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Recently, in most existing studies, it is assumed that there are no interaction relationships between drugs and targets with unknown
interactions. However, unknown interactionsmean the relationships between drugs and targets have just not been confirmed. In this
paper, samples for which the relationship between drugs and targets has not been determined are considered unlabeled. A weighted
fusion method of multisource information is proposed to screen drug-target interactions. Firstly, some drug-target pairs which may
have interactions are selected. Secondly, the selected drug-target pairs are added to the positive samples, which are regarded as known
to have interaction relationships, and the original interaction relationship matrix is revised. Finally, the revised datasets are used to
predict the interaction derived from the bipartite local model with neighbor-based interaction profile inferring (BLM-NII). Ex-
periments demonstrate that the proposed method has greatly improved specificity, sensitivity, precision, and accuracy compared
with the BLM-NII method. In addition, compared with several state-of-the-art methods, the area under the receiver operating
characteristic curve (AUC) and the area under the precision-recall curve (AUPR) of the proposed method are excellent.

1. Introduction

Targets refer to biological macromolecules which can spe-
cifically bind to small molecule compounds in the organism
and produce specific physiological or pharmacological ef-
fects. /ey have the function of organism physiological
accommodation or disease prophylaxis and treatment. /e
most common targets are ion channels, enzymes, receptors,
and other molecules. Drug-target interaction prediction is
widely used nowadays. Furthermore, it has important im-
plications for elucidating the mechanism of drug molecules,
which can be used for the manufacture of new drugs [1]. /e
essential step to new drug development is the discovery and
repositioning of targets [2]. /e procedure of searching new
candidate drugs for known targets is called drug discovery,
and the procedure of searching new targets for known drugs
is called drug repositioning [3]. Only a small part of the

interaction relationships in the dataset has been verified
until now. Traditional biological testing requires a lot of
investment, which greatly restricts the development of new
drugs./erefore, research related to drug-target interactions
has turned into a hotspot in pharmaceutical sciences [4].
Due to advances in technology, the understanding of sub-
stances such as genes, proteins, cells, and so on has been
deepened. With the assistance of computer technology, drug
discovery has been greatly sped up. Moreover, it is helpful to
shorten the development cycle of new drugs and reduce the
cost of research and development [5].

Traditional drug-target interaction prediction methods
are roughly split into docking simulation methods [6, 7] and
ligand-based methods [8]./e former is based on the known
three-dimensional structure of targets, which can predict the
biological activity of candidate compounds by calculating
the binding capacity of small molecules to targets in
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compound datasets [9]. However, when lacking the three-
dimensional structure of targets, docking simulation
methods do not work. At present, there are still numerous
three-dimensional structures not being resolved, which
makes docking simulation methods greatly limited [10]. /e
ligand-based methods mainly include chemical similarity
search and reverse pharmacophore search. /e former ap-
proach is based on the fact that drugs with approximate
structures can interact with targets that have identical or
approximate characters [11]. /e latter method constructs a
pharmacophore database containing multiple pharmaco-
phore models in advance. /en, a single query molecule is
used to reverse match. Finally, targets matching the query
structure better will be found. /e method based on the
ligand structure will fail when a few ligands are learned.
/erefore, the traditional calculation method depends
heavily on the chemical structure of the drug, which has
great limitations [12].

In recent years, scholars from all over the world have
proposed some methods from all aspects for the study of
drug-target interactions (DTIs), which greatly improved the
prediction efficiency and accuracy. Compared with tradi-
tional methods, these methods make full use of computer
technology to assist research, which is helpful for shortening
the development cycle of new drugs and reducing research
costs. /e commonly used methods are mainly divided into
four kinds, including prediction methods based on matrix
decomposition, prediction methods based on network in-
ference, prediction methods based on drug and target
characteristics, and prediction methods based on the bi-
partite graph model. /e mentioned method will be in-
troduced in the following.

