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Abstract Nature-inspired meta-heuristic algorithms have dom-
inated the scientific literature in the areas of machine learning
and cognitive computing paradigm in the last three decades.
Chemical reaction optimisation (CRO) is a population-based
meta-heuristic algorithm based on the principles of chemical
reaction. A chemical reaction is seen as a process of transforming
the reactants (or molecules) through a sequence of reactions into
products. This process of transformation is implemented in the
CRO algorithm to solve optimisation problems. This article
starts with an overview of the chemical reactions and how it is
applied to the optimisation problem. A review of CRO and its
variants is presented in the paper. Guidelines from the literature
on the effective choice of CRO parameters for solution of opti-
misation problems are summarised.

Keywords Nature-inspired computing - Biologically inspired
algorithm - Physics inspired algorithms - Chemical reaction
optimisation

Introduction

Machine learning is one of the most important platforms for
cognitive computation paradigm. The main constituents of
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machine learning are the meta-heuristic algorithms. Nature
has always been an inspiration and source for scientific inven-
tion. Scientists have been striving for understanding the laws
of nature and developing methods and computer algorithms
for real-life problems. The development of three mainstream
disciplines of the natural sciences, biology, physics, and
chemistry have created novel problem solving paradigms [1,
2]. Biology-inspired algorithms have been in use since 1960.
They include genetic algorithms [3], genetic programming
[4], evolutionary computation [5], and particle swarm optimi-
sation [6]. Physics inspired algorithms have been the subject
of significant research in the last three decades [7]. They in-
clude simulated annealing [8, 9], gravitational search algo-
rithm [10], harmony search algorithm [11], central force opti-
mization [12], water drop algorithm [13], and spiral dynamics
algorithm [14]. The chemical reaction metaphor can also be
exploited for developing meta-heuristic algorithms by
encoding appropriate information into molecule-like elements
and performing a set of chemical reaction-like operations onto
them to obtain certain kind of derivative information suitable
for optimisation problems. Chemical reaction optimisation
(CRO) algorithm is a recent search and optimisation algorithm
inspired by chemistry, which is equally promising like biology
and physics inspired algorithms.

Chemistry is the field of science that studies the chemical
properties of matter and its structure. Chemical reactions
break chemical bonds into molecules and form new bonds
using molecules participating in reaction [15]. Energy is re-
quired for breaking chemical bonds into several molecules.
Also energy is released when new bonds are formed combin-
ing several molecules. Thus, a chemical reaction is seen as a
process of transformation of a set of molecules participating in
a chemical reaction into a set of products with different prop-
erties. There are two types of chemical reactions, namely, uni-
molecular and multi-molecular elementary reactions
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absorbing or releasing different level of energies during the
reactions [16]. Chemical reactions uphold the laws of thermo-
dynamics. Every chemical reaction stabilises at equilibrium, a
state determined by the minimum free energy, also called
Gibbs free energy [17]. The Gibbs free energy is a chemical
potential that depends on the temperature, pressure, and ma-
terials involved and tends to reach its minimum at equilibrium.

A molecule consists of several atoms. The type of atoms, bond
length, angle, and torsion (twisting of the structure) define the
distinct structure of the molecule. Two molecules can be different
even with the same set of atoms due to the difference in their
structures. In other words, the structure represents the relationship
between atoms in a molecule. In order to undergo a chemical
reaction, molecules must acquire the necessary energy to be acti-
vated. Chemical bonds are source of energy. The energy of a
molecule can be of two types: potential energy and kinetic energy.
Potential energy is denoted by PE. PE is the energy that a mole-
cule contains in the structure. In a chemical reaction (e.g. exother-
mic reaction), chemical bonds break and new bond are formed.
That is, during the reaction molecules transform from structure of
higher PE into structure of lower PE with release of energy.
Kinetic energy is denoted by KE. Molecules need to collide for
the chemical reaction to happen. Collision between molecules
provides the KE needed to break the bonds. Sometimes there is
not enough KE for collisions to happen. In such a case, energy is
provided in the form of heat. Heat rises the temperature which is a
measure of the average KE. Heating causes KE to increase to the
required level for breaking the bonds.

