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ABSTRACT

High-throughput methylation sequencing enables
genome-wide detection of differentially methylated
sites (DMS) or regions (DMR). Increasing evidence
suggests that treatment-induced DMS can be trans-
mitted across generations, but the analysis of in-
duced methylation changes across multiple gener-
ations is complicated by the lack of sound statisti-
cal methods to evaluate significance levels. Due to
software design, DMS detection was usually made
on each generation separately, thus disregarding
stochastic effects expected when a large number
of DMS is detected in each generation. Here, we
present a novel method based on Monte Carlo sam-
pling, methylInheritance, to evaluate that the num-
ber of conserved DMS between several generations
is associated to an effect inherited from a treat-
ment and not randomness. Moreover, we developed
an inheritance simulation package, methInheritSim,
to demonstrate the performance of the methylIn-
heritance method and to evaluate the power of
different experimental designs. Finally, we applied
methylInheritance to a DNA methylation dataset ob-
tained from early-life persistent organic pollutants
(POPs) exposed Sprague-Dawley female rats and
their descendants through a paternal transmission.
The results show that metylInheritance can effi-
ciently identify treatment-induced inherited methy-
lation changes. Specifically, we identified two in-
tergenerationally conserved DMS at transcription
start site (TSS); one of those persisted transgener-

ationally. Three transgenerationally conserved DMR
were found at intra or integenic regions.

INTRODUCTION

DNA methylation is an important epigenetic modification
that plays a fundamental role in cell differentiation and in
the development of multicellular organisms (1), and in dis-
ease states like carcinogenesis (2,3).

In vertebrates, methylation occurs primarily at cytosines
(C) in cytosine–phosphate–guanine dinucleotides (CpG)
enriched regions, called CpG islands. This modification al-
lows the regulation of gene expression and is essential for
cell differentiation and tissue integrity (4). The effect of
methylation on gene expression depends on where methy-
lation occurs: while high levels of methylation in promoter
regions are strongly associated with transcriptional repres-
sion, low levels of methylation show a more nuanced and
context-dependent relationship with transcriptional activ-
ity (4,5). Recent technological advances such as whole-
genome bisulphite sequencing (WGBS) and reduced rep-
resentation bisulphite sequencing (RRBS) provide the op-
portunity to interrogate DNA methylation modifications
(6). These technologies can now be used to detect differ-
entially methylated elements (DME) (including differen-
tially methylated sites (DMS) or regions (DMR)) between
pathologies or to help decipher the impact of exercise (7),
nutrition (8) and environmental exposure (9) and interindi-
vidual differences (10).

Recently, studies have shown that environmental expo-
sure, particularly exposure to toxic metals (11), air popula-
tion (12) and toxins found in tobacco smoke (13) are asso-
ciated with DNA methylation modifications and changes in
gene expression that influence human health. For example,
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changes in methylation patterns were observed in the blood
of individuals exposed to benzene, a potent carcinogen,
and could be linked to an increased risk of acute myeloid
leukemia (14). Preliminary human studies have provided ev-
idence that epigenetic modifications associated with such
environmental factors can be transmitted from the parents
to their offspring (15,16).

For instance, prenatal exposure to tobacco smoke is as-
sociated with reproducible DNA methylation changes at a
global and gene-specific level in the newborn that persist
well in childhood and adolescence (17). In 2015, Sen et al.
(18) showed that DNA methylation patterns in the children
could be traced back to their grand-mother’s lead exposure.

Transmission of DNA methylation change in at least one
generation that had no direct exposure to treatment (in-
cluding gametes and in utero exposure) are called trans-
generational epigenetic inheritance (TEI) and are due to
germ-line transmission (19). When a gestating female (F0)
has been exposed to an environmental factor, both the em-
bryo (F1) and their germ-line that will become the second
generation (F2) are directly exposed. Another generation
(F3) is thus required to investigate for the presence of TEI
(20). Statistically infering transgenerational epigenetic in-
heritance can be a challenging analysis when only few DMR
are found in the intersection of all studied generations. Per-
mutation analysis can overcome the experimental design
limitation caused by small size samples (21,22) and is an at-
tractive alternative to statistical tests based on standard dis-
tribution. That being said, the number of samples must be
high enough to enable a large number of unique permuta-
tions. In a transgenerational case–control analysis, already
>1.37 × 1011 unique permutations can be generated with
only three individuals per group of identical size (21). A sta-
tistical framework to identify significant transgenerational
methylation modification have already been proposed. The
genome-wide Identification of Significant Methylation Al-
teration (GISAIM) framework uses permutation tests to
identify inherited differential methylation patterns across
multiple generations (23). In the GISAIM procedure, a
methylation score is calculated for each promoter by sum-
ming the logarithm of the fold change of each generation.
The methylation patterns in promoters that have consis-
tently larger methylation scores than what would be ob-
tained randomly are selected as inherited DMR. A possi-
ble limitation of the methylation score is that an impor-
tant change in one generation with no variation in the oth-
ers could be confounded with a multigenerational change.
Moreover, Aiken et al. (24) noted that only few studies with
three generations or more had significant results. For this
reason, it could be useful to conduct inheritance simulation
studies under different conditions to optimize the experi-
mental design.

Also, only a limited number of software simulating
methylation data (either WGBS (25,26) or RRBS (27–
30)) are available to the scientific community (31). Those
existing methods, while highly valuable, lack the capacity
to simulate methylation inheritance.

In the present study, we developed a novel permutation
analysis to evaluate the significance level of the number of
conserved DMS or DMR over multiple generations. Fur-
thermore, an inheritance simulation model was produced to

generate simulated RRBS dataset over several generations.
We conducted inheritance simulation studies to show the
performance of the proposed permutation analysis under
various conditions. Finally, the permutation analysis was
applied to a RRBS dataset from early-life POPs exposed
Sprague-Dawley female rats and their descendants through
a paternal transmission. The results show that the proposed
permutation analysis is able to infer that the number of con-
served DMS between generations is related to the inherited
effect of the environmental exposure.

MATERIALS AND METHODS

Permutation analysis

We developed a novel permutation method called methylIn-
heritance to enable the evaluation of the significance level
of the number of conserved differentially methylated sites
or regions over multiple generations. The method follows a
statistical hypothesis testing procedure. The number of con-
served sites or regions between generations is tested against
the following null hypothesis: the number of conserved sites
or regions corresponds to a value that can be obtained
through a randomness analysis. In order to simplify text,
sites will be used in this section although the method could
also apply to regions.

The significance level is calculated by comparing the ex-
perimental results with the reference distribution obtained
by Monte Carlo sampling.

Figure 1 displays the workflow of the permutation
analysis. Most of those steps have been implemented in
the R/Bioconductor methylInheritance package. The main
steps to realize this workflow are described in greater detail
below.

Differential methylation analysis. Using the real dataset,
the number of conserved DMS between cases and controls
is calculated for each generation. The intersections of the
DMS between all generations and between two consecutive
generations are then identified to gather the observed num-
ber of conserved DMS. This number of conserved DMS
(the observed value) is then compared against the refer-
ence distribution obtained by randomization (statistic in-
ference).

Permutation cycle. The number of permutation to run
within a permutation cycle is set. Executing a permutation
cycle implies running a differential methylation analysis and
extracting the number of conserved DMS between genera-
tions for each permuted dataset. Permuted dataset are cre-
ated by exchanging labels of all datasets (cases and controls)
on all generations.

Statistics. At the end of each cycle, the statistic is retrieved
by calculating the number of permutations that have ob-
tained an equal or a greater number of conserved DMS than
the observed value. By adding the observed value to the dis-
tribution, we ensure that there will always be at least one
case that is as extreme as the observed value in the calcula-
tion.
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Figure 1. Flow chart of the permutation analysis. The flow chart depicts a
summary of the most important steps of the permutation analysis work-
flow. Data are shown in light orange while analysis steps are shown in light
blue.

Convergence. To ensure the stability of the probability es-
timates, convergence must be evaluated. This can be done
by plotting statistics calculated at the end of each cycle as a
function of the number of Carlo permutations performed.
Convergence is assessed qualitatively as the point where the
plot reach a more or less flat region.

Significant level. The number of conserved DMS obtained
in each permutation is gathered to create the reference dis-
tribution. The observed number of conserved DMS is also
included to the reference distribution. The significance level
is the proportion of values that are at least as extreme as the
observed value in the reference distribution.

When the significant level is lower than the threshold (tra-
ditionally set at 0.05), the null hypothesis is rejected and the
alternative hypothesis is considered to be more plausible to
explain the data. The latter implies that the number of con-

served DMS is a result of the treatment or environmental
exposure.

Simulation method

A simulation method was developed to produce simulated
RRBS dataset over multiple generations. The simulation
method, called methInheritSim, is broken down into five
major steps: (i) construction of a synthetic chromosome
from a biological datasets; (ii) selecting the differentially
methylated sites (DMS) for the first generation; (iii) mod-
eling the intergenerational DMS inheritance; (iv) assigning
methylation level for the first generation and (v) for the fol-
lowing generations. Figure 2 displays the steps of the me-
thInheritSim pipeline.

Step 1: Synthetic chromosome creation

An important section of the simulation consists in generat-
ing the distribution of the CpG sites on a synthetic chro-
mosome as summarized in Figure 2. The distribution of
CpG sites is characterized by clusters of CpG dinucleotides
in close proximity separated by larger gaps (27). The simu-
lation method must approximate this distribution with the
highest possible accuracy. A reference dataset, provided by
the user, is used to sample CpG sites and to approximate
methylation level distribution while differentially methy-
lated regions and inheritance are generated using param-
eterisable models. The input reference dataset requires only
one generation of untreated controls.