/e method based on matrix decomposition predicted
the relationships between drugs and targets by matrix de-
composition. Gonen et al. [13] proposed a DTI prediction
method based on kernelized Bayesian matrix factorization
(KBMF), which combines kernel-based dimensionality re-
duction, matrix factorization, and binary classification to
predict interactions. /is method only needs to know the
chemical similarity of drugs and the spatial similarity of
targets and then uses variational inference to update the
parameters. To promote the model effect, Liu et al. [14]
proposed a DTI prediction method based on neighborhood
regularized logistic matrix factorization (NRLMF). /e
difference between NRLMF and KBMF is that NRLMF
assigns higher weights to the pairs that have known inter-
actions./e Bayesian algorithm hasmany applications in the
prediction of DTIs. Peska et al. [15] proposed a DTI pre-
diction method based on the Bayesian ranking method. /is
algorithm utilized target deviation and structure similarity of
drugs and targets to predict DTIs by combining Bayesian
personalized ranking [16]. /e Bayesian algorithm can also
be used for the hyperparameter optimization of the matrix
factorization method. Ban et al. [17] proposed an interaction
prediction method derived from Bayesian optimization,
which greatly reduces the calculation time of hyper-
parameter optimization.

Predicting the relationship derived from the network
inference method mainly refers to constructing a

heterogeneous network by using the similarity of drug to
drug and similarity of target to target. /en, DTIs can be
predicted based on the network. /ese kinds of methods can
be split into three types: supervised, semisupervised, and
unsupervised. Cheng et al. [18] proposed a supervised in-
ference DTI prediction method./is algorithm only uses the
topological similarity of the bipartite network, which is
constructed by the relation of the drug and target, to infer
the new targets of known drugs. /e results proved that the
capability of this method surpasses that of the DTI inference
algorithms based on drug or target similarity. Pliakos et al.
[19] combined supervised learning with multioutput tasks
and regarded the prediction as a multioutput task by
learning to reconstruct the biclustering tree on the network.
Yan et al. [20] proposed a semisupervised DTI inference
method to infer the label of drug nodes by using label
propagation. Compared to the traditional supervised and
semisupervised DTI inference methods, the network in-
ference method based on the random walk framework
proposed by Seal et al. [21] can update the labels in the
heterogeneous network through the labels in the homoge-
neous network. It can utilize network data integration tools
to predict the relationship. /erefore, network inference
methods based on the random walk framework are often
used for prediction. /afar et al. [22] proposed a method for
predicting the relationship by utilizing graph embedding,
graph mining, and DTI prediction methods based on the
similarity of drugsto targets. Zeng et al. [23] implemented
arbitrary-order proximity network embedding on a het-
erogeneous network and used deep learning algorithms to
predict DTIs. Samizadeh et al. [24] used a new method
derived from node embedding and achieved the classifica-
tion result with a binary classifier.

Most DTI prediction methods based on machine
learning demand features of drugs and targets to predict the
interaction [25, 26]. Among them, each drug-to-target pair is
expressed by a feature vector with a certain length. /e
feature vector of the drug-to-target pair is divided into two
types: interaction and noninteraction. To reduce the com-
putational complexity, Van et al. [27] proposed a weighted
nearest neighbor (WNN) method, which improved the
Gaussian interaction profile (GIP) [28] method and used the
nearest neighbor information to predict new drugs. Some
scholars extract reliable negative samples from drug-to-
target datasets and then combine them with positive samples
on the original data to construct a classifier. For instance,
Lan et al. [29] proposed a DTI prediction method by using
positive samples and unlabeled samples. In this method,
unknown interactions between drug-to-target pairs are
regarded as unlabeled samples, and the weighted support
vector machine (SVM) is used for DTI predicting. Peng et al.
[30] proposed a negative sample extraction method to re-
duce the false-positive error caused by randomly selecting
negative samples. In DTI prediction, most methods face two
problems: class imbalance and high-dimensional data.
Redkar et al. [31] solved the problem of high-dimensional
data by efficiently and orderly encoding the target protein.
/e problem of class imbalance is solved by using synthetic
minority oversampling.
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Bleakley et al. [32] proposed bipartite local models
(BLMs), which used known drugs and targets to train local
models. /en, the final result was calculated by combining
the prediction results of the two local models. /e limitation
of the BLM is that it is difficult to predict the interaction
between drugs and targets when the interaction relationship
is not known. For this reason, Mei et al. [33] proposed the
BLM-NII method based on neighbor-based interaction
profile inferring (NII). To further promote the prediction
effect, Buza et al. [34] introduced a regression technique as a
local model to predict the interaction and enhanced the
representation of drugs and targets in the multimodal
similarity space. Subsequently, Buza et al. [35] proposed a
DTI prediction algorithm by using an asymmetric loss
model based on BLM. /e modified linear regression model
(MOLIERE) improved the prediction capability of the BLM
model. /e abovementioned DTI prediction algorithms are
based on the classifying method, which is all that is needed to
perform feature extraction. When using a classifier, positive
samples and negative samples are needed. However, in DTI
prediction problems, samples with unknown labels are often
regarded as negative samples, which will impact the results
and have certain limitations.

