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Abstract

Summary: SpatialExperiment is a new data infrastructure for storing and accessing spatially-resolved transcriptomics
data, implemented within the R/Bioconductor framework, which provides advantages of modularity, interoperability,
standardized operations and comprehensive documentation. Here, we demonstrate the structure and user interface
with examples from the 10x Genomics Visium and seqFISH platforms, and provide access to example datasets and
visualization tools in the STexampleData, TENxVisiumData and ggspavis packages.

Availability and implementation: The SpatialExperiment, STexampleData, TENxVisiumData and ggspavis packages
are available from Bioconductor. The package versions described in this manuscript are available in Bioconductor
version 3.15 onwards.

Contact: davide.risso@unipd.it or shicks19@jhu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Spatially-resolved transcriptomics (SRT) refers to a new set of high-
throughput technologies, which measure up to transcriptome-wide
gene expression along with the spatial coordinates of the measure-
ments. Technological platforms differ in terms of the number of
measured genes (from hundreds to full transcriptome) and spatial
resolution (from multiple cells per coordinate to approximately
single-cell to sub-cellular). Examples of SRT platforms include
Spatial Transcriptomics (Ståhl et al., 2016), 10x Genomics Visium
(10x Genomics, 2021a), Slide-seq (Rodriques et al., 2019), Slide-
seqV2 (Stickels et al., 2020), sci-Space (Srivatsan et al., 2021),
seqFISH (Lubeck et al., 2014; Shah et al., 2016), seqFISHþ (Eng
et al., 2019), osmFISH (Codeluppi et al., 2018) and MERFISH
(Chen et al., 2015; Moffitt et al., 2016; Xia et al., 2019). These can
be classified into spot-based and molecule-based platforms. Spot-
based platforms measure transcriptome-wide gene expression at a
series of spatial coordinates (spots) on a tissue slide (Spatial
Transcriptomics, 10x Genomics Visium, Slide-seq, Slide-seqV2 and

sci-Space), while molecule-based platforms detect large sets of dis-
tinct individual messenger RNA (mRNA) molecules in situ at up to
sub-cellular resolution (seqFISH, seqFISHþ, osmFISH and
MERFISH). SRT platforms have been applied to investigate spatial
patterns of gene expression in a variety of biological systems, includ-
ing the human brain (Maynard et al., 2021), mouse brain (Ortiz
et al., 2020), cancer (Berglund et al., 2018; Ji et al., 2020) and
mouse embryogenesis (Lohoff et al., 2021; Srivatsan et al., 2021).
By combining molecular and spatial information, these platforms
promise to continue to generate new insights about biological proc-
esses that manifest with spatial specificity within tissues.

However, to effectively analyze these data, specialized and ro-
bust data infrastructures are required, to facilitate storage, retrieval,
subsetting and interfacing with downstream tools. Here, we describe
SpatialExperiment, a new data infrastructure developed within
the R/Bioconductor framework, which extends the popular
SingleCellExperiment (Amezquita et al., 2020) class for single-cell
RNA sequencing (scRNA-seq) data to the spatial context, with
observations taking place at the level of spots or molecules instead
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of cells. Several recent studies have reused or extended existing
single-cell infrastructure to store additional spatial information
(Lohoff et al., 2021; Maynard et al., 2021). In addition, several
comprehensive analysis workflows have been developed using modi-
fied single-cell infrastructure adapted for spatial data, including
Seurat (Hao et al., 2021), Giotto (Dries et al., 2021) and Squidpy
(Palla et al., 2022). However, while each of these workflows enables
powerful analyses, it remains difficult for users to combine elements
in a modular way, since each workflow relies on a separate infra-
structure. There does not yet exist a common, standardized infra-
structure for storing and accessing SRT data in R, which would
allow users to easily build workflows combining methods and soft-
ware developed by different groups. A well-designed independent
data infrastructure simplifies the work of various users, including
developers of downstream analysis methods who can reuse the
structure to store inputs and outputs, and analysts who can rely on
the structure to connect packages from different developers into
analysis pipelines. By working within the Bioconductor framework,
we take advantage of long-standing Bioconductor principles of
modularity, interoperability, continuous testing and comprehensive
documentation (Amezquita et al., 2020; Huber et al., 2015).
Furthermore, we can ensure compatibility with existing analysis
packages designed for the SingleCellExperiment structure for single-
cell data, providing a robust, flexible and user-friendly resource for
the research community. In addition to the SpatialExperiment pack-
age, we provide the STexampleData and TENxVisiumData pack-
ages (example datasets) and ggspavis package (visualization tools)
for use in examples, tutorials, demonstrations and teaching.