The synthetic chromosome is created by assembling ran-
domly selected regions (having the same number of CpG
sites) from the reference genome (Figure 2A–C). The num-
ber of sampled regions, as well as the number of CpG sites
per region are two parameters specified by the user. All sam-
pled chromosome regions are assembled into the synthetic
chromosome in the same order they are sampled as shown
in Figure 2B. The methInheritSim method enable the cre-
ation of multiple chromosomes and the number of chromo-
somes is also a parameter specified by the user. The simu-
lated cases and controls are all based on this synthetic chro-
mosome and all contained the same CpG sites.

Step 2: Selection of differentially methylated sites for the F1
generation

Once the synthetic chromosome is generated, a subset of
CpG sites have to be labeled as differentially methylated
for the F1 generation. The DMS labeling is done through a
multiple steps algorithm, as shown in Figure 2D and E. To
mimic the widely held observation that sites in close proxim-
ity exhibit similar levels of methylation (27), the algorithm
enables the creation of differentially methylated sites clus-
ters that are flanked with lower DMS density regions. Thus,
the methylation status of a CpG site is highly dependent of
the surrounding CpGs (26).

There are four steps in the iterative DMS labeling algo-
rithm:

(i) To enable the creation of a low density DMS zone in
between differentially methylated regions, a jump is re-
quired to separate DMR. A temporary size for the
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Figure 2. Schematic representation of the synthetic chromosome creation and differentially methylated sites (DMS) inheritance modeling by the methIn-
heritSim method. (A) The genome of a biological dataset must be provided by the user. (B) Chromosome regions, containing all the same number of CpG
sites, are sampled and assembled. (C) The CpGs sites present in the sampled regions are establishing the sites of the synthetic chromosome. (D) CpG sites
are randomly selected as seed and labeled as DMS using an exponential distribution. The seeds mark the beginning of a differentially methylated region.
(E) Following a specific algorithm, some CpG sites located in close range of the seeds are selected as DMS (in light blue). (F) All CpG sites, labeled or not as
DMS, form the synthetic chromosome for the F1 generation. (G) Only a fraction of the differentially methylated regions of the F1 generation are inherited
by the following generation. Those inherited regions are randomly selected. This synthetic chromosome is the reference chromosome for all generations
following F1.

jump (s) is obtain using an exponential distribution
with a � parameter corresponding to the mean proba-
bility of being in presence of a differentially methylated
site. The final size of the jump (s) is the highest rounded
value between s and 1. In the methInheritSim package,
the � value is assigned through the rateDiff parameter
which can be modified by the user.

(ii) The notion of seed refers to the first CpG of a differ-
entially methylated region. From the current position,
which is the beginning of the chromosome for the first
iteration and the last tested site in step (iv) for the other
iterations, the sth following CpG site is selected as a
seed and labeled as DMS (as shown by the dotted ar-
rows located above the chromosome in Figure 2D).

(iii) To reproduce differentially methylated region, all fol-
lowing CpG sites within 1000 bases paired of the pre-
ceding site are assigned as differentially methylated
with a probability p. The probability p is calculated us-
ing an exponential function:

p = c · e(b·log2(d))

where c = 1.0, b = −1e−01 (both empirical values in-
spired from WGBSSuite (26)) and d is the distance
from the prior site. Each site is also assigned a q value
using an U(0, 1) uniform distribution. In the end, only
sites that respect the condition q < p are labeled as
DMS to enable the creation of DMS clusters as shown
in Figure 2E.

(iv) When the next CpG site is located at >1000 bases of the
previous site, the algorithm goes back to step (i) using
this current CpG site as the starting point of a new cy-
cle, such as shown by dotted arrows linking Figure 2D
and E.

The final result is a synthetic chromosome with labeled
DMS for the F1 generation, as shown in Figure 2F.

Step 3: Modeling intergenerational differentially methylated
sites inheritance

Not all differentially methylated sites are transmitted to the
following generations. Methylation state are reversible by
nature (32) and imprinted regions undergo DNA demethy-
lation during early germ-line development (33). In the me-
thInheritSim method, the propInherite parameter controls
the proportion of differentially methylated regions that is
inheritable to the following generation. The propInherite pa-
rameter has a default value of 0.3 that can be modified by
the user. The inheritable regions are randomly selected and
all DMS present within a selected region are labeled as in-
heritable DMS. The result is a synthetic chromosome with
labeled inheritable DMS for all generations following F1, as
shown in Figure 2G.

Step 4: Methylation level assignation for F1 generation

An important stage of the methInheritSim method is the
assignation of the methylation level to all CpG sites of the
cases and controls for the F1 generation. First, each CpG
site of the controls is assigned a methylation value using a
Beta(�, �) distribution. Beta distribution often appears as
a reasonable choice in several studies of genomic data (34),
mainly when data ∈ (0, 1) such as methylation data (28).
The � and � parameters are approximated using the mean
and variance of the input control dataset at that same site
(see Supplementary Material, section 1).