If x={x',x% ---,x"} is a molecule with x*, k=1, - ,n
atoms of a certain structure, then the molecule tends to change
from x to a new molecule x by changing its structure during a
chemical reaction only if the following energy condition is
satisfied.

PE(x)>PE (x) (1)

If energy Condition (1) is not satisfied, the molecules need
higher energy for the reactions to happen. KE is added to
achieve the required higher energy level for the reactions to
occur and change to new molecules. This must satisfy the
following energy condition.

PE(x) + KE(x)>PE (x) 2)

A molecule with higher KE has a higher possibility of
transforming into a new structure with higher PE. A reactant
(generally a molecule or a compound) with high energy is unsta-
ble and tends to have a reaction when it comes in contact with
another molecule and goes through a sequence of elementary
reaction phases dissipating energy. The process is called reaction
mechanism. A chemical reaction may take more than one reaction
path ensuring the maximum amounts of desired products and the
minimum amounts of undesired products. The actual course of
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any reaction is determined by the least energy requirement leading
to an optimal reaction mechanism. At the final stage of reaction,
products produced will have low-energy level and stable state.
The final state is considered an optimal and stable state of the
chemical reaction maintaining an optimal reaction mechanism.

Lam and Li [18] proposed the Chemical Reaction
Optimization (CRO) algorithm inspired by chemical reactions.
This paper presents the CRO algorithm, different variants of
CRO, hybrids of CRO with other meta-heuristic methods and
their applications in different domains. The rest of the paper is
organised as follows: Section “Chemical Reaction Operations
in CRO” presents the background on the chemical reaction
operations used in CRO. Section “Implementation of CRO
Operation” describes the implementation of the CRO opera-
tors. Section “Chemical Reaction Optimisation Algorithm”
presents the CRO algorithm. Variants and hybrid CRO algo-
rithms are presented in Section “Variants of CRO”.
Section “Conclusions” concludes the paper with some com-
ments on the future directions of CRO algorithm.

Chemical Reaction Operations in CRO

Molecules with different levels of energy take part in chemical
reactions, undergo a sequence of elementary reactions and are
transformed into products with minimum energy. The elemen-
tary reactions are the operators of CRO. These reactions are
grouped into uni-molecular and multi-molecular reactions,
classified into four types:

Uni-molecular reactions

(i) On-wall ineffective collision
(i) Decomposition
Multi-molecular reactions

(iii) Inter-molecular ineffective collision
(iv) Synthesis

On-Wall Ineffective Collision Operation Only one molecule
is involved in this type of operation. The molecule does not
take part in chemical reaction with another molecule. A mol-
ecule x hits on the wall and bounces back resulting in a change
in PE and KE. The new value is denoted as x. It is, therefore,
called on-wall ineffective collision. The on-wall ineffective
collision of a molecule is illustrated in Fig. 1. The change of
the molecule is described by

X =x+A (3)

where A is a perturbation of the molecular structure caused by
the collision. The perturbation A can be modelled as
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probability distribution over a finite interval, e.g. Gaussian,
Cauchy, lognormal, and exponential distribution. Due to the
change in molecule, PE(x) changes to PE(x) and KE(x) chang-
es to KE(x), which must satisfy the energy Eq. (2). Otherwise,
a change in the molecule x will not happen without release (or
loss) of some amount of kinetic energy KE(x). According to
the law of conservation of energy, energy cannot be destroyed.
Therefore, the released energy KE(x) is stored in an energy
buffer called central buffer after the reaction. In CRO, the
released energy KE(x) is modelled using a random number
p1 € [KE gssrates 1], Where KE; ggrate 1S @ parameter of the
chemical reaction and represents the maximum percentage
of KE lost in the environment at a time. (1 — p;) is the fraction
of KE that is lost in the environment when the molecule hits
the wall. This lost energy is stored in the central buffer. KE(x)
and energy buffer update are described by

KE(x) - [PE(x)—PE(x’) +KE(x)} Xy (4)

buffer = buffer + [PE(x)—PE(x’) n KE(x)] x (1-p;) (5)

