffusivity (MD) quantitative anisotropy (QA) and generalized fractional anisotropy
(GFA)). (B) Depiction of biopsies from the patient shown in (A). Filled circles indicate the locations of
0.5 mm3 Regions of Interest (ROIs) representing tissue extractions. Open circles indicate the locations
of anatomically similar locations of 0.5 mm3 ROIs in the normal appearing (“healthy”) contralateral
hemisphere. For this patient, one biopsy (red) consisted primarily of abnormal tissue and three biopsies
(magenta, cyan, and yellow) consisted primarily of tumor tissue. (C) Example slides of histopathology
used in classification. (Left image) Tumor: Infiltrating high-grade glioma is seen with cytologically
pleomorphic nuclei with large areas of necrosis and thick hyalinized blood vessels (20×magnification).
(Right image) Abnormal: cortical white matter with extensive gliosis and neuropil vacuolization.
Regional necrosis with thick hyalinized blood vessels consistent with radiation necrosis is present
(10×magnification).
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To explore the effect of radiation therapy on biopsy classification, mean signal intensities were
calculated for each ROI and separated based on treatment group (Figure 2). For No RT patients
(Figure 2A), differences were detected between Abnormal and Tumor in the T1ce and T2w signals
(Tukey’s post-hoc test, Family Wise Error Rate (FWER) = 0.05) and between Tumor and Normal in
the T1w, T1ce, T2w, FLAIR, FA, and MD signals (Tukey’s post-hoc test, FWER = 0.05). No differences
were detected between Abnormal and Normal. For RT patients (Figure 2B), fewer image features were
deemed statistically different. No differences were detected between Abnormal and Tumor (Tukey’s
post-hoc test, FWER = 0.05), one difference was detected between Tumor and Normal in the T1ce
signal (Tukey’s post-hoc test, FWER = 0.05), and two differences were detected between Abnormal
and Normal in FLAIR and MD signals. The only difference consistent among treatment groups was
between Tumor and Normal for the T1ce image modality; though, the feature demonstrated a reversed
behavior between the two groups. Mean Normal signal intensities were equal between groups in all
MRI modalities excluding MD (Figure S1).
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Figure 2. Average ROI normalized image intensity for biopsies classified as Abnormal (green) and
Tumor (blue). Contralaterally mirrored ROI locations classified as Normal (yellow). Data separated
depending on chemoradiation therapy strategy prior to re-resection: (A) patients with adjuvant
radiation therapy and (B) patients without adjuvant radiation therapy. Error bars show 95% confidence
intervals. Asterisks indicate significance determined using Tukey’s post-hoc test, p < 0.05.

3.2. Logistic Regression Modeling

Given the overall lack of consensus for features that consistently discriminated between treatment
groups, we evaluated the ROI image intensities on the voxel-level (Figure 3A,B) to the presence of
Tumor (Figure 3C,D) using logistic regression. The regression coefficients provide an estimate of the
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explained variance each image modality has on the likelihood of the presence of Tumor. Models
incorporating all eight image features were created for each treatment and the resulting regression
coefficients were calculated (Figure 3C). The significant features consistent in both models were T1ce,
FLAIR, QA, and GFA (Student’s t test, corrected for multiple comparisons using False Discovery Rate
(FDR), p < 0.05). However, T1ce, FLAIR, and GFA express inverted information between the models:
T1ce shows that for the RT group, higher intensities indicated the presence of Tumor tissue, whereas
for the No RT group, higher intensities indicated the presence of Abnormal tissue. The converse is true
for FLAIR and GFA: for the RT group, higher intensities indicated the presence of Abnormal tissue,
and for the No RT group, higher intensities indicated the presence of Tumor tissue. Therefore, the same
approach for differentiating Abnormal and Tumor tissue for patients in the No RT group is not wholly
applicable to patients in the RT group (only for QA). Figure 3D illustrates how the No RT and RT
models—built using the T1ce, FLAIR, QA, and GFA features—perform similarly (area under curve
(AUC) = 0.84 and AUC = 0.75, respectively) when accounting for treatment. However, the aggregate
model (“All patients”, Figure 3D) performed the worst (AUC = 0.60)—showing that the conflicting
information (demonstrated in Figures 2 and 3C) degraded the model’s ability to differentiate Abnormal
and Tumor tissue using multi-modal MRI.
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Figure 3. Differentiating the histopathology classifications Abnormal and Tumor on the voxel-level
accounting for prior chemoradiation treatment regime. Voxel intensity histograms from the (A) No RT
and (B) RT groups. Solid lines indicate median, dashed lines indicate the lower and upper interquartile
interval. (C) Logistic regression coefficients: filled circles indicate significant features in the model, open
circles indicate non-significant features. Error bars show standard deviation. (D) Logistic regression
model performance using only the features deemed significant in (C). ROC denotes “receiver operator
characteristics”, AUC denotes “area under curve”, and the “All patients” model (built only using
features significant in both models) is an aggregate of the treatment groups.

4. Discussion

In order to more specifically evaluate imaging changes consistent with treatment-related effects
versus tumor recurrence, we began collecting voxel-based MRI information coupled with location
specific blinded histopathological review using a within subject experimental design (i.e., contralesional
matched normal voxel as a normal brain control). The goal of this project was to ultimately identify
hurdles in predictive modeling regarding imaging diagnoses when longitudinally following patients
with glioma after treatment to better assess true recurrence when MR changes occur, incorporating the
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use of DTI into standard algorithms. Frequently, changes occur on MRI after treatment, which can be
difficult to interpret. Treatments such as immunotherapy (still experimental), radiation, or cytotoxic
therapy often induce changes in T2w hyperintensity and T1w contrast enhancement that can
occur even several years after treatment has ended [4,50–52]. Additionally, targeted therapies,
such as bevacizumab, can decrease contrast enhancement and hyperintensity, sometimes masking
progression [3]. These challenges in imaging interpretation have been well known for many years.
Defining progression in glioma has always been difficult and somewhat controversial.