2 Results

The SpatialExperiment package provides access to the core data in-
frastructure (referred to as a class), as well as functions to create,
modify and access instances of the class (objects). Objects contain
the following components adapted from the existing
SingleCellExperiment class: (i) assays, tables of measurement val-
ues such as raw and transformed transcript counts (note that within
the Bioconductor framework, rows usually correspond to features
and columns to observations); (ii) rowData, additional information
(metadata) describing the features (e.g. gene IDs and names); (iii)
colData, metadata describing the observations (e.g. barcode IDs or
cell IDs); and (iv) reducedDims, reduced dimension representa-
tions (e.g. principal component analysis) of the measurements.
SpatialExperiment objects also contain the following further compo-
nents to store spatial information: (v) additional metadata stored in
colData describing spatial characteristics of the spatial coordinates
(spots) or cells (e.g. indicators for whether spots are located within
the region overlapping with tissue); (vi) spatialCoords, spatial
coordinates associated with each observation (e.g. x and y coordi-
nates on the tissue slide); and, (vii) imgData, image files (e.g. hist-
ology images) and information related to the images (e.g. resolution
in pixels) (Fig. 1).

Accessor and replacement functions allow each of these compo-
nents to be extracted or modified. Since SpatialExperiment extends
SingleCellExperiment, methods developed for single-cell analyses
(Amezquita et al., 2020) [e.g. preprocessing and normalization
methods from scater (McCarthy et al., 2017), downstream methods
from scran (Lun et al., 2016) and visualization tools from iSEE
(Rue-Albrecht et al., 2018)] can be applied to SpatialExperiment
objects, treating spots as single cells. Spatial coordinates are stored
in spatialCoords as a numeric matrix, allowing these to be
provided easily to downstream spatial analysis packages in R out-
side Bioconductor [e.g. packages from geostatistics such as sp
(Pebesma & Bivand, 2005) and sf (Pebesma, 2018)], consistent with
reducedDims in SingleCellExperiment. For spot-based data,
assays contains a table named counts containing the gene counts,
while for molecule-based data, assays may contain two tables
named counts and molecules containing total gene counts per
cell as well as molecule-level information such as spatial coordinates
per molecule [formatted as a BumpyMatrix (Lun, 2021)]. For data-
sets that are too large to store in-memory, SpatialExperiment can

reuse existing Bioconductor infrastructure for sparse matrices and
on-disk data representations through the DelayedArray framework
(Pagès et al., 2021). Image information is stored in imgData as a
table containing sample IDs, image IDs, any other information such
as scaling factors, and the underlying image data. The image data
can be stored as either a fully realized in-memory object (for small
images), a path to a local file that is loaded into memory on demand
(for large images) or a URL to a remotely hosted image that is
retrieved on demand. SpatialExperiment objects can be created with
a general constructor function, SpatialExperiment() or alter-
natively with a dedicated constructor function for the 10x Genomics
Visium platform, read10xVisium(), which creates an object
from the raw input files from the 10x Genomics Visium Space
Ranger software (10x Genomics, 2020). For Visium data, colData
includes the columns in_tissue, array_row and array_col.
Measurements from multiple biological samples can be stored with-
in a single object, and linked across the components by providing
unique sample IDs. In addition, we provide the associated data
packages STexampleData (example datasets from several platforms)
and TENxVisiumData (publicly available Visium datasets provided
by 10x Genomics), and the ggspavis package providing visualization
functions designed for SpatialExperiment objects (Supplementary
Fig. S1 and Supplementary Tables S1 and S2).

3 Discussion

Standardized data infrastructure for scRNA-seq data [e.g.
SingleCellExperiment (Amezquita et al., 2020) within the R/
Bioconductor framework] has greatly streamlined the work of data
analysts and downstream method developers. For example, relying
on common formats for inputs and outputs from individual pack-
ages allows users to connect packages into complete analysis pipe-
lines, and operations such as subsetting by row (gene) or column
(barcode or cell) across the entire object helps avoid errors. For
single-cell data, this has enabled the development of comprehensive
workflows and tutorials (Amezquita et al., 2020; Lun et al., 2021),
which are an invaluable resource for new users. Here, we provide a
new data infrastructure for SRT data, extending the existing
SingleCellExperiment class within the Bioconductor framework. In
addition, we provide associated packages containing example data-
sets (STexampleData and TENxVisiumData) and visualization func-
tions (ggspavis), for use in examples, tutorials, demonstrations and
teaching.