The methylation level is then assigned to the CpG sites
of the cases of the F1 generation. Poulsen et al. (35) have
found that in monozygotic twins exposed to famine during
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their gestation, the smaller twin is more likely to develop di-
abetes. Since stress-induced methylation responses are het-
erogeneous across individuals (36), a penetrance factor is
used to enable the user to select the percentage of cases af-
fected by the treatment. The penetrance mimics individual
variability in environmental sensitivity of the epigenome,
thus giving the possibility to separate the probability of the
treatment to affect a patient from the treatment effects on
methylation level.

Cases affected by the treatment are randomly selected fol-
lowing a truncated normal distribution with user-specified
mean and standard deviation of the penetrance factor
(vpDiff and vpDiffsd parameters in the methInheritSim
package). For the cases affected by the treatment, all sites
that are not labeled as differentially methylated are auto-
matically assigned a methylation level using a Beta(�, �) dis-
tribution such as the simulated controls. Sites labeled as dif-
ferentially methylated are assigned a methylation level using
a Beta(� + vDiff, �) distribution where � is shifted relatively
to the controls. The value of the shift (vDiff parameter) is
fixed by the user. The cases not affected by the treatment
are assigned methylation levels on all their CpG sites us-
ing the same protocol as for controls. All CpG sites of the
simulated cases and controls of the F1 generation are now
assigned methylation values as shown in Figure 2G.

Step 5: Methylation level assignation following F1 generation

The methylation level assignation method for the following
generation is similar to that of F1, but with three differences.
The first difference is the use of the synthetic chromosome
with labeled inheritable DMS to identify sites that should
follow a shifted Beta(� + vDiff, �) distribution. The sec-
ond is the use of an updated value of vDiff in the shifted
Beta distribution. The shift value vDiff is multiplied by a
ratio called propHetero that is specified by the user. The
propHetero ratio mimics the side effect of mating cases with
controls. Its default value is 0.5 because half of the chromo-
somes are inherited from the control (when cases are mated
with controls). The third difference is the use of a modified
penetrance mean to identify the ratio of cases that are not
affected by the treatment. The modified penetrance mean
(vpDiff parameter) is calculated using a function that de-
pends on the generation as well as the vInheritance param-
eter that is specified by the user:

vpDi f fi = vpDi f f · vInheri tance(i−2)

where vpDiff is the penetrance mean and i is the generation
(2 or above). The default value of vInheritance is 0.5 that
represent the situation where cases, in each generation, are
mated with controls.

All five steps of the simulation method have been imple-
mented into a R package to facilitate its use and the package
is distributed through Bioconductor.

Simulation schemes

Several three-generation datasets were simulated, using the
methInheritSim package, to evaluate the inheritance of in-
duced methylation modification over various conditions. F1
control methylation data from Sprague–Dawley male rats

(see following section) was used as reference dataset. For
each simulated dataset, only one synthetic chromosome was
created. The number of sampled regions and the number
of CpG sites per region were respectively set to 400 re-
gions (nbBlock parameter) and 50 sites (nbCpG parameter)
to generate a synthetic chromosome of 20 000 CpGs. The
rateDiff parameter that affects the size of the low-density
DMS zones between differentially methylated regions was
fixed to 0.01.

To test sample size effect, we first defined three groups of
simulations with different total number of individuals (vNb-
Sample = 6, 12 and 18 per generation). The number of cases
and controls remained even in all groups. We also created
groups with different effect sizes representing weak, median
and strong induced treatment methylation effects that are
controlled by the DMS shift (vDiff = 0.5, 0.7 and 0.8). The
penetrance that fixes the ratio of cases affected by the treat-
ment was set to 0.9 (vpDiff parameter). The standard devia-
tion of the penetrance (vpDiffsd parameter) was fixed to 0.1
(default value). Hundred simulated dataset were generated
for each of the nine schemes.

All parameters related to inheritance remained constant.
Thus, the vInheritance was fixed to 0.5 which represents the
situation where cases are mated with controls in each gen-
eration. The propInherite also remained constant to 0.3 (de-
fault value).

Finally, a permutation analysis was run on each simula-
tion with 1000 permutations (nbrPermutations parameter)
using the methylInheritance package. The minimum per-
centage of methylation change between cases and controls
was fixed to 20 (minMethDiff parameter). All the other pa-
rameters remained at their default values. The number of
detected DMS obtained from each simulated dataset was
extracted from the first step of the permutation analysis.
The power of detection and false discovery rate (FDR)
has been calculated for each simulation using custom Perl
scripts. A set of 100 null simulations (vpDiff = 0) for vNb-
Sample = 6 was also performed.

Transgenerational methylation data application

We applied our permutation analysis to a methylation
dataset of Sprague–Dawley male rats and their descen-
dants exposed in early-life to a persistent organic pollutants
(POPs) mixture. This POPs mixture was designed to mimic
contaminants in ringed seal blubber, a traditional Inuit meal
(37). Briefly, the POPs mixture was dissolved in corn oil
(Aldrich-Sigma, Oakville, ON, Canada) to form a 5 mg
PCB/ml stock solution and diluted to 500 �g PCB/ml be-
fore gavage. The dosage was administered twice weekly for
5 weeks (500 �g/kg body weight) to the founder F0 female
rats in order to simulate levels observed in blood of Québec
Inuit population (38). A schematic representation of the ex-
perimental design is shown in Figure 3.

Genome-wide methylation profiles of rat epididymal
sperm across F1, F2 and F3 generations were ob-
tained through reduced representation bisulfite sequencing
(RRBS) (39). A total of 36 adult male spermatozoa profiles
(six cases and six controls per generation) were sequenced
on an Illumina HiSeq 2000 sequencer (Illumina, San Diego)
at Génome Québec Innovation Centre (McGill University,
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Figure 3. Schematic experimental design representation. The founder F0
female was exposed to a POPs mixture. Intergenerational (F1 and F2)
and transgenerational (F1, F2 and F3) inheritance of treatment-induced
methylation profiles were evaluated using the methylInheriance method.

Montréal), using 100 bp paired-end reads (statistics for the
sequencing quality in Supplementary Material, section 3.1).
Reads were sorted using SAMtools v1.2 (40), transformed
in FASTQ files using BEDTools v2.17 (41) and trimmed
using Trim Galore! v0.4.0. The cleaned reads were aligned
on bisulfite-seq rattus norvegicus genome (Rnor 5.0) us-
ing Bismark v0.14.5 (42) and indexed with SAMtools v1.2.
(statistics for the quality of alignment in Supplementary
Material, section 3.2). The CpG sites for each sample have
been detected using R package methylKit v0.9.4 (43). Only
the filtered CpG sites with a minimum coverage of 15 reads
have been retained for the downstream analyses (statistics
for the CpG sites, as well as coverage distribution, in Sup-
plementary Material, section 3.3). All RRBS dataset are
available through Expression Omnibus accession numbers
GSE109056.

RESULTS

Simulation results

We studied the power of detection of treatment-induced
DMS across multiple generations using simulation studies
performed on one synthetic chromosome generated by me-
thInheritSim package. To simulate different experimental
settings, we varied the sample size and the strength of the
treatment-induced methylation effect. Hundred simulations
were generated for each settings, to the distribution of the
results could be investigated. Figure 4A shows the power of
detection across three generations for different strength of
treatment induced methylation effects (treatment effect =
0.5, 0.7 and 0.8) and a fixed sample size of 6 individuals par
generation. The treatment-induced methylation effect has a
mild impact on the power of detection for the first genera-
tion. Besides, all results were >94% of detection in the first
generation. However, the impact of the strength of induced
treatment methylation effect sharpens across generations.
At the second generation, the weaker treatment effect (treat-
ment effect = 0.5) is noticeably below the power of detection
of the two other treatment effects and it drops almost to zero
in the third generation with a maximum value <3%. For
the third generation, with the strongest treatment-induced
methylation effect (treatment effect=0.8), we can observe a
small peak of simulations with a high power of detection,

Figure 4. Comparison of (A) power of detection and (B) false discovery
rate (FDR) across generations using 100 simulation studies with different
strengths of treatment-induced methylation effects (treatment effect=0.5,
0.7 and 0.8) on a fixed sample size of six individuals per generation.

another small peak of simulations with a power of detection
around 50% and the rest of the simulation with low power
of detection.

The false discovery rate is shown in Figure 4B and was
produced using the same settings used for the power of de-
tection (Figure 4A). The FDR markedly escalates with the
generation analyzed. While FDR is well below 5% for the
first generation, it reaches 90% for the second generation
(treatment effect = 0.5) and hits 100% for the third one. The
strength of treatment-induced methylation has mainly an
impact on the third generation where the FDR is inversely
proportional the strength of the treatment-induced methy-
lation effect.

The population size has mild impact on the first gen-
eration, but for second and third generations, the power
of detection decreases for the simulation with the weaker
treatment-induced effect (treatment effect = 0.5) (Supple-
mentary Figures S1–S3). A similar simulation analysis was
done using the differentially methylated regions (DMR), the
results for a fixed sample size of 6 and 12 individuals are in
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Figure 5. Distribution of the ratio of inheritable induced methylation
changes that are transgenerationally conserved for three strength of treat-
ment effects: (A) treatment effect = 0.5, (B) treatment effect = 0.7 and (C)
treatment effect = 0.8. The simulations have been run 100 times for each
treatment effect. The red distribution represents the significant transgen-
erational inheritance of DMS obtained by methylInheritance and the blue
the non-significant results.

Supplementary Material (section 2.2, Supplementary Fig-
ures S4 and S5).

The power of detection of transgenerational inheritance
of DMS was calculated by running methylInheritance on
the simulation studies (Figure 5). The ratio of transgener-
ationally conserved methylation changes increases with the
strength of the treatment-induced methylation effect.

At last, a set of 100 null simulations (treatment effect = 0)
was performed for validation. Interestingly, 40% of the null
simulation had one or more significant DMS in common
in all three generations. Nonetheless, the P-values obtain
by methylInheritance for those control simulations were not
significant.

Paternal exposure to arctic contaminants exposure in early
life

The permutation analysis was applied on the full methyla-
tion dataset from early life POPs exposed Sprague–Dawley
males and their descendants. First, significant DMS were
identified as sites having false discovery rate <1% and a
minimum methylation difference of 20% using methylKit
(43) through the methylInheritance package. Respectively,
502, 377 and 736 hypo DMS were detected in F1, F2 and
F3 generations. While F1 and F2 generations (intergenera-
tional) share 99 hypo DMS, only 44 DMS are common to

Figure 6. Sperm DNA methylation was analyzed in F1, F2 and F3 adults
according to paternal lineage. Venn diagram of differentially methylated
sites (DMS) detected in each generation. (A) Intergenerational Hyper
DMS. (B) Intergenerational Hypo DMS. (C) Transgenerational Hyper
DMS. (D) Transgenerational Hypo DMS.

all generations (transgenerational) (Figure 6B and D). Sim-
ilarly, 719, 452 and 658 hyper DMS were detected in F1,
F2 and F3 generations. Solely 118 hyper DMS are common
to F1 and F2 and 39 to all generations (Figure 6A and C).
Globally, the number of conserved DMS is low compared to
the total number of DMS detected. The distribution on the
genome of the significant DMS for each generation, as well
as the intergenerational and transgenerational sites is shown
in Supplementary Material (section 3.4 and Supplementary
Figure S11). Annotation of the DMS have bright out the
limited number of significant DMS assigned to a transcrip-
tion start site region (TSS). However, those sites are present
in higher proportion in the intergenerational and transgen-
erational analyses (section 3.5 in Supplementary Material).

Permutation analysis of the methylation data from early
life POPs exposed Sprague–Dawley male rats and their de-
scendants was performed with the methylInheritance pack-
age. A total of 4,000 permutations were run and the thresh-
old was fixed to 0.05. For each permutation, DMS detection
was done for each generation separately using the same pro-
cedure and parameters than previously described. A high
variability of the number of DMS detected was observed
in each generation between permutations, as shown in Fig-
ure 7A. Statistics have been calculated at every 250 permuta-
tions during the permutation analysis to ensure that conver-
gence has been reached (Figure 7B). Intergenerational hypo
and hyper-methylated analysis both did not exceed signifi-
cance thresholds (Figure 7C) with respectively a significant
level of 0.0252 and 0.0185. While transgenerational hypo
and hyper-methylated analysis reached even lower signifi-
cance levels of 0.0032 and 0.0032 (Figure 7D). A similar per-
mutation analysis was done using the differentially methy-
lated regions (DMR), the results are in Supplementary Ma-
terial (sections 3.6 and 3.7).

A total number of two intergenerational and one trans-
generational DMS was detected at TSS and these were
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Figure 7. Summary of the results of the permutation analysis done on the POPs exposed Sprague-Dawley males and their descendants. A total of 4000
permutations have been processed. (A) Distribution of the number of DMS, in each generation, using all permutations. Red values are the observed values.
(B) Convergence of the permutation analysis. Statistics have been calculated at each cycle (250 permutations). The orange line represent the intergenera-
tional results while the green line represent the transgenerational results. (C) Distribution of the number of conserved DMS obtained between F1 and F2
generations. Hyper and hypo conserved DMS are shown separately. The observed results are included in the distribution. The red dotted lines represent the
observed numbers. (D) Distribution of the number of transgenerationally conserved DMS obtained in all permutations. The observed results are included
in the distribution. The red dotted lines represent the observed numbers.

all hypo-methylated sites (Supplementary Table S4). Some
DMS corresponded to DMR but most DMS were at
solo CpG sites. No intergenerational or transgenerational
DMS was found within a CpG island. Four intergenera-
tional DMS, with two conserved transgenerationally, were
found within CpG shore. These intergenerational DMS
were found in an exon of the Plppr3 gene and an intron
of the Chat gene. The transgenerational DMS were found
in an intron of Tctn2. The biological significance of these
DMS is not known. In the whole dataset, three transgen-
erational DMRs were detected. These were located in in-
tronic or intergenic regions (Supplementary Figure S16).
There was no intergenerational or transgenerational DMR
at TSS or exon sequences (Supplementary Figure S16). The
biological significance of these DMRs is not known.

DISCUSSION

Transgenerational epigenetic inheritance is described as the
germline transmission of epigenetic marks, such as DNA
methylation, across generations in the absence of contin-
ued direct environmental exposure or genetic manipulation
(44). In this article, we proposed a permutation analysis

based on Monte Carlo sampling to study the persistence of
induced DNA methylation changes over multiple genera-
tions. The method infers a relation between the number of
conserved DMS from one generation to the next to the in-
heritance effect of treatment. To assists in the study of DNA
methylation changes inheritance and to test the permuta-
tion analysis we have also provided a new methods to sim-
ulate multigenerational DNA methylation in control and
case datasets.

Simulation of induced methylation changes inheritance

Simulators based on next-generation sequencing (NGS)
technologies play an extensive role in the evaluation of new
sequencing methods and the development of suitable exper-
imental workflows (31). The R/Bioconductor methInherit-
Sim package fosters the study of DNA methylation inher-
itance by providing a way to simulate datasets of inherited
DNA induced methylation changes. Parameters can be used
to produce simulations that reflect different experimental
settings.

The method developed in this paper can model the
treatment-induced methylation changes over multiple gen-
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erations. Furthermore, the simulations can characterize the
impact of the introduction of unexposed mates at each gen-
eration. A comprehensive simulation study was conducted
to test the treatment-induced methylation effect. In a first
step, we have examined the statistical behavior of the simu-
lation cases. The performed simulations have shown a rapid
decrease of the power of detection and increase of FDR
across generations. The third generation is the most affected
one with almost no power of detection left. Those results are
consistent with the limited number of studies across three
generations or more that have had significant results (24).
As expected, the strength of the methylation changes in-
duced by the treatment only had a mild impact on the power
of detection for the first generation. However, the impact
of the strength of treatment-induced methylation effect in-
creases across generations.

Detection of induced methylation changes inheritance

Simulation studies. We then apply the proposed permu-
tation analysis to identify intergenerational and transgen-
erational inheritance of DMS for each simulation cases.
The power of detection was over 80% for every intergen-
erationally conserved DMS (F1 and F2) with an treatment
effect of 0.7 or 0.8. Not only the false discovery rate declines
when the number of samples per group (case and control)
increases, from 6 to 12 and to 18, there is also a decline in
the power of detection. This effect could be explained by the
better capacity to detect the real multigenerational DMS
with a large sample size which would be accompanied by
a diminution of the detection of some DMS obtained by
chance with smaller groups.

In the case of a treatment effect of 0.5, the simulations
show a lower power of detection than the two stronger treat-
ment effects but still >70%. The simulations with a treat-
ment effect of 0.5 are more affected by the introduction of
the first control parent. As the child of F2 receives only one
chromosome with inherited DMS, the average treatment ef-
fect falls to 0.25 which is near the minimal threshold that we
have chosen (minimum of 0.20) to be declared differentially
methylated.

In the case of transgenerational inheritance (the intersec-
tion between generations F1, F2 and F3), the power of de-
tection dramatically decrease and is <31% for all treatment
effects. The principal explanation of the decline of the power
of detection is the introduction of the second control par-
ent. In this case, the F3 generation had one heterozygote
parent for the inherited DMS and the other is wild type;
so each member of the F3 generation has 50% chance to
receive two wild type chromosomes. Under this design, the
power of detection must be low because, on average, half of
the cases are wild type and all the others have, on average,
half of their chromosome wild type. This situation should
put into perspective the lack of significant results from some
transgenerational studies (20).

We have also shown the importance of having a cut-
off for the size of the intersection, as the simulations with
only noise (null simulations) generate a non-empty trans-
generational intersection for 40% of the simulations with
six cases and six controls per generation. None of those null
simulations (containing only controls) obtained significant

methylInheritance p-value for the transgenerational inter-
section. The methylInheritance method defines the proba-
bility to obtain the size of the intersection by shuffling the
DMS from the three generations.

Paternal exposure to arctic contaminants exposure in early
life. The permutation analysis was used on data of
Sprague–Dawley male rats exposed to POPs contaminant
and their descendants. With this analysis, we confirmed that
the number of intergenerational hyper and hypo-methylated
DMS is significantly larger than what could be expected by
chance. Unambiguously positive results were also obtained
for the transgenerational analysis.

Furthermore, in a previous publication we have shown
that both F1 males and their F2 sons that were exposed to
the POPs mixture early in life were subfertile (45). In addi-
tion, F2 and F3 generations demonstrated significant pla-
cental defects, reduced fetal growth, neonatal and postna-
tal death and other congenital anomalies. Then, the pheno-
types observed in the adult population reinforced the con-
cept of inter- (F1 and F2) and transgenerational (F3) effect
after a POPs exposition. The risks of neonatal and postna-
tal infant death are elevated in Inuit communities (46), so is
stillbirth rates due to poor fetal growth, placental and con-
genital disorders (47). Also, exposure to PCBs in utero was
shown to be related to a lower quality of alertness in Inuit
children aged 11 months (48), poorer emotional develop-
ment (49) and more respiratory infections in preschoolers
from these communities (50). These observations highlight
that Inuit health problems and the differential methylated
genes associated with human diseases could be related to
early life paternal POPs exposure.

Our results tend to support transgenerational epigenetic
inheritance of POPs exposure via sperm. Recent findings
suggest that paternal transmission of environmental infor-
mation can occur via the sperm epigenome such as changes
in the DNA methylation profile. Lambrot et al. (51) showed
that the sperm of mice contains environment sensitive epige-
nomic regions that respond to diet. Those regions can be
transmitted and influence offspring health. The transmis-
sion involves histone methylation or DNA methylation.
High-fat diet has been shown to transgenerationally re-
programs the epigenome of rat sperm cells and to affect
metabolic tissues of offspring throughout two generations
(52). Gametic DNA methylation may play a role in trans-
generational inheritance of metabolic dysfunction as 18 loci
differentially methylated in sperm from F0 rats fed a high-
fat diet where also identified in their F1 offspring. However,
no altered DMR were identified in F2 offspring adipose tis-
sue.

As observed in the simulations, the number of conserved
sites is more than 2.5 times lower in the transgenerational
analysis than in the intergenerational analysis. This rapid
decrease of transmitted altered methylation sites could be
linked to the natural dissolution caused by the introduc-
tion of untreated mates in each generation. This decrease
could also be explained by reported observations suggesting
that transgenerational epigenetic inheritance is a soft inher-
itance mechanism that is reversible changes (53,54). In any
case, the gradual disappearance of altered methylation sites
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from F1 to F3 increases the difficulty of finding significant
measurements.

Strength and limitation. The methylInheritance tool is use-
ful for the research community to evaluate the significance
level of the number of conserved DMS or DMR over mul-
tiple generations. It does so by using an appropriate sta-
tistical approach to verify if the number of methylation
changes are an effect of inheritance from a treatment and
not randomness. To our knowledge, the number of avail-
able tools to study methylation inheritance is limited and the
methylInheritance package contributes to enrich choices for
researchers. The tool can be applied to experimental de-
sign to study methylation changes?across multiple genera-
tions in response to either nutritional or pharmacological
interventions or exposure to environmental stressors. Sim-
ulation software, such as R/Bioconductor methInheritSim,
have multiple utilities. One of the most common uses of
power analysis during the planning of an experiment is to
calculate sample size and this can be done using simulations
(55). This kind of knowledge can be quite helpful in de-
signing proper treatment protocols with increased chances
to find answers to specific hypothesis. Furthermore, simu-
lations provide well characterized dataset to compare the
performance of existing and novel statistical methods (26).

Another statistical approach has been developed to iden-
tifying significant transgenerational methylation changes.
The Genome-wide Identification of Significant Methylation
Alteration (GISAIM) method (23), has been specifically de-
veloped to detect gene promoter regions with significant
methylation changes conserved in three generations. The
GISAIM methylation score is calculated by summing the
logarithm of the fold changes of each generation. By do-
ing so, it does not account for the dilution of the treat-
ment effect through mating and therefore does not give
different weights to generations in the calculation of the
methylation score. The fundamental distinction between the
two methods is: GISAIM tests if a promoter has transgen-
erational change while methylInheritance evaluates if the
number of common DMS to the multiple generations is
higher than the number expected by chance; methylInher-
itance does not infer if a specific element has transgenera-
tional change. Strengths of the methylInheritance method
are that (i) it has broader applicability, as it is not limited to
promoter regions, (ii) it analyses the relationship between
generations and can thus identify the generation where the
treatment effect is lost and 3- contrarily to GISAIM, it
doesn’t need to be implemented as it is available and ready
to use through a R/Bioconductor package. The principal
limitation of methylInheritance is that it does not have its
own method to detect if a specific element is a differentially
methylated change.

Summary. In this paper, we developed a method to test the
hypothesis that the number of conserved DMS between sev-
eral generations is associated with exposure of the F0 gen-
eration to POPs, and that the amount of conserved DMS
is significantly different from what could be expected from
stochastic changes. To make possible the computation of
a significance level for epigenetic inheritance, we imple-
mented methylInheritance, a R package that uses permu-

tation analysis to evaluate if the number of conserved DMS
or DMR from one generation to the next is significantly
different from what would be expected from a random-
ness analysis. We also developed methInheritSim, a R pack-
age that simulates datasets of inherited treatment-induced
DNA methylation changes. This package bases the simu-
lation on a biological dataset provided by the user and it
includes a large number of parameters to produce simula-
tions that reflect various experimental settings. The simu-
lator provides a precious help to evaluate potential exper-
imental designs in function of the model of inheritance. It
also enables power analysis to assess the capacity to detect
a given treatment effect with a given design and sample size.
A good strategy to generate simulations that reflect in vivo
situation consists in testing a range of realistic parameter
values.

DATA AVAILABILITY

The methylInheritance and methInheritSim methods are
implemented in two distinct R packages which are freely
available, under the Artistic license 2.0, through Bioconduc-
tor at http://bioconductor.org/packages/methylInheritance/
(DOI:10.18129/B9.bioc.methylInheritance) and
http://bioconductor.org/packages/methInheritSim/
(DOI:10.18129/B9.bioc.methInheritSim).

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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