First described by Macdonald et al., in 1990, the Macdonald criteria were imaging-based
criteria to determine glioma progression based on contrast enhancement in two dimensions on
CT scans in patients undergoing treatment [53]. This was later adapted to MRI and included four
response categories: complete response, partial response, stable disease, or progressive disease.
Macdonald criteria is limited by irregularly shaped tumors or nonspecific contrast enhancement from
pharmacological treatments, radiation, inflammation, necrosis, pseudoprogression, etc. [54–56]. It also
does not account for noncontrast enhancing disease, which is especially important in the evaluation
of diffuse low-grade glioma. In 2010, the RANO Criteria consortium published, and later modified,
guidelines for the evaluation of treatment response in gliomas and incorporated nonspecific contrast
enhancement, multifocal tumors, pseudo-response after treatment, and nonenhancing fluid-attenuated
inversion-recovery (FLAIR) hyperintense region in determining treatment response [57,58]. More recent
measures of clinical progression have been developed to also help in distinguishing between true
progression and pseudoprogression [59,60]. While these measures are important in assessing the
global status of the patient and are quite sensitive and specific for global tumor recurrence, they do
not answer the challenge of voxel-by-voxel analysis of imaging features specific for tumor recurrence.
This study helps to further efforts of predictive, noninvasive modeling by investigating chemoradiation
therapy influence on imaging in the process of determining tumor recurrence. These models can also
be used to potentially better predict presence of residual disease following surgery, sites of future
disease progression, and progression free survival.

This study investigated the effects of surgery alone or surgery plus radiation on voxel-specific
pathology. Overall, radiation makes noninvasive differentiation of abnormal-nontumor tissue to tumor
recurrence much more difficult. This is because radiation exhibits opposing behavior on key MRI
modalities: specifically, on post-contrast T1, FLAIR, and GFA (a GQI feature related to FA). A number
of treatment modalities clearly distinguish tumor from abnormal-nontumor postoperatively, however
many of these features lose their distinguishing characteristics after radiation (see Figure 2). Specifically,
features significant in both models (T1ce, FLAIR, and GFA) demonstrate contrasting information
dependent on the postsurgical treatment strategy. T1ce shows that for the RT group, higher intensities
indicate the presence of tumor where for the No RT group, higher intensities indicate the presence
of abnormal tissue not containing tumor. The converse is true for FLAIR and GFA: for the RT group,
higher intensities indicate the presence of abnormal, nontumor tissue, while lower intensities indicate
tumor tissue (see Figure 3C). This implies that in order to differentiate abnormal-nontumor tissue from
tumor tissue, understanding previous treatment modalities is imperative. The same approach for
discriminating one for the other will not work depending on prior treatment.

Violin plots of standard MRI features (Figure 3A,B) help to understand these shifts in a more
granular way. Shifts in the histograms happen all along normalized intensity values with nearly
all features tested. This is predictable and influenced by treatment strategy, although histograms
appear more similar after radiation, demonstrating the difficulty of distinguishing recurrence from
post-treatment effects after radiation using standard features of MRI. Standard measurements also
differed significantly from normal with or without radiation (Figure 2). However, distinguishing
between tumor and abnormal-nontumor was difficult. FA and MD, specifically, provided no information
to distinguish tumor from abnormal-nontumor tissue after radiation, although QA and GFA did.
Instead, logistic regression helped to illustrate which features contributed most to differentiating
the biopsy labels of tumor versus abnormal-nontumor. Hence, the opposing but important findings
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described previously of T1ce, FLAIR, and GFA and their predictive value in our model. Whereas,
QA (quantifies the spin orientation population in a specific direction) remained consistent across
treatment models. Ultimately, both models separating images by prior treatment modality (both
groups had prior surgery, some with or without chemoradiation prior to re-resection) performed well,
while the aggregate model “all patients” performed poorly. This shows that the conflicting information
demonstrated in Figure 3C degrades the model’s ability to differentiate abnormal-nontumor from
tumor tissue on MRI unless separated by treatment modality.

Overall, including non-standard DTI metrics is a useful addition towards differentiation between
tumor recurrence and abnormal-nontumor MRI changes, although more is needed in the effort to
improve accurate noninvasive prediction of recurrence. This study demonstrates the continued
importance of matching imaging data to pathology and clinical annotation to avoid misinterpreting
findings on MRI. Ultimately, combining complex datasets including pathology, genomics, epigenetics,
imaging, and clinical information will all be important in improving noninvasive assessment of glioma.
Future studies including more patients and more precise imaging/pathology correlation will help
improve our predictive modeling to the betterment of the care of glioma patients.

5. Conclusions

Radiation makes the noninvasive differentiation of abnormal-nontumor tissue vs tumor recurrence
much more difficult. This is because radiation exhibits opposing behavior on key MRI modalities:
specifically, on post-contrast T1, FLAIR, and GFA. Ultimately, combining multiple MRI metrics
with clinical annotation allows the more successful differentiation of tumor recurrence from other
post-treatment effects on MRI.
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