Decomposition Operation One molecule is involved in this
type of operation. The molecule does not take part in chemical
reaction with another molecule. A molecule x hits the wall and
decomposes into two molecules x; and x,. The molecule can
also decompose into more than two molecules. The decompo-
sition of molecule x into molecules x; and x, is illustrated in
Fig. 2. Due to the change in the molecule structure, PE(x)
changes to PE(x;) and PE(x,) and KE(x) changes to KE(x;)
and KE(x,) which must satisfy the energy conditions de-
scribed by

PE(x) + KE(x)>PE (x’l) +PE (x’z) (6)

KE(%) = [PEC) + KECPE(4)PE(%) | <1 ()

= L

Fig.1 Illustration of on-wall ineffective collision operator. The structure
of molecule is shown by the big circles with attached small circles around
representing the change in the structure. A molecule hits on the wall and
bounces back with perturbed structure. The perturbed structure is shown
with changed positions of the small circles

@
h

Fig. 2 Illustration of decomposition operation. A molecule hits on the
wall and decomposes into two molecules with change in structures

—

co() - [t e (s ) ()]
% (1-p,) ®)

where p; € [0, 1] is a random number representing the released
energy.

Sometimes molecule x does not have enough energy mean-
ing that Condition (6) does not hold for the reaction to happen
and decompose into x; and x,. It can only happen when energy
KE(x) is large enough. According to the law of conservation of
energy, energy cannot be created. The extra energy comes from
the central energy buffer to decompose the molecule. The pro-
cess is described by the following modified conditions:

PE(x) + KE(x) + buffer=PE(x, ) + PE(x,) 9)

KE (x’l) - HPE(x) + KE(x)—PE (xll ) —PE (x;) } + buﬁfer}

X (p1 X py)

(10)

KE (x’z) - HPE(x) + KE(x)—PE (x/l)fPE (x’z) } + buffer}
x (p3 X pg)

(11)

where {py, p2, p3, p4} € [0, 1] are random numbers. To ensure
a small amount of energy for KE(xll) and KE (x’z) from the
buffer, multiplication of two random numbers {p; X p,} and
{p3 x p4} are used. The energy buffer update is described by

buffer = buffer + [PE(x) + KE(x)-PE (x’] ) —PE (x’z) } ~KE (x’l ) ~KE (x’z)
(12)

If Conditions in (6) and (9) do not hold, the decomposition
will not take place.

Inter-Molecular Ineffective Collision Operation Two mol-
ecules are involved in this type of operation. A molecule x;
collides with another molecule x, and the two molecules x;

and x, are perturbed and change to x; and x,. Thus, the
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collision causes change in potential energies {PE(x;), PE(x;)}
and kinetic energies {KE(x;), KE(x,)}. The inter-molecular
collision operation is illustrated in Fig. 3. The potential ener-
gies {PE(xy), PE(x,)} change to {PE(x’l), PE(x’Z) } and the
kinetic energies {KE(x;).KE(x,)} change to {KE(x,), KE
(x;) }. respectively. The inter-molecular ineffective collision
must hold the energy conditions:

PE(x1) + PE(x2) + KE(x1) + KE(x2)>PE <x'1)
+ PE(x’z) (13)

KE <x’1)
AT e
(14)

KE (x’z)
- [PE(xl) + PE(x,) + KE(x1) + KE(x2)—PE (x’l)—PE <x;>] x (1=p;)
(15)

If Condition (13) does not hold, the reaction will not take
place.

Synthesis Operation Two or more molecules are involved in
this type of operation. Two molecules x; and x; collide togeth-
er and fuse into a molecule x . Fusion releases a large amount
of energy. Therefore, a large energy change occurs during the
synthesis operation. The synthesis operation is illustrated in
Fig. 4. The potential energies PE(x;) and PE(x;) change to
PE(x) and the kinetic energies KE(x;) and KE(x,) change to
KE(x). The energy balance of synthesis operation must hold
the energy conditions:

PE(x) + PE(x2) + KE(x1) + KE(x2) >PE <x) (16)

KE() = [PE(r) + PECs) + KE(x) + KE(r)-PE(¥ )]
(17

If Condition (16) does not hold, the synthesis reaction will
not take place.

In a chemical reaction process, a population of reactants
with high-energy level undergoes a sequence of elementary
chemical reactions, transforms through different energy levels
and produces certain products with new molecular structures
of low energy and stable states at the final stage. Every chem-
ical reaction seeks to achieve equilibrium after which no fur-
ther reactions take place. The chemical reaction process
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Fig. 3 Illustration of inter-molecular ineffective collision operation. Two
molecules x; and x; collide against each other and change to new

)
molecules x; and x}

continues until it satisfies the aforementioned energy equa-
tions. The process of the chemical reaction is seen as an opti-
misation process where the set of parameters to be optimised
are reactants that take part in the transformation process.

Implementation of CRO Operation

CRO is a population-based optimisation algorithm. Chemical
reaction operations discussed in earlier section are the inspi-
ration behind the operators of CRO. Four types of operators
are applied to the population of solutions. The total number of
solutions kept by the algorithm may change from time to time
as the decomposition and synthesis operators increase and
decrease the number of molecules in the reaction pool, respec-
tively. The computational implementation of these four oper-
ators is discussed in this section.

Ineffective Collision Operator

Some small change occurs in the molecular attributes during
this operation and the molecule x obtains a new structure x in
the neighbourhood of x which is expressed as:

x =N(x) (18)

where N(-) is the neighbourhood operator.

Yu et al. [19] used a neighbourhood operator N(x) to gen-
erate a new solution x by perturbing one element of x chosen
randomly. The perturbation is done by adding a Gaussian
perturbation p(m, o) to the randomly chosen element m, where
m is the mean and o is the variance. o is a parameter and
chosen arbitrarily. The neighbourhood operator is implement-
ed using the following pseudo-code.

i = randominteger (1,7)
Find the i-th element m in X ,i.e. m = x(i)
Calculate m = m+ p(m,o)
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Fig. 4 Illustration of synthesis operator. Two molecules x; and x; collide
together and fuse into one molecule x

Decomposition Operator

Decomposition operator breaks a molecule into two or
more molecules. Firstly, the solution x is copied onto x;
and x,. Then half of the variables (i.e. n/2 variables where
n is the total number of variables) of the solution x are
perturbed by adding random variations and creating new
solutions. The following pseudo-code is used to implement
the decomposition operator.

Copy x(i) to x,(7) and x, (7)
For i =1tondo

IF(i<2)
x, (@) =x(@) + rand[0,1]
Else
X, (1) =x(@) + rand[0,1]
Endfor

Inter-Molecular Ineffective Collision Operator

Two molecules x; and x;, collide with each other and change to
new molecules x, and x, in the neighbourhood of x; and x,. x
and x, are expressed as.

x; = N(x))
{x; ~ N(x) )

Implementation of the neighbourhood operator is presented
in Section “Ineffective collision operator”.

Synthesis Operator

Synthesis operator combines multiple molecules into one.
Two solutions x; and x, are combined by applying a ‘proba-
bilistic select’ to implement synthesis into a new solution x.
Each component of x in the same position is chosen either

from x; or x, randomly. The following pseudo-code is used to
implement the synthesis operator.

For i=1 tondo

r=rand[0,]]
If(r>0.5)
x'() = x, (i)
Else
x'() = x, (i)
Endif
Endfor

The effect of synthesis operator is similar to the recombi-
nation (or crossover) operation used by other evolutionary
algorithms (EA)' [21, 22].

In CRO, decomposition and synthesis are exploration
mechanisms providing the effect of global search while inef-
fective collision and inter-molecular ineffective collision are
exploitation mechanisms providing the effect of local search.

Chemical Reaction Optimisation Algorithm

In terms of optimisation, a molecule with its atoms in a par-
ticular structure can be thought of a solution of a problem. If
the feasible solution of a problem can be defined as a set of
positive real numbers R™ in n-dimensional space, then any
vector x; € R™ with x; = {x},x}, -, x/}, i=1, - ,N, is a
valid molecule representing a valid solution of the problem
and xf.‘, k=1, -+, n, are thought of atoms representing the
decision variables. The representation of molecule x € R"* can
be in the form of numbers, an array similar to chromosomes in
genetic algorithms [23, 24], a matrix, or a graph similar to tree
structure in genetic programming [25, 26]. A change in a
molecule x € R"" with higher energy state can only occur by
means of chemical reaction. The chemical reaction changes
the energy state of the molecule and results in a new molecule
x €R"™ with a lower energy state. Therefore, minimisation of
energy is considered as the objective in CRO and hence PE is
defined as the objective function when evaluating a solution.
PE is the energy responsible for a stable structure whereas KE
is the energy needed for the movement of molecules and col-
lision between molecules such that the reaction can happen.
KE of the molecule helps it escape from the local minimum if
the solution is stuck at a local minimum. If x represents the

! Recombination or crossover operation in EA generally selects two solutions
randomly from the population and combines them to produce one or two
offspring by choosing individual elements from each of them. A detailed
account of discussion on EA crossover operations can be found in [20].
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molecule with a certain structure (i.e. configuration of atoms),
then an objective function, f(+), is defined as equal to PE:

(20)

Lam and Li [18] presented the CRO meta-heuristic algo-
rithm inspired by chemical reactions. In CRO, decision vari-
ables are like atoms that form a molecule and a molecule is a
representation of solution of a problem. A population of mol-
ecules is generated randomly within the search space. The
molecules undergo chemical reaction-like transformation.
Four types of chemical reaction operations are used: on-wall
ineffective collision, decomposition, inter-molecular ineffec-
tive collision, and synthesis as discussed earlier. The parame-
ter MoleColl decides on the fraction of all elementary reac-
tions that involve more than one molecule, i.e. inter-molecular
reactions in CRO. The process continues until a minimum of
energy is reached as defined by the objective function,
Eq. (20). This objective function is problem-dependent. The
CRO algorithm is illustrated by the flow diagram in Fig. 5.

The operators of the CRO algorithm are the decom-
position and synthesis operations as mechanisms for
generating new solutions for exploring the search space,
and the on-wall ineffective and inter-molecular ineffec-
tive collisions operations as the mechanisms for gener-
ating solutions from the neighbourhood structure for
exploiting the search space. The decomposition and syn-
thesis operators act as diversification and ineffective and
inter-molecular ineffective collisions operators act as in-
tensification for the algorithm [27].

There are mainly four parameters in CRO. These are pop-
ulation size, KE loss rate, fraction of uni-molecular reaction,
and initial KE. Population size, denoted as PopSize, is the
initial number of solutions generated randomly in the solution
space. KE; ossrate 18 the loss rate of KE during reaction, i.e. it is
the upper limit of percentage of KE lost to the environment
during on-wall ineffective collisions. Fraction of uni-
molecular reaction, denoted as MoleColl, is the fraction of
molecules that undergo uni-molecular or inter-molecular reac-
tions. If MoleColl is less than a random number, p, it will
result in a uni-molecular collision. Otherwise, an inter-
molecular collision will take place. It is to be noted that a
uni-molecular collision will always take place when there re-
mains only one molecule in the population. Initial KE, denot-
ed as KE,, is the initial value assigned to each element of KE
in the initialization stage.

Variants of CRO

CRO algorithm is a recent addition to the meta-heuristic
algorithm family. Researchers made simple
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modifications while applying the algorithm to different
application domains which later became known as var-
iants of CRO algorithms such as real-coded CRO,
opposition-based CRO, and orthogonal CRO. Some re-
searchers attempted to improve the operators borrowing
ideas from other meta-heuristic algorithms such as dif-
ferential evolution (DE) [28, 29] and particle swarm
optimisation (PSO) [30, 31] which led to hybrid CRO
algorithms. These variants are discussed briefly in the
sequel.

Real-Coded CRO (RCCRO)

The original version of CRO [18, 24] is designed for
discrete optimisation problems. An extension of CRO
algorithm is proposed for continuous problems by Lam
et al. [32], which has become known as real-coded
CRO. Three modifications are introduced: solution rep-
resentation, neighbourhood operator, and boundary con-
straint handling.

A solution of an optimisation problem in standard
CRO [18, 24] is represented by a molecular structure
x={xy,x5, **,x,} where each individual x;, i=1,2,

*,n can be of binary or integer type. In real-coded
CRO, each x; is implemented using a floating-point
number. To deal with continuity, continuous search
ability is incorporated into the neighbourhood search
operator N(:). If the problem does not impose any
constraints on relations between solution variables, x;
can be treated independently and a perturbation is de-
fined as

’

x,=N(x)=x+0; (21)
where d; is a probabilistic perturbation in the i-th element, e.g.
Gaussian, Cauchy, Lévy etc. For example, it may defined by
Gaussian distribution of the form §;= N(y, 0%) with mean m
and variance o°.

The perturbation depends mainly on the starting point
for the solution x;, direction from the mean g and step-
size based on the spread o. In general ¢ is fixed in real-
coded CRO during the execution of the algorithm. Too
large or too small value for o will make the algorithm
inefficient. Lam et al. [32], therefore, proposed an adap-
tive scheme for o where the initial value of o is set
equal to solution space (u—1[) (upper bound minus low-
er bound values) and decreased gradually by a factor 6.

The perturbation of a solution x; may go out of bound
defined by the lower (/;)and upper (1;) bounds. The boundary
constraints can be handled by bringing the solution x; back
within boundary [32]. A simple technique such as reflecting
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Fig. 5 Flow diagram of CRO
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The effectiveness and performance of the real-coded
CRO algorithm has been verified on a number of uni-
modal, high-dimensional multi-modal, and low-
dimensional multi-modal benchmark functions.
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Bhattacharjee et al. [33] applied real-coded CRO to
minimisation of total power generation cost by scheduling
different power plants for certain intervals of time.

Opposition-Based CRO
Opposition-based approach in learning was proposed by
Tizhoosh [34] with the assumption that if a set of randomly

generated numbers can not satisfy a criterion, then the op-
posite set of numbers may a have higher possibly to satisfy
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the criterion. It is found that opposition-based approach
improves computational efficiency. Many researchers have
used opposition-based approach in optimisation problems
[35-37] where they used the current population and its
opposite population. Bhattacharjee et al. [38] used oppo-
site and quasi-opposite numbers in one-dimensional space
in the CRO algorithm. An opposite number x of any real
number x € [a, b] is defined by

X=a+bx (23)

Bhattacharjee et al. [38] defined the quasi-opposite number

Xgq4 as

x, = rand (c, x>

where c is the centre of the interval [a, b]. ¢ can be estimated as
the mean of the interval [a, b], i.e. ¢ =(a+ b)/2. Similarly,

(24)

reflected quasi-opposite number X, is defined by

X g = rand(c,x) (25)

Bhattacharjee et al. [38] extended one-dimensional repre-
sentation of x to two-dimensional representation. A population
of molecular set is generated and then a quasi-opposite mo-
lecular matrix, denoted as QOM, is formed from the molecular
set using a parameter J,. € [0, 1] called jumping rate as follows:

If rand < J,

OOM(i,j) = rand(c7 f) withi=1,-,PopSizeand j=1,""*.n
where PopSize is the population size and » is the number of
variables in the optimisation problem.

The performance of the opposition-based real-coded
CRO has been verified on short-term hydrothermal sched-
uling problem. The total minimum, maximum, and average
system costs are obtained within 25 trials demonstrating
the algorithm has good exploration and exploitation ability
[38]. It is found that opposition-based approach helps im-
prove convergence speed in optimisation algorithms.

Orthogonal CRO

CRO algorithm traverses through search space in a random
manner [39] which eventually limits the search scope and
slows down the convergence speed. A meta-heuristic algo-
rithm needs to explore promising regions. The exploration
becomes difficult when an optimisation problem has a
large number of decision variables to be optimised within
a limited number of iterations. The orthogonal experimen-
tal design is an approach to find the best combination of
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different factors within a small number of trials. Such or-
thogonal array [40] has been applied in simulated anneal-
ing [41, 42], PSO [43], and genetic algorithm [44] with
better results. Li et al. [45] proposed an orthogonal CRO
algorithm by introducing a quantisation orthogonal cross-
over (QOX) operator, where the decision variables are
quantised into different levels and the variables are divided
into groups. The groups are treated as factors in orthogonal
CRO. Then, an individual molecule is created using this
information. The QOX operator is used for the synthesis
operation in the CRO algorithm as follows:

If (r < MoleColl) Select randomly two molecules x; , x, from
the population If (synthesis criteria hold) Create new molecule
x using orthogonal crossover operation QOX(x; , x»)

The molecules {x;,x;} represent molecular structures
described earlier. The effectiveness and performance of
the orthogonal CRO have been verified on 23 well-
known uni-modal, high-dimensional multi-modal, and
low-dimensional multi-modal benchmark functions. The
approach was showed to be less efficient for low-
dimensional functions [45]. Duan and Gan [46] use an
orthogonal multi-objective CRO for optimal design of a
brushless DC motor.