Existing alternative infrastructure for SRT data includes object
classes provided in the Seurat (Hao et al., 2021) and Giotto (Dries
et al., 2021) packages in R, and Squidpy/AnnData (Palla et al.,
2022; Virshup et al., 2021) in Python, which provide similar under-
lying functionality such as storing annotated tables of measurement
values and related spatial and image information. Compared to
these alternatives, a key advantage of SpatialExperiment is that it
has been developed independently of any individual analysis work-
flow and is compatible with any downstream analysis packages that
use the SpatialExperiment or SingleCellExperiment class within
Bioconductor. This allows analysts to easily build customized,
modular workflows consisting of packages developed by various re-
search groups, including the latest methods (which may not yet have
been integrated into published workflows) as well as any of the wide
variety of methods for single-cell data that have been released
through Bioconductor.

SRT technologies are still in their infancy, and the coming years
are likely to see ongoing development of existing platforms as well as
the emergence of novel experimental approaches. SpatialExperiment
is ideally positioned to be extended to accommodate data from new
platforms in the future, e.g. through extensions of the more general
underlying SummarizedExperiment (Morgan et al., 2021) or by inte-
grating with MultiAssayExperiment (Ramos et al., 2017) to store
measurements from further assay types (transcriptomics, proteo-
mics or spatial immunofluorescence, or epigenomics) or multiple
assays from the same spatial coordinates. For example, the
SingleCellMultiModal package (Eckenrode et al., 2021) stores
MultiAssayExperiment objects containing scRNA-seq and SRT
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data as SingleCellExperiment and SpatialExperiment objects, re-
spectively. Three-dimensional spatial data (Wang et al., 2018) or
data from multiple timepoints could be accommodated within
SpatialExperiment by storing additional spatial or temporal coordi-
nates. Datasets that are too large to store in-memory can be stored
using existing Bioconductor infrastructure for sparse matrices and
on-disk data representations through the DelayedArray framework
(Pagès et al., 2021). The ability to store image files within the objects
(in-memory, locally or remotely) will assist with correctly keeping
track of images in datasets with large numbers of samples, e.g. from
consortium efforts. Interoperability between SpatialExperiment and
other data formats (e.g. in Python) can also be ensured through the
use of existing conversion packages such as zellkonverter (Zappia &
Lun, 2021) and LoomExperiment (Morgan & Van Twisk, 2021).
SpatialExperiment provides the research community with a robust,
flexible and extendable core data infrastructure for SRT data, assist-
ing both method developers and analysts to generate reliable and re-
producible biological insights from these platforms.

Acknowledgements

The authors thank the participants of the EuroBioc2020 ‘Birds of a Feather’

session (14 December 2020) and workshop (16 December 2020) on the topic

of infrastructure for SRT data in Bioconductor, as well as the members of the

spatial and SpatialExperiment channels of the Bioconductor community Slack

workspace, for helpful feedback and suggestions.

Author contributions

D.Rig., L.M.W. and H.L.C. designed the SpatialExperiment class structure,

with input from all other authors. D.Rig. led the implementation of the

SpatialExperiment class, with significant code input from H.L.C. L.M.W.

developed the example data package STexampleData and the visualization

package ggspavis. H.L.C. developed the data package TENxVisiumData and

provided functions for the ggspavis package. B.P. and L.C.-T. tested an earlier

version of the SpatialExperiment class and provided input on design choices

for the final class structure. S.G. provided input and examples for applying

the SpatialExperiment class to molecule-based SRT data. A.T.L.L. provided

input on design choices for the SpatialExperiment class structure. S.C.H. and

D.Ris. provided supervision and input on design choices for the

SpatialExperiment class structure. L.M.W. drafted the article with input from

all other authors. All authors approved the final version of the manuscript.

Funding

This work was supported by CZF2019-002443 [to L.M.W., D.Rig.,

S.C.H., D.Ris.] from the Chan Zuckerberg Initiