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Abstract: The exponential increase in the number of conducted studies combined with the de-
velopment of sequencing methods have led to an enormous accumulation of partially processed
experimental data in the past two decades. Here, we present an approach using literature-mined
data complemented with gene expression kinetic modeling and promoter sequence analysis. This
approach allowed us to identify the regulon of Bacillus subtilis sigma factor SigB of RNA polymerase
(RNAP) specifically expressed during germination and outgrowth. SigB is critical for the cell’s
response to general stress but is also expressed during spore germination and outgrowth, and this
specific regulon is not known. This approach allowed us to (i) define a subset of the known SigB regu-
lon controlled by SigB specifically during spore germination and outgrowth, (ii) identify the influence
of the promoter sequence binding motif organization on the expression of the SigB-regulated genes,
and (iii) suggest additional sigma factors co-controlling other SigB-dependent genes. Experiments
then validated promoter sequence characteristics necessary for direct RNAP–SigB binding. In sum-
mary, this work documents the potential of computational approaches to unravel new information
even for a well-studied system; moreover, the study specifically identifies the subset of the SigB
regulon, which is activated during germination and outgrowth.

Keywords: Bacillus subtilis; SigB; gene regulatory networks; computational modeling; promoter
sequence analysis

1. Introduction

Transcription and expression of the physiologically relevant genes is essential for
adaptation of organisms to changing environmental conditions. Uncovering the nature
of gene regulatory networks is one of the core tasks of systems biology. Identifying
direct regulons (group of regulated genes) of sigma factors can be considered as a basic
element of this task for prokaryotic organisms where sigma factors are subunits of RNA
polymerase (RNAP) that are critical for recognition of promoters (DNA sequences where
gene transcription starts [1]). A number of tools for gene regulatory network inference
were developed in the last 20 years (a comprehensive review of the methods for gene
networks inference can be found in Wang et al. [2] and Loskot et al. [3]). Several such tools
(ARACNE [4], and network BMA [5]), including our tool CyGenexpi [6], were integrated
into the systems biology platform Cytoscape (http://www.cytoscape.org/). Advances
and limitations of network inference methods were reviewed by [7], and substantial work
on reconstruction of sigma factor-controlled networks was also performed by Tiwari and
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Chauhan [8,9], as well as in Bacillus, particularly by Nannapaneni [10]. However, it has
been shown that using only one source of data for network inference (e.g., only chromatin
immunoprecipitation sequencing [ChIP-seq], RNA sequencing [RNA-seq], or literature
mining) can be misleading. Therefore, combining multiple sources is necessary [11].

Bacillus subtilis is a Gram-positive model organism that survives unfavorable con-
ditions as an endospore. Subsequent spore germination and outgrowth are complex
processes [12] that require extensive changes in gene expression that involve a number of
sigma factors. B. subtilis contains one main (primary, housekeeping) sigma factor—SigA,
which regulates gene expression mostly in exponential phase [13,14], as well as 18 alterna-
tive sigma factors [15–18] and one sigma-like factor—Xpf [19].

SigB is the general stress response factor, helping the cell resist oxidative stress;
moreover, it also protects cells against heat, acid, alkaline, or osmotic stress [20]. RNAP
holoenzyme containing SigB recognizes GTTTaa and GGG(A/T)A(A/T) sequences as the
−35 and −10 regions (with respect to +1 transcription start). These two sequences are
separated typically by 13 to 15 nucleotides [18]. The sigB gene itself is transcribed from two
promoters, one SigA-dependent and the other SigB-dependent [21]. The activity of the SigB
protein is regulated by a partner-switching signaling network that involves anti-sigma, anti-
anti-sigma factors, as well as phosphatases that act upstream of the “anti” factors. Under
non-stressing conditions, SigB is typically in complex with its anti-sigma factor, RsbW, and
inactive. RsbV, the anti-anti-sigma factor, is under these conditions phosphorylated and
unable to interact with RsbW. When stress is detected by the cell, phosphatases RsbQP
and/or RsbTU dephosphorylate RsbV, which subsequently interacts with RsbW, and SigB
is released and activates its target genes, including its own operon, which also includes
genes for RsbW and RsbV [22]. However, as experimental data show [23], SigB is expressed
also during germination and outgrowth where the stress conditions are not expected.