In the existing research, most researchers do not know
which interaction pairs are negative samples. However, there
may be some drug-to-target pairs in unlabeled samples
which have interactions but have not been verified by ex-
periments. In this paper, these unknown interaction pairs
are regarded as unlabeled samples. /e unlabeled samples
are screened by three methods: the drug similarity method,
the random walk with restart method, and the WNN-GIP
method. /en, the weighted fusion method of multisource
information is used to fuse the screened results obtained by
the three methods. Finally, the interaction matrix in the
training set is revised according to the fusion results, and
then, we utilize the BLM-NII model to predict interactions.
Experiments show that the proposed method can obtain a
superior prediction effect.

2. Related Algorithms

2.1. RandomWalk. Graph is a kind of data structure which
can be used to express the complex interactive relationship
in the real world. Each graph has two basic components,
namely, nodes and edges. Nodes are connected by edges. In
terms of drug-to-target interaction prediction, drugs and
targets are expressed by nodes and the relationship is
expressed by edges. For the graph composed of drugs and
targets, the random walk can be made on the graph so as to
predict the interactions.

Random walk is a common method of information
dissemination. /e fundamental principle of the random
walk is to walk from one vertex by traversing a graph. At
each vertex, a random walker has two choices: one of the
choices is to walk to the neighbor of this vertex with
probability 1 − a, and the other is to skip to any vertexes
randomly with probability a. /is probability represents the
possibility of a skip. After the walk, a probability distribution
is obtained, from which we can get the probability of each

node being visited. /en, we use this distribution as a
starting probability and iterate this process. /e distribution
will stabilize when preconditions are reached. /e random
walk with a restart [36] is a kind of variant of the random
walk. It starts from a certain node and faces two choices
during each step of the walk, randomly selecting neigh-
boring nodes or returning to the seed node with a certain
probability. Compared to the traditional random walk, the
randomwalk with restart canmore fully explore the direct or
indirect relationship between nodes.

For drug-target relationship prediction, the heteroge-
neous network is shown in Figure 1. /e yellow part rep-
resents the drug similarity network, the green part represents
the target similarity network, and the dotted line between the
two networks represents the interaction relationship. Nodes
receive the information of another homogeneous network
through the heterogeneous network in the process of
traveling, thus improving the initial label setting of drug and
target homogeneous networks.

/e random walk with a restart can effectively integrate
the abovementioned networks into a framework. /e con-
structed heterogeneous network does not depend on the
three-dimensional structure information of the drug and
target. However, it is known that the drug-to-target inter-
actions only account for a small part, which leads to sparse
interactions in heterogeneous networks. For sparse net-
works, new drugs or new targets are often isolated. It is
difficult for us to predict the interaction, which also limits
the improvement of random walk capacity. To promote the
predictive power of the random walk, the multisource in-
formation fusion method can be used to select drug-to-
target pairs with high interaction probability. /en, we add
the selected drug-to-target pairs to the positive samples.
/us, more reliable drug-target interaction relations can be
obtained, the sparsity of the network can be reduced, and
isolated subnetworks can also be reduced.

2.2. WNN-GIP. In this paper, we assume that KGIP,d rep-
resents the similarity matrix between drug and drug, KGIP,t

represents the similarity matrix between target and target,
and Kchemical,d denotes the similarity of drug chemical
structure. GIP [28] used Gaussian kernel function to express
KGIP,d and KGIP,t. /e kernel function Kd can be obtained by
combining KGIP,d and Kchemical,d as

Kd � αdKchemical,d + 1 − αd( 􏼁KGIP,d, (1)

where Kd represents the features of the drug.
Similarly, we can combine KGIP,t with sequence simi-

larity of protein gene Kgenomic,t according to a certain weight
αt to obtain the kernel function Kt, such as

Kt � αtKgenomic,t + 1 − αt( 􏼁KGIP,t, (2)

where Kt represents the features of the target.
Combining Kd and Kt by the Kronecker product, we can

obtain a kernel matrix K about drug-target pairs. According
to the combined kernel matrix K and the interaction profile
y, the regularized least-squares classifier can be used to
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obtain the prediction value 􏽢y, and its calculation formula is
shown in the following formula:

􏽢y � K(K + σI)
−1

y, (3)

where σ represents a regularization parameter and I is the
identity matrix.

GIP can only deal with drugs that have at least one known
interaction. For new drugs, weighted nearest neighbor (WNN)
information is used to predict drug interaction relationships,
which is shown in the following formula:

y
d
WNN � 􏽘

nd

i�1
wiyi, (4)

where nd means the number of drugs in the dataset, wi

means the weight, yi denotes the row i of adjacency matrix
Y, which represents the relationship between the drug di and
all targets, and yd

WNN represents the predicted score of new
drug d.

WNN infers the interaction of new drugs according to
the interaction relationship in the dataset, and the prediction
score is the weighted sum of all drug interactions. Among
them, the weight is determined by how similar the current
drug is to the new drug. /e drug with high similarity to the
new drug has high weight, while the drug with low similarity
has low weight and makes little contribution to the final
prediction results.

GIP is used to predict drugs with at least one known
interaction, and WNN is used to predict new drugs.
Combining the advantages of thementioned two algorithms,
WNN-GIP can be obtained to predict drug-target interac-
tions. However, WNN-GIP [27] has some limitations. It has
low accuracy in predicting new drugs. Because the rela-
tionship prediction relies on the known information in the
training set, which ignores the negative samples, the existing
datasets are not accurate in the samples’ categories classi-
fication. Training the classifier on this basis will lead to a
deviation from the predicted results. In addition, according
to the formulas of WNN, if a target has more drugs
interacting with it, the prediction score of the target is

higher, and this target is easier to be considered to have an
interaction with new drugs. If there are fewer known in-
teraction drugs at a certain target, the prediction score of this
target will be lower. It will predict that there is no interaction
relationship between this target and the new drug. At
present, the cognition of drug-to-target interaction is not
comprehensive, and a large number of interactions have not
been approved. /erefore, only predicting the interaction of
new drugs based on the known interaction will cause errors
in the prediction results. For the sake of decreasing the
prediction deviation caused by the existing dataset, the
proposed method selected some drug-to-target pairs with
possible interactions from unlabeled samples and revised the
dataset to reduce the error. It improves the prediction
performance of WNN-GIP.

3. Weighted Fusion ofMultisource Information

Prediction methods based on drug similarity, random walk
with restart, and WNN-GIP have their own advantages. /e
methods based on drug similarity can make better use of the
structural similarity between drugs to predict their inter-
actions. Random walk with restart can integrate multiple
networks, which makes full use of the correlation between
nodes to predict. WNN-GIP can predict new drugs with low
computational complexity. For the sake of combining the
advantages of the abovementioned three methods, de-
creasing the computational complexity, and improving the
prediction accuracy, a drug-to-target prediction method
based on multisource information weighted fusion is pro-
posed. /e flow chart is shown in Figure 2.

In this paper, based on the chemical structure infor-
mation of the KEGG LIGAND database [37], the drug
similarity is calculated according to the size of the common
substructure [38]. It is known that drugs with high similarity
may have identical targets [39]. /e higher the similarity is,
the higher the possibility of having the same target is.
/erefore, according to the similarity matrix of drugs, some
drugs with high similarity can be selected. For example, drug
d1 has a high similarity with drug d2. It is known that drug d1
interacts with target t1, but the interaction between drug d2
and target t1 is unknown. /erefore, according to the
abovementioned conditions, we can assume that drug d2
interacts with target t1, but it has not been proved yet. In this
paper, drug-to-target pairs are screened by using the
abovementioned three methods for the revision of the drug-
to-target interaction matrix. /e details are as follows:

According to the selected drugs with high similarity and
the abovementioned hypothesis, some pairs with possible
interactions are selected, and the existing interaction matrix
is revised to get a new interaction matrix. Using revised
datasets for prediction can reduce the false-negative error
caused by treating unlabeled samples as negative samples.
/e process of interaction matrix revision based on drug
similarity is shown in Figure 3.

In Figure 3, the circle represents the drug, the square
represents the target, the line between the circle and the
square represents the interaction between the drug and the
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Figure 1: Drug-target interaction heterogeneous network.
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target, Y is the original interaction matrix, and Y1 represents
the modified interaction matrix after similarity screening.

/e abovementioned selected pairs are added to the
positive samples in the training set, and the transition matrix
of the random walk is represented by W, which could be
expressed as follows:

W �
WTT WTD

WDT WDD
􏼢 􏼣, (5)

where elements denote the probability of transferring from
network to network, WTT denotes target to target, WDD
represents drug to drug, WTD means target to drug, and
WDT is drug to target.

/e random walk process in a heterogeneous network
can be written as follows:

pt+1 � (1 − c)W
T
pt + cp0, (6)

where pt denotes the probability after iterating t times. /e
parameter c means the restart probability. p0 is the starting
probability vector and can be expressed as follows:

p0 �
(1 − η)u0

ηv0
􏼢 􏼣, (7)

where u0 and v0 denote the initial probabilities of the target
and drug network, respectively. /e parameter η ∈ (0, 1)

weights the importance of the two seed nodes. After some
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Figure 2: Flow chart of multisource information weighted fusion.
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steps, pt will converge to vector p∞, where p∞ �
u∞
v∞

􏼢 􏼣.

When the Frobenius norm gap between pt and pt+1 does not
exceed 10−10, the iteration stops./e steady-state probability
vector p∞ denotes the probability of interaction, so the
revised matrix Y2 can be obtained.

In the training set, the abovementioned selected pairs are
added to the positive samples, and Y3 is obtained by WNN-
GIP. If the drug-to-target interaction matrix Y1, Y2, and Y3
obtained by the abovementioned three methods are aver-
aged directly, the method with poor prediction effect will
have a greater impact on the prediction results. /erefore,
our method uses the weighted fusion method to obtain the
final drug-target interaction matrix Yfinal, that is,

Yfinal � 􏽘
n

i�1
αiYi, (8)

where parameter αi means the weight of Yi obtained by each
method and the value range from 0 to 1 and 􏽐

n
i�1 αi � 1. Yi

denotes the revised matrix, and Yfinal denotes the drug-target
interaction matrix after weighted fusion. In this paper, three
revised matrices are obtained by screening with three
methods, so n is equal to 3.

/e weight of each method represents its contribution to
the results, and the weight is determined by its prediction
effect. /e method with good effect contributes a lot to the
result, and the corresponding weight is also large. /e final
matrix Yfinal is intended for predicting interactions by the
BLM. After the revised drug-to-target interactionmatrix, the
number of positive samples increases, which decreases the
sparsity of data and, thereby, greatly improves the predictive
ability.