Adaptive Collision CRO

In the standard CRO, there is an overlap between functionalities
of inter-molecular and on-wall ineffective collision operators lead-
ing to unnecessary computation times. To reduce this functional
overlap, an adaptive collision scheme is introduced by Yu et al.
[47, 48]. The adaptive collision consists of a new inter-molecular
ineffective collision operator and an adaptive collision scheme.

In the inter-molecular ineffective collision operation,
generally two on-wall ineffective collisions take place at
the same time. Therefore, an inter-molecular operator is
introduced to ineffective collisions such that it makes a
difference between these two on-wall ineffective colli-
sions. Two molecules {x;x;} are randomly selected and
their fitness values (i.e. PE values) are calculated. Let
PE(x;)be greater than PE(x;). Based on the PE values,
two approaches are deployed to modify the molecules
instead of neighbourhood operation usually employed in
on-wall ineffective collision [47, 48].

where x and x'f' are the new molecules of the d-th element, x{

and xj? are old molecules of the d-th element and # is a random
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number for each element over the interval [0, 1]. The mecha-
nism expressed by Eq. (26) ensures that the new molecules x;d
and x'¢ are not similar.

In the adaptive collision scheme, an adaptive collision rate
(CollRate) is introduced. The CollRate is the ratio of occur-
rence of on-wall ineffective collision and inter-molecular re-
action. The CollRate plays a critical role in the CRO perfor-
mance. In standard CRO, CollRate is a user-defined parame-
ter, which is fixed during execution and usually chosen em-
pirically by users [49]. In adaptive collision scheme, CollRate
is defined as a sigmoid function [47, 48] with two parameters
count and FE,,,«.

1
CollRate = (27)

t
1 4+ exp [—6 x oun ]

FEmax

The parameter count is the number of successful inter-
molecular reaction. The value of count is incremented when
a successful inter-molecular reaction occurs and it is
decremented when an on-wall collision occurs. The parameter
FEax 18 the maximum allowable value for function evalua-
tions. The performance of the adaptive CRO has been verified
experimentally on 16 different benchmark functions and com-
pared with standard CRO [47, 48].

Elitist CRO

In the standard CRO algorithm, molecules are selected ran-
domly. Though the random selection contributes to the diver-
sity of the population, it impacts on the convergence rate.
Duan and Gan [50] proposed an elitist CRO (ECRO) algo-
rithm by introducing elitist strategies for selection, evolution,
and crossover. Two new attributes of the molecule are intro-
duced in ECRO: affinity and concentration. The affinity and
concentration identify the quality of solution and similarity
between solutions respectively. The efficiency of the ECRO
has been verified on a contour-based target recognition
problem.

Hybrid CRO and DE

Roy et al. [51] propose an improvement to CRO algorithm by
introducing the mutation and crossover operators borrowed
from Differential Evolution (DE) algorithm [52] and called it
hybrid DE-CRO. The CRO operators such as on-wall ineffec-
tive collision operation, decompose operation, inter-molecular
ineffective collision operation and synthesis operation are im-
plemented using mutation and crossover operation of DE.

The on-wall ineffective collision operation in CRO is im-
plemented using the mutation operation of DE. A new mole-
cule is generated using the mutation operation as follows

x;'j =X+ F (X)) (28)

where x;j is the new j-th component of the i-th molecule, {x;,
Xmj» X,y are the j-th components of three different molecules
chosen randomly from the current population and F is a pos-
itive control parameter.

The decompose operation is implemented using the cross-
over operation. To perform the crossover, one molecule x,, is
selected randomly from the population and another molecule
X, is generated randomly. Two new molecules x:n and x;, are
created by applying crossover operation on x,,, and x,,.

The inter-molecular ineffective collision operation is im-
plemented using crossover operation. Two new molecules
are created by performing crossover operation on two ran-
domly selected molecules x,,, and x,, from the population.

Molecules are modified using synthesis collision operation
implemented by applying conventional crossover operation
from genetic algorithm.

The effectiveness and performance of the DE-CRO algo-
rithm has been verified on four test systems of conventional
static economic load dispatch problem [51]. Dutta et al. [53]
applied the DE-CRO algorithm to unified power flow control
problem to determine the optimal parameter setting for power
system network.

Hybrid CRO and PSO

There are some good features of PSO algorithm that can be
incorporated into CRO for improving exploration or exploitation.
Nguyen et al. [54] combined the explorative and exploitative
features of PSO and CRO. Due to low efficiency, the decompo-
sition and synthesis operations are eliminated and a PSO-based
update operation is performed instead. New molecules are creat-
ed using neighbouring operations of CRO and mechanisms of
PSO described by Egs. (29)+30). These molecules can be con-
sidered as molecules of CRO or particles of PSO. PSO and CRO
use the same population generated initially. The basic operations
involved in PSO algorithm are described by

V(k+1) = w? (k) + c1ry (pl‘.l—xf) + crp (pgi—xf»l) (29)
e+ 1) =x(k) + VW (k+1)x T (30)

. . . . d d d
where v is the velocity of i-th particle, x7, p?, and Py are the
position, iteration best, and global best position of the d-th

element respectively, w is the inertia weight, ¢; and ¢, are
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cognitive and social coefficient respectively, 7| and 7, are ran-
dom numbers generated between [0, 1] and 7 is the time,
which is unity to convert the velocity into position. The com-
putation of molecules (i.e. position of particles) is straightfor-
ward. If a PSO update criterion is satisfied, then molecules are
updated using the PSO algorithm, i.e. using Egs. (29)—(30),
otherwise inter-molecular ineffective collision operation and
on-wall ineffective collision operation are performed. Thus,
the hybrid CRO-PSO algorithm repeats the PSO update,
inter-molecular ineffective collision operation and on-wall in-
effective collision operation until termination condition is sat-
isfied. The CRO-PSO algorithm has been applied to well-
known uni-modal and multi-modal benchmark functions.
Zhang and Duan [55] proposed another version of hybrid
PSO-CRO approach, called PCRO, for solving the image
matching problem where the best molecule is saved in each iter-
ation. Once the on-wall ineffective collision and inter-molecular
ineffective collision are performed, the molecule is updated by the
distance between the original molecule and the current best mol-
ecule. In PCRO, the PSO update mechanism is simplified.

v?(k—i— 1) =cn (pf—x?)/T (31)
Xk+1)=x(k) + vV (k+1)x T (32)

where vf, x;j, and pf are the velocity, position, and iteration
best position in the d-th element of the i-th particle, respec-
tively. Li et al. [56] use a hybrid PSO-CRO algorithm for
multi-object optimisation problems. The proposed algorithm
balances the operators of CRO and PSO while exploring the
search space effectively. The hybrid approach also improves
convergence.

Other Chemistry-Based Algorithms

There are a few other chemistry-inspired algorithms reported
in the literature. They are artificial chemical process algorithm
(ACPA) based on the principles of artificial chemical process
[57], artificial chemical reaction optimization (ACRO) [58]
based on a different set of bi-molecular and uni-molecular
chemical reactions different from CRO including redox
(reduction-oxidation) reactions, chemical reaction algorithm
(CRA) based on the principles of artificial chemistry [59],
and Gases Brownian motion optimisation (GBMO) algorithm
based on the laws of Brownian motion and turbulent rotation
motion of gas molecules [60].

Conclusions

CRO algorithm is a recent addition to meta-heuristic family
and to cognitive computation paradigm. The significant

@ Springer

contribution of this paper is the introduction of inspiration
from chemistry and the development of meta-heuristic algo-
rithms based on the principles of chemical reactions, which
are complementary to biology and physics inspired algo-
rithms. CRO algorithm has attracted the attention of machine
learning and cognitive computation community over the past
few years and has been successfully applied in several real-
world optimization problems.

To improve the performance of CRO and solution quality, a
number of hybrid variants have been proposed. There has
been little theoretical analysis done so far apart from the con-
vergence analysis by Lam et al. [39]. Premature convergence,
convergence speed, searching behaviours, and parameter se-
lection are important issues in CRO that need further research.
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