Currently, according to SubtiWiki (http://www.subtiwiki.uni-goettingen.de/[24]),
there are 217 genes known to be in the SigB regulon. Other works identified additional SigB-
regulated genes by using various methods mostly in stress-induced systems [18,25–28].
Combining all the available data sources, the SigB regulon currently consists of 411 genes.
It is most likely that not all of these genes are activated during particular conditions.

To advance our understanding of the SigB regulon and the germination-outgrowth pro-
cess in B. subtilis, we applied a combination of computational and experimental approaches.
First, we extracted and combined the data from the previous experiments obtained both
from literature and the SubtiWiki database. Subsequently, in order to identify genes reg-
ulated by SigB, we computationally modelled the gene expression profiles recording the
activity of the cell regulatory networks under given experimental conditions (here the
germination and outgrowth) using SigB as a regulator, and those satisfying selection criteria
were identified as members of the active regulon. Furthermore, for the genes of the SigB
regulon reported as alternatively controlled by other sigma factors, we also computed
the models of their regulation, and, where the SigB profile alone could not explain the
regulation, other regulators (i.e., sigma factors) were suggested. Analysis of the promoter
site binding motifs with respect to the above-mentioned analyses allowed us to define more
precisely the structure of the sequence, which is necessary for SigB to bind and activate
transcription. The results were then validated experimentally. Using the results of the
kinetic modeling and promoter sequence binding motifs analysis, we were able to identify
a core set of genes controlled by SigB, which is specifically expressed during germination
and outgrowth.

2. Materials and Methods
2.1. Data Acquisition
2.1.1. Time Series of Gene Expression

We downloaded the B. subtilis transcriptomic microarray data from GEO (http://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE6865), consisting of 14 time points (0, 5, 10,
15, 20, 25, 30, 40, 50, 60, 70, 80, 90, and 100 min) during germination and outgrowth [23]. The
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dataset contains time series of expression of 4008 genes. Briefly, spores of Bacillus subtilis
168 were generated by growing cells in a defined MOPS medium at 37 ◦C and shaking
for 4 days. Spores were then thermally activated at 70 ◦C for 30 min in germination
medium. The release of dipicolinic acid in the medium during spore germination was
monitored using the terbium fluorescence assay. Samples for RNA isolation were drawn at
regular intervals during germination and outgrowth. RNA was isolated from spores and
outgrowing spores and Cy-labeled cDNA was produced by reverse transcription using
Cy-labeled dUTP. Samples were hybridized to microarray slides; microarrays were scanned
using an Agilent G2505 scanner. Data from replicates were averaged, and the original
log2-based data were exponentiated.

2.1.2. SigB Regulon

The SigB regulon was compiled from the published data [18,25,28–30] and from the
SubtiWiki database (http://www.subtiwiki.uni-goettingen.de/ [31]) The data in SubtiWiki
contain a collection of experimentally validated regulatory relations of B. subtilis genes
constructed by surveying literature references, including interactions found regardless
of the experimental conditions under which they were obtained. The literature data are
mostly results of binding experiments obtained under stress conditions. All this results in
overlaps of different sigma factors and cofactor regulons within the regulon of SigB. Such
interactions were also considered in the analysis below.

2.2. Kinetic Model of Gene Expression

We used the model originally developed by Vohradsky [32] and further extended
in the works of to and Vu [33–35]. The model was implemented as a Cytoscape plugin
(www.cytoscape.org) as an R package and a command line tool [6]. In this paper, we used
the command line version executed from a Matlab script. All further computations were
performed in the Matlab environment. The script executables and the Cytoscape plugin
can be downloaded from https://github.com/cas-bioinf/genexpi/wiki. The model as
implemented in this paper was described in detail in our previous work [36]. Here, we
only briefly mention its principle and a model of constant rate of expression used in the
data preprocessing.

The relation between the rate of accumulation of the transcribed mRNA and the sigma
factor amount can be described mathematically by a sigmoid with parameters reflecting
the strength of binding, reaction delay, and mRNA degradation rate. The model used in
this study has the following form:

dyi
dt

= k1i
1

1 + exp[−(∑ jwijRj + bi)]
− k2iyi (1)

where yi represents the amount of the target genes mRNA, and Rj is the amount of the j-th
sigma factor modulated by parameter wij, corresponding to the binding strength to the
promoter. The bi corresponds to the reaction delay. Accumulation of the gene’s mRNA is
diminished by degradation described by the term k2iyi. In the data preprocessing step, we
also considered a constant rate of expression model where

dyi
dt

= k3i − k4iyi (2)

Here, y is the expression of the target gene as a function of time, and k3 and k4 are
mRNA synthesis and degradation rate constants, respectively. When a gene expression
profile is fitted by the constant synthesis model, it means that its synthesis is not affected
by amount changes in the sigma factor. Such genes have to be excluded from the analysis,
as when using the Equation (1) they can be fitted with any profile and introduce false
positive results.

http://www.subtiwiki.uni-goettingen.de/
https://github.com/cas-bioinf/genexpi/wiki
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Since the expression data is noisy, we interpolated and smoothed them prior to
computation with a Sawitzky–Golay filter. The smoothing achieved more robust results
with respect to high-frequency phenomena expected in gene expression, while preserving
the characteristic low-frequency phenomena. A further advantage to smoothing is that it let
us subsample the fitted curve at arbitrary resolution. We subsampled the profiles at 1 min
time steps, which allowed us to integrate Equation (1) accurately using the computationally
cheap Euler method. Optimization of the parameters of the model for individual sigma
factor-transcribed gene combination was performed using a simulated annealing scheme
by minimization of an objective function

E =
√∑(y− ỹ)2 (3)

where y represents the experimental mRNA’s amount time series and ỹ represents the
time series computed using the model Equation (1). Furthermore, a regularization term
was added to the objective function to penalize biologically implausible values of the
parameters. The regularization is non-zero if either (a) k1i allows maximal measured
transcript level to be achieved in less than 1 min starting from zero, or (b) regulatory
response is very steep with |wi (t) |> 10 for some t, or (c) the regulatory interaction is
never saturated with |−wi (t) + bi| > 0.5 for all t. For each profile, the optimization was
repeated 256 times with random values of initial parameters estimates. From the 256 runs,
the parameters giving the smallest E were selected. The goal was to identify parameters
that would fit the measured expression profiles of the given regulated gene with the SigB
profile as the regulator within the confidence interval. Where such parameters were found,
regulatory interaction between a sigma factor and a gene was considered proven.

2.3. Data Preprocessing

Prior to any computations, as mentioned in the preceding paragraph, raw gene ex-
pression time series were interpolated to 1 min intervals and smoothed using Golay filters
(Matlab function smoothdata, method sgolay; Supplementary File S1). Then, several con-
straints were introduced: (1) time series of gene expression of the genes whose maximum
in expression profile was smaller than an arbitrarily chosen value of 300 were excluded,
as the low values of expression profiles bear large variance that can lead to misinterpre-
tation of the modeling results. The threshold level was based on the observation that the
variance of the microarray quantified expression values rapidly increases with decreasing
magnitude of the signal and for low levels of expression can reach values higher than 50%
of the mean (defined as coefficient of variation (CV)). (2) The genes that could be modeled
with a constant rate of synthesis model (Equation (2)) were excluded, as they could be
modeled by any profile and could bring false positive predictions. (3) A random expression
profile created by randomization of the SigB expression profile was used as the regulator
profile to model the expression profiles that were not excluded in the previous steps. The
modeling with the randomized profile was performed 10 times for all genes that were
not excluded in the previous step, and those gene expression profiles that were modelled
at least once by the random profile were excluded. The purpose was the same as in the
previous case-exclusion of the genes that could lead to false positive predictions.

2.4. Promoter Binding Motif Analysis

For identification of the SigB binding motifs, we used the information from Table S4 of
the Supplementary Materials of the paper of Nicolas et al. [18]. Table S4 contains sequences
of the promoter regions containing two motifs (−35 and −10) found to be present for
different sigma factors including SigB. The table contains also “upshift” locations (proxy
for transcription start site) for all transcription units (operons). Using the upshift locations,
we extracted the sequences <−80; +40> nucleotide range from the upshift position. In these
sequences, we used two methods for identification of the binding site motifs: exact match
and consensus motif search. For the latter, we first identified the consensus motif from the
motifs in Table S4 of Nicolas et al. The computed logo is shown in Figure 1. Each motif
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was converted to meme format, and the fimo utility (meme-suite.org/doc/fimo.html) was
used to search the motifs within the extracted sequences (fimo—norc—thresh 0.001).

Figure 1. Binding motifs found in genes of SigB regulon. The motifs are ordered from −35 to −10
with spacers of 5–20 nucleotides.

For the exact match search, we directly used the sequences of the motif as indicated
in the promoter sequences of Table S4 of Nicolas et al. The two results were merged and
combined with the information about corresponding transcription units.

2.5. Transcription In Vitro
2.5.1. SigB Cloning

The sigB gene was amplified using B. subtilis BaSysBio genomic DNA [18] with the
primers 1004/sigB_F 5′-ggaattcCATATGacacaaccatcaaaaac-3′ and 1006/sigB_R_His 5′-
ccgCTCGAGcattaactccatcgagggatc-3′. The resulting DNA fragment was cloned into expres-
sion vector pET-22b (comprising inducible promoter and 6xHis-tag) using NdeI and XhoI
restriction enzymes. The resulting construct was validated by sequencing transformed into
E. coli BL21 (DE3) competent cells, and the strain was named LK#1207.

2.5.2. Media, Growth Conditions, Protein Purification

For protein purification, the strains were cultured in Luria–Bertani (LB) medium at
37 ◦C with continuous shaking. Bacillus subtilis RNAP rpoE (LK 637, [37]) with a His10-
tagged β’ subunit was purified as described previously [38]. SigB was overexpressed from
strain LK#1207. The strain was grown in 2L of liquid LB medium at 37 ◦C, and when
the bacterial culture reached OD600 0.6–0.7 (mid-logarithmic phase), it was transferred to
room temperature, and SigB overexpression was induced with 0.8 mM isopropyl β-D-1-
thiogalactopyranoside (IPTG) for 3 hours under constant shaking (120 rpm). Purification
of SigB via 6x His-tag using affinity chromatography was performed as described previ-
ously [38]. Delta subunit (RLG7023 [39]) of B. subtilis RNAP was purified as described [39].

2.5.3. PCR of DNA Templates

Linear PCR products of putative promoter regions were used as templates for in vitro
transcription assays. The primers are listed in Supplementary File S2. Putative promoter
sequences were PCR-amplified using wild type (wt) B. subtilis gDNA as the template.
All PCR reactions were performed using the Expand High Fidelity System (Roche). The
purification of PCR constructs was performed using QIAquick Gel Extraction Kit from
Qiagen according to the manufacturer’s protocol.

2.5.4. In Vitro Transcription Assays

The B. subtilis RNAP core was reconstituted with saturating concentrations of SigB
and delta. Reconstitutions were performed in a glycerol storage buffer (50 mM Tris-HCl
(pH 8.0), 0.1 M NaCl, 50% glycerol) for 10 min at 37 ◦C. E. coli RNAP holoenzyme was
purchased from NEB (cat# M0551S).

Multiple round transcription reactions were carried out in 10 µL reaction volumes with
60 nM B. subtilis RNAP holoenzyme and 50 ng of linear DNA template. The transcription
buffer contained 40 mM Tris-HCl (pH 8.0), 10 mM MgCl2, 1 mM dithiothreitol (DTT),
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0.1 mg/mL bovine serum albumin (BSA), and 150 mM KCl. ATP and GTP were 400 µM,
CTP was 200 µM, and UTP was 10 µM plus 2 µM radiolabeled [α-32P]UTP.

All transcription experiments were performed at 37 ◦C. Transcription was induced by
adding reconstituted RNAP holoenzyme and allowed to proceed for 15 min. Transcriptions
were stopped with equal volumes (10 µL) of formamide stop solution (95% formamide,
20 mM EDTA (pH 8.0)). To generate molecular size RNA marker, we used the same
conditions. The only differences were the usage of E. coli RNAP and the templates were
DNA fragments of the hcr gene and plasmid pLK1 [40]. These templates were combined in
one reaction and yielded a ladder of 108, 145, 201, 253, 300, 357, and 407 nt. Samples were
loaded onto 7 M urea–7% polyacrylamide gels and electrophoresed. The dried gels were
scanned with Molecular Imager FX (Bio-Rad) and were visualized and analyzed using the
Quantity One software (Bio-Rad).

3. Results and Discussion
3.1. Modeling of the SigB Regulon

In this paragraph, we discuss the use of the expression profile of SigB to identify genes
that could be, from the kinetic point of view, controlled by SigB. This was achieved by
modelling of their expression profiles using Equations (1) and (3). Those genes for which
the model well fitted their expression profiles were identified as potentially controlled
by SigB.

Out of the 411 genes (217 genes from SubtiWiki, an additional 194 compiled from the
literature), 260 were reported to be controlled exclusively by SigB (the following results
are summarized in Supplementary File S3). For the remaining 151 genes, numerous other
regulators and sigma factors were found to participate in the control of their expression,
depending on the conditions. According to SubtiWiki and the bibliography, 2 regulators,
including SigB, were in the reported SigB regulon found for 88 genes, 3 regulators for
39 genes, 4 regulators for 13 genes, 5 regulators for 7 genes, and 6 regulators for 3 genes.
Altogether, 37 regulators including sigma factors were reported to participate in the control
of the SigB regulon; the regulon overlap was rather high. Most of the genes reported in
the literature as co-controlled by other factors also belonged to the SigA regulon (87 genes)
(the competition between SigB and SigA was reported [18]). Other sigma factors are (listed
in descending order of number of genes reported to be co-controlled by them) SigM (20),
SigG and SigF (16), SigW (14), SigX (10), SigH (6), SigE (5), and SigD and SigI (1). Of
the other transcription factors, CcpA, involved in carbon catabolite repression [41] was
found 13 times, while the others appeared between 1 to 9 times. We emphasize that these
observations were compiled from numerous articles, where the results were obtained
under diverse experimental conditions. Our goal then was to identify those regulators (i.e.,
sigma factors including SigB) that could participate in the control of the SigB regulon under
the conditions reflected in the time series analyzed here. We applied the model defined
in Equation (1) to the germination and outgrowth of gene expression data from a GEO
database (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE6865) that contained
expression profiles of 4008 genes measured at 14 time points (the experimental conditions
are briefly summarized in the Materials and Methods section), the pre-processing excluded
1349 genes with low expression, and 135 genes with constant rate of expression. Of
the remaining 2524 genes, another 327 genes with profiles that had been at least once
modelled with the random expression profiles were removed (see Materials and Methods,
data preprocessing).

For each target gene, all combinations of its reported regulators (single and/or multi-
ple) were modeled and the ability of the model to fit the experimental data was assessed
(see Materials and Methods, Section 3.2., Equation (1)). Although the experimental data list
some genes with four, five, and even six regulators, we modeled only the combinations
with maximally three regulators, as more than three regulators concomitantly acting on
one gene at a time is improbable. Furthermore, using more regulators could lead to overfit-
ting, with weights of some regulators close to zero. Selection of the regulators controlling

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE6865
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each gene was then performed with respect to the best goodness of fit of the model to
the experimental expression profile. Where an equivalent fit quality was achieved for
different regulators, or a combination of regulators, we used the following rules: (i) the
minimal number of regulators satisfying goodness of fit was selected (e.g., if an equal
fit was achieved for SigB only and a combination of SigB plus SigA, then the single SigB
regulator was selected); (ii) if SigB was found as one of the regulators, this regulation was
preferred; and (iii) if the error of fit was the same for some regulators or a combination of
regulators, they were listed as alternatives.

Modeling results are summarized in Supplementary File S3. Of the 411 genes of the
documented SigB regulon, 51 were found to be expressed at low levels (see constraints in
Materials and Methods Section 3.3), and 123 did not pass the other constraints defined in the
Materials and Methods section. For 63, we did not find parameters that could successfully
model their expression profiles; these genes were considered to not be controlled by SigB
under our conditions. For 25 genes, SigA, instead of SigB, was found as their most probable
regulator (apt, atpC, csbA, hemA, hemX, nhaC, opuD, pnpA, queA, rbfA, recO, rpsO, tgt, tmk,
uvrA, uvrB, uvrC, yhbJ, yhcA, yhcC, yhdH, yhgE, yocJ, yozB, yybT). For 17 genes (ctc, gtaB,
menC, menE, nadE, yebG, yitT, ykuT, ywsA, infB, smpB, ydaJ, ydaK, ydaL, yebE, yoaA, ypuB),
the best fit was obtained when SigB and SigA acted together. In summary, the modeling
confirmed 148 (36%) genes that were during germination and outgrowth controlled by
SigB alone (94) or with a possible participation of other regulators (54).

Finally, we found that of the 46 genes reported as controlled by three or more regula-
tors, 11 were equally well modeled by SigB alone (gabD, katX, rsbU, V, W, X, yfhE, F, yxjI,
yugU) or by SigB together with one or more reported regulators. No model could be found
for six genes (ylxP, Q, R, S, spo0E, yqjL). Generally, in all remaining cases, two regulators
were always sufficient to model the target gene expression profile equally well as if more
regulators were employed.