4. Experiment

4.1. Datasets and EvaluationMetrcis. In this paper, we adopt
datasets summarized in the literature [40]. /e datasets
contain four protein families of known drug-target datasets,
which include enzymes (Es), ion channels (ICs), G-protein-
coupled receptors (GPCRs) [41], and nuclear receptors
(NRs). Each dataset contains three matrices: the drug
similarity matrix, target protein similarity matrix, and drug-
to-target interaction matrix. Matrix Yn×m denotes the in-
teraction, where n and m are the number of drugs and
targets, respectively. If drug di interacts with target tj, then
y(i, j) � 1; otherwise, y(i, j) � 0. /e statistical information
is shown in Table 1. It can be found that there are few known
interactions in existing datasets.

/e pairs with known interactions only account for a
small fraction of the available data and most relationships
are unknown, which leads to a small number of positive
samples in the current datasets. /e proportion of unlabeled
samples is large, and the dataset is unbalanced. If only one
evaluation index is used to evaluate our method, it is not
comprehensive enough. /erefore, four basic indexes of
accuracy, sensitivity, specificity, and precision are intended
for assessing the model capability.

For better describing the superiority of the proposed
method, the receiver operating characteristic curve (ROC) is

also intended for assessing the capability of the DTI method.
/e ROC curve was drawn with true positive rate as the
ordinate and false-positive rate as the abscissa./e closer the
ROC curve gets to the top left corner, the higher the accuracy
of the DTI prediction method. /e ROC curve combines
sensitivity and specificity with a graphic method, which can
simply and intuitively analyze the accuracy of the experi-
mental method. /e values of AUC and AUPR are also
given. AUC is the area under the ROC curve. AUC is greater
than 0 and less than 1 [42]. /e larger the AUC is, the higher
the accuracy of the DTI prediction method is. AUPR is the
area under the precision-recall (PR) curve. /e value of
AUPR is between 0 and 1. /e higher the value of AUPR is,
the higher the prediction accuracy is [43].

4.2.ExperimentalResults. To prove the validity of the dataset
revised by multisource information fusion in the proposed
method, we compared the proposed method with the BLM-
NII method in accuracy, sensitivity, specificity, and preci-
sion. A 10-fold cross-validation is used in this paper. When
calculating, all prediction results are sorted./e top 1% pairs
are taken as positive samples. /e accuracy, sensitivity,
specificity, and precision of the prediction results can be
acquired by comparing the prediction results with known
datasets. Table 2 shows the comparative results of the two
methods. /e red font in the table indicates the best ex-
perimental results.

From Table 2, we can know that the objective evaluation
index of the proposed method is the highest among the four
datasets. Compared with BLM-NII, the accuracy, sensitivity,
and accuracy of the proposed method in the NR dataset are
improved by 1.4%, 14.28%, and 6.67%, respectively.
According to the consequence in Table 2, we can find that
multisource information fusion can improve the perfor-
mance of the BLM-NII model in all aspects. Especially,
among the four datasets, the proposed method in the NR
dataset has the largest improvement range, which shows that
our method has excellent capability even in small sample
datasets.

To analyze the capability of our method more intuitively,
Figure 4 shows the ROC of our method when tested on four
datasets. Figure 4(a) is the ROC obtained by the proposed
method in the NR dataset. Because there are not many
samples in the NR dataset, the curve is not very smooth and
the area under the curve reaches 0.92. Figure 4(b) is the ROC
obtained in the GPCR dataset. Compared with the curve in
the NR dataset, the capability of the proposed method in the
GPCR dataset is superior with higher accuracy. According to
Figures 4(c) and 4(d), the AUC in the IC dataset and E

Table 1: Summary of the datasets.

Dataset Drugs Targets Drug-target
interactions

Unknown
interactions

NR 54 26 90 1314
GPCR 223 95 635 20550
IC 210 204 1476 41364
E 445 664 2926 292554
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dataset both reach 0.98, which indicates our method per-
forms superior in the dataset with more samples. More
positive samples are helpful to promote the prediction
capability.

To state the validity of the multisource information
fusion method, we compare the proposed method to the
prediction results when the drug-target dataset is revised by
a single method. /ese methods are as follows: (1) SIM:
selected pairs based on drug similarity; (2) RS: selected pairs
based on the random walk with a restart; and (3) WS: se-
lected pairs based on WNN-GIP. /e objective evaluation
indicators adopted in this paper are AUC and AUPR. /e
experimental results are demonstrated in Table 3. /e red
font part represents the best experimental result among

several methods, and the blue font part represents the
suboptimal experimental result. Tables 3–8 are represented
in the same way.

In Table 3, SIM, RS, and WS, respectively, represent the
experimental results when the initial interaction matrix is
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Figure 4: ROC of the proposed method in each dataset. (a) ROC in NR. (b) ROC in GPCR. (c) ROC in IC. (d) ROC in E.

Table 2: Comparison of accuracy, sensitivity, specificity, and precision between our method and BLM-NII.

Dataset Method Accuracy Sensitivity Specificity Precision

NR BLM-NII 91.66 71.43 92.70 33.33
Ours 93.06 85.71 93.43 40.0

GPCR BLM-NII 92.28 88.89 92.38 26.29
Ours 92.75 96.83 92.62 28.64

IC BLM-NII 93.28 92.22 93.32 35.90
Ours 93.56 95.81 93.47 37.30

E BLM-NII 90.81 92.83 90.79 8.76
Ours 90.86 95.70 90.82 9.04

Table 3: Comparison of AUC and AUPR values between the
proposed method and other single screening methods.

AUC/AUPR NR GPCR IC E
SIM 0.922/0.586 0.960/0.547 0.978/0.777 0.982/0.686
RS 0.909/0.567 0.936/0.483 0.976/0.830 0.972/0.687
WS 0.908/0.582 0.943/0.518 0.984/0.718 0.971/0.569
Ours 0.925/0.717 0.963/0.707 0.986/0.914 0.985/0.898
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revised only by the drug similarity, random walk with re-
start, andWNN-GIP. Observing Table 3, it can be found that
the weighted fusion method of multisource information
proposed in this paper has obtained the highest AUC and
AUPR in four datasets. /erefore, the fusion of multisource
information can combine the advantages of each method,
and the fusion method can effectively improve the accuracy
of prediction. /e experimental results show that the
weighted fusion method of multisource information has
superior capability to the single screening method when
revising the dataset.

To state the validity of the weighted fusion method, the
fusion method is replaced by the average fusion method
(AVE) and the voting fusion method (VOTE). /e results
are displayed in Table 4.

AVE stands for the experimental results obtained by
averaging DTI matrices Y1, Y2, and Y3 by the above-
mentioned three methods as the final revision matrix. VOTE
represents the experimental result when the above-
mentioned three matrices are processed by the majority
voting method. From Table 4, it can be found that AUC and
AUPR obtained by the weighted fusion method are both the
highest. Also, either the average or the voting method will
greatly reduce the prediction accuracy. /e weighted fusion
method can assign different weights depending on the re-
sults of the three methods to achieve superior fusion effects.

To certify the availability of our method, we compared
the proposed method with several state-of-the-art methods,
whichare as follows: (1) NetLapRLS [44]: a DTI prediction
method based on semisupervised learning; (2) BLM-NII
[33]: a DTI prediction method based on BLM improved by
the neighbor interaction profile inferring; (3) WNN-GIP
[27]: a DTI prediction method based on GIP improved by a
weighted nearest neighbor; (4) ALADIN [34]: a DTI pre-
diction method based on advanced local drug-to-target
interaction prediction technique; and (5) MOLIER [35]: a
DTI prediction method based on a modified linear re-
gression model.

Tables 5–8 are the results of DTI prediction in NR, IC,
GPCR, and E datasets by the abovementioned methods and
our method, respectively.

In Table 5, the AUC and AUPR of our method are the
highest in the NR dataset, which indicates that our method
has superior prediction ability even in datasets with few
samples. Compared with ALADIN and NetLapRLS, the
prediction effect of our method is obviously improved,
which shows that it can reduce the influence of sample
numbers.

In Table 6, the AUC and AUPR of our method are also
the highest in the IC dataset, which shows that our method
has achieved high prediction accuracy. /e proportion of
known interactions in this dataset is the highest among the
four datasets, which is the key for the proposed method to
achieve excellent performance. More known interactions
can help predict relationships in the network.

Table 7 shows that the proposed method has top values
in AUC and the suboptimal AUPR in the GPCR dataset./is
is mainly because the average number of interactions in the E
and IC datasets is larger than that in the GPCR dataset. /at

is to say, in the training phase, the proportion of positive
samples in the E and IC datasets is much higher than that in
the GPCR dataset. /is is beneficial to get a classifier model
with superior prediction capability. /erefore, AUPR can
obtain higher values in the E and IC datasets. /e ratio of
positive samples in the GPCR dataset is small, so the display
of the proposed method in the GPCR dataset is slightly poor.

Table 4: Influence of different fusion methods on the prediction of
drug-target interactions.

AUC/AUPR NR GPCR IC E
AVE 0.903/0.655 0.883/0.351 0.964/0.718 0.966/0.436
VOTE 0.897/0.616 0.894/0.400 0.970/0.759 0.964/0.437
Ours 0.925/0.717 0.963/0.707 0.986/0.914 0.985/0.898

Table 5: AUC and AUPR values of our method and several state-
of-the-art methods in the NR dataset.

NR AUC AUPR
NetLapRLS 0.808 0.457
BLM-NII 0.903 0.655
WNN-GIP 0.871 0.584
ALADIN 0.664 0.310
MOLIER 0.911 0.683
Ours 0.925 0.717

Table 6: AUC and AUPR values of our method and several state-
of-the-art methods in the IC dataset.

IC AUC AUPR
NetLapRLS 0.967 0.827
BLM-NII 0.964 0.718
WNN-GIP 0.953 0.653
ALADIN 0.980 0.875
MOLIER 0.983 0.912
Ours 0.987 0.914

Table 7: AUC and AUPR values of our method and several state-
of-the-art methods in the GPCR dataset.

GPCR AUC AUPR
NetLapRLS 0.913 0.590
BLM-NII 0.882 0.350
WNN-GIP 0.930 0.498
ALADIN 0.946 0.680
MOLIER 0.952 0.753
Ours 0.963 0.707

Table 8: AUC and AUPR values of our method and several state-
of-the-art methods in the E dataset.

E AUC AUPR
NetLapRLS 0.964 0.784
BLM-NII 0.966 0.436
WNN-GIP 0.957 0.748
ALADIN 0.966 0.822
MOLIER 0.985 0.897
Ours 0.986 0.898
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Table 8 shows that our method obtains the top values in
AUC and AUPR in the E dataset. /e performance of
ALADIN, MOLIER, and the proposed method are all im-
proved on the basis of BLM-NII. /e results show that the
AUC and AUPR of the proposed method are better than
those of the first two methods in most cases, especially in the
small sample of the NR dataset. In general, the capability of
the proposed method is good, but there is still room for
improvement, and AUPR needs to be further improved.

5. Conclusions

In this paper, a DTI prediction method based on the
weighted fusion of multisource information is proposed. In
this method, the samples with unknown interaction rela-
tionships are regarded as unlabeled samples. /e samples
which may have interaction but have not been verified by
experiments are screened out, and the original dataset is
revised according to the screening results. According to the
experimental results, we can find that the proposed weighted
fusion method is more reasonable than the averaging and
voting methods. /e weighted fusion method increases the
effectiveness and reliability of the screening results. Both the
AUC and AUPR of the proposed method have achieved
better results. However, the proposed method also has some
limitations. It performs better in datasets with more samples,
while the generalization ability will become worse in datasets
with fewer samples. Especially for datasets with fewer
positive samples, the prediction accuracy needs to be im-
proved. It may be that the fusion model has brought some
restrictions, and AUPR should be further improved. In the
future, we can combine more biological information in
prediction so that more drug-target pairs with known in-
teractions can be introduced. Because more known rela-
tionships can reduce isolated nodes in the network, it is more
helpful to predict edge relationships in the network.
Meanwhile, we can further explore the fusion method. /e
goal is to find a fusion model that can be flexibly change to
achieve a better fusion effect. Next, we can reduce the
constraints brought by fusion to optimize the model.
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