3.2. Binding Motif Analysis of Predicted SigB-Dependent Transcription of the Genes Expressed
during Outgrowth

In order to identify the genes that are actually controlled by SigB during germination
and outgrowth, we combined promoter binding site composition (the presence of −35,
−10, and their spacing) of the known SigB-dependent genes with their expression kinetics
analysis.

We took all genes of the documented SigB regulon (Supplementary File S3) and we
searched for the −35 and −10 motifs in the <−80; +40> region (numbering according to
a putative transcription start sites, [18]). We evaluated their mutual position and their
distance from each other (Supplementary File S4). The same analysis was performed on
subsets of genes that we found by the kinetic modelling to be under the control of SigB only
(type 1), genes where other regulators besides SigB were found (type 2), and genes where
no regulation was identified or that were excluded during preprocessing (type 3). Figure 2
shows the relative representation of the binding motifs and spacer length distributions in
these three groups. The distance between the promoter motifs (spacer length) ranged from
1 to 50 bp, where the highest deviation was observed for the excluded (type 3) genes.

In total, 95% of type 1 genes possessed the −35 motif, 78% the −10 motif, and 73% of
these genes contained both motifs. Similarly, 97% of type 2 genes had the −35 motif and
66% the −10 motif; 63% contained both motifs. To the contrary, only 53% of type 3 genes
had the −10 motif and only 40% of them had both. Importantly, the distance between the
binding motifs was more consistent for type 1 and 2 genes where the mean distance was
around 15 bp, while for the excluded genes, the mean distance was 18 bp. The largest
deviations were observed for the genes for which the kinetic modeling did not find any
regulator, or those that were excluded for low expression or flat expression profile (type 3).
Therefore, this analysis clearly specified genes whose binding site composition determines
that they could be regulated by SigB only and those that require during germination and
outgrowth additional/different regulators.
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Figure 2. Relative occurrence of −35 and −10 binding motifs and the distance between them in the different SigB regulatory
groups. Excluded (type 3)—regulator not found or the genes excluded during preprocessing; SigB and/or other (type 2)—
genes for which besides SigB, also another regulator was found; SigB only (type 1)—genes for which SigB was found as the
only regulator. The figure shows that the best characteristics were found for type 1 genes where the modeling results were
consistent with the binding motifs analysis.

3.3. Experimental Verification of Selected Promoters

Finally, we performed in vitro transcriptions in a defined cell-free system for selected
genes with different organization of SigB-binding motifs in the promoter region. The genes
were selected according to the motif organization and the shape of its gene expression
profile (see Figure 3). We used B. subtilis RNAP and DNA fragments containing the pro-
moter regions. Altogether, 16 promoter regions were selected. For the full list, see Table 1.
These promoters were divided into three classes (class I, II, and III). Class I promoters
(10 promoters) contained canonically spaced (by 13–15 bp) −35 and −10 elements. Class II
promoters (two promoters) contained only the −10 element, highly resembling the consen-
sus sequence. Class III promoters (four promoters) contained both −35 and −10 elements,
but their spacing was more than 14 bp. The genes were also chosen for the shape of
their gene expression profile. Most of them were correlated with the shape of the SigB
expression profile, with the exception of pgcA and yqhY, for which the model was fitted
with the negative value of the parameter w, suggesting inverse correlation with the profile
of SigB.
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Figure 3. Experimental verification of SigB dependence of selected promoters. The validation was
done by in vitro transcription with B. subtilis RNAP complexed with SigB (σB). (A)–Class I promoters
[contain canonically spaced (by 13–15 bp) −35 and −10 elements]. (B)–A known Class II promoter
contains only the −10 element, highly resembling the consensus sequence. (C)–genes of the Class II
promoter. Curves represent modeled (red dashed line) and experimental (red solid line) expression
profiles of the given gene; blue line is the expression profile of SigB. SHORT and LONG refer to
template length (two sizes for each promoter region) to distinguish the orientation of the promoter
within the template. −/+ indicate the absence/presence of SigB. In the absence of SigB, only the
RNAP core was used. trxA was used as a standard.
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Table 1. Experimentally verified genes. Motifs −35 and −10, refer to the binding motifs as defined in Section 2.2.

Gene CLASS Transcription Verified
TNX

Spacer
Length Motifs −35 Spacer −10

pgcA
(yhxB,gtaC,gtaE) BSU09310 I 1 1 16 −35, −10 CGTTTA TTTTTTGA

TATCAATT
GGGTAAGAA
CATATAAAGA

yjlB BSU12270 I 1 1 15 −35, −10 TGTTTG GCGAACC
GCTATATG

TGGAAGACAA
AAAAGGGAG

nhaX (yheK) BSU09690 I 1 1 15 −35, −10 AGGTTA ATTGTGC
TCAAATTC

GGGTAGTAG
TGTTGTAAGA

cadA (yvgW) BSU33490 0 15 −35, −10 TGTTTT TCATTGA
CACTTTCT

TGGAAAACA
ACATATAATA

yqhY BSU24330 I 1 1 16 −35, −10 GGTTTC GCTTGCTA
ATGAAATT

GGGTATCCT
GTAATTATAA

yflT BSU07550 I 1 1 14 −35, −10 TGTTTC AGGTACA
GACGATC

GGGTATGAAA
GAAATATAG

rsgA (cpgA,
yloQ) BSU15780 0 14 −35, −10 AGATTG AACCAGG

CCAAAAA
GGGTACTATC
AAGTAATGG

ctc BSU00520 I 1 1 15 −35, −10 GGTTTA AATCCTT
ATCGTTAT

GGGTATTGTT
TGTAATAGG

phoH (yqfE) BSU25340 I 1 1 15 −35, −10 AGTTCA AGAAGGC
ATTAAATT

GGGTAAACAG
GATGTAGAG

hpf (yviI,yvyD) BSU35310 I 1 15 −35, −10 TGTTTC AGCAGGAA
TTGTAAA

GGGTAAAAGA
GAAATAGAT

glyA
(glyC,ipc-34d) BSU36900 II 1 - −10 - - TGGTAAAAA

CAAAGAACAG

yhfP BSU10320 II 0 - −10 - - AGGAAGAAAT
AAGATGAAC

xynA BSU18840 III 0 28 −35, −10 TGTTTT
AAATGTATAC
GAGTGCTAC
CTCAAAGTC

GGAAAAAA
TATTATAGGAG

yhfI BSU10240 III 0 24 −35, −10 TGTTTA AAACATGCTTTT
TTCAAGAAAAAT

GGGTATATTG
AAGGAGGAC

pfkA (pfk) BSU29190 III 0 35 −35, −10 GGTTTC

ATAGGGAG
GATGGA

GATCCCTTTTCAT
TGTTTTTA

GGGCAATGA
TCATGTTATG

uppS (yluA) BSU16530 III 0 46 −35, −10 TGTTTA

CAGGGGGTTTT
TTTGTTAATACTG
TTGATTACATTG
ATTATCAGCA

GGGAATGT
AACCTTTTTGG

Figure 3 shows transcriptions from eight class I and two class II promoters, in all
cases with a clear positive result. However, two class I (cadA, rsgA), one class II (yhfP),
and all class III promoters (xynA, yhfI, pfkA, uppS) were inactive. The transcriptional
inactivity of class III promoters with RNAP–SigB was anticipated—the −10 elements were
not strong enough to act as promoters on their own and the spacer distances to their
respective −35 elements were too long. Hence, for genes whose promoters were inactive
in vitro, it is apparent that additional transcription factors not included in the in vitro
assays are required.

Of the 10 class I genes, the yqhY gene was selected for its inversely correlated profile
with the expression profile of SigB. The SigB binding motif was present and the promoter
was active in vitro (Figure 3). In the yqhY promoter region, we also identified a SigA-
dependent promoter-like sequence overlapping that one of SigB. However, this promoter
was not active in vitro (data not shown). The phenomenon of inversely correlated profiles
was also observed for some other genes (see Supplementary File S3) as well reported in a
previous study [36]. The exact mechanistic interplay of RNAP holoenzymes/transcription
factors at such promoter regions is currently unknown.

Finally, Figure 3D shows SigB-dependent transcription from PglyA, a newly found
class II promoter not previously known to be SigB-dependent. The glyA gene encodes
serine hydroxymethyltransferase involved in purine nucleotide metabolism. Its expression
is known to be controlled by SigA and the PurR repressor [42].



Microorganisms 2021, 9, 112 11 of 13

Taken together, both computational and experimental analyses show that for a gene
to be controlled by SigB, it is necessary that the promoter sequence contains both −10
and −35 binding motifs with the spacer length in the range of 15+/−2 nucleotides (with
the exception of glyA, where the −35 motif was not identified as being significant, but
transcription was confirmed). Figure 2 shows substantial differences between the genes
that were previously proposed to be under the control of SigB, and those genes that were
excluded on the basis of our kinetic modeling. The kinetics of the genes that were excluded
were not coherent with the gene expression model, and, importantly, their promoter
sequences did not contain full binding motifs with the correct spacing. If we combine all
the above mentioned criteria and select the genes that satisfy them, we obtain a core set of
146 genes representing 115 operons that are controlled by SigB during spore germination
and outgrowth representing 35% of all genes reported as being the SigB regulon (aag, aldY,
atpC, bmrU, clpC, copB, cpgA, csbB, csbC, csbD, csbX, csoR, ctc, ctsR, cypC, dps, galK, galT, gspA,
gtaB, katE, katX, malS, mcsA, mcsB, menC, mgsR, nagBA, nhaX, ohrB, opuD, opuE, pgcA, phoH,
pth, radA, rbfA, rnr, rpe, rpmEB, rsbRD, rsbV, rsbW, rsbX, rsoA, sigB, tmk, truB, trxA, ung, yaaI,
ybyB, ycbP, ycdF, ycdG, yczO, ydaC, ydaD, ydaE, ydaG, ydaJ, ydaK, ydaL, ydaM, ydaN, ydaP,
ydaS, ydaT, ydbD, ydfO, ydjJ, yerD, yetO, yfhD, yfhF, yfhK, yfhO, yfkM, yflA, yflD, yflT, yhcM,
yhdF, yhdN, yhxD, yjgB, yjgC, yjgD, yjlB, yjzE, ykgA, ykzN, ylxP, ymaE, yocB, yocK, yojJ, yorA,
yoxB, yoxC, ypuD, yqbM, yqgC, yqhB, yqhY, yqjF, yqxL, yrhK, yrvD, ysnF, ytaB, ytxG, ytxH,
ytxJ, yugU, yuzH, yvaA, yvaG, yvaK, yvbG, yvgN, yvgO, yvrE, yvyD, yvyI, ywiE, ywjC, ywkB,
ywlB, ywmE, ywmF, ywsB, ywtG, ywzA, yxaB, yxbG, yxkA, yxkO, yxnA, yxxB, yxzF, yybO,
yycD, yyzG, yyzH; the full list of the genes and their operons is given in tabular form in
the Supplementary File S5). Their functional analysis unsurprisingly showed that they
mostly code stress proteins (72%, n = 106), and the second largest group belonged to a
category “membrane proteins” with 27 genes (18%). The remaining genes of the reported
SigB regulon may be expressed under different conditions, require additional factors, or
are controlled by different sigma factors or cofactors (the alternatives to SigB control for
specific genes are shown in Supplementary File S3). Some of these genes may not be true
targets of SigB regulation.

4. Conclusions

In this study, using a combined approach of static and dynamic information analyses,
we defined the SigB regulon in B. subtilis that is active during spore germination and
outgrowth. The used approach combined a meta-analysis of literature data with the
information about the kinetics of gene expression and promoter sequence analysis. The
analysis showed that out of the 411 genes of the theoretical SigB regulon, 146 (35%) were
expressed and controlled by SigB during normal growth conditions; most of them coded
for stress and/or membrane proteins. The remaining genes of the reported SigB regulon
may be expressed under different conditions, are controlled by different sigma factors or
in combination with them (mainly SigA), or they require additional factor or cofactors
for their expression. The analysis also showed the importance of the organization of the
promoter binding sequence, especially the spacing of −35 and −10 elements for promoter
recognition by the RNAP–SigB holoenzyme. Consistently, experimentally confirmed class
III promoters, which have not been assigned to SigB-dependent regulation by the other
analyses presented here (although they were identified as SigB-dependent in the literature),
failed to be recognized by the RNAP–SigB holoenzyme in our study. The presented
approach shows that in order to identify the regulon active during a specific biological
process or specific conditions, the static information (e.g., binding experiments) is not
sufficient and other additional source of information is necessary to employ. It also shows
that the vast amount of data accumulated in literature and databases can be effectively used
to discover new relations even in already well studied systems. The presented approach
is general enough to be applied to other systems for which sufficient amounts of data
are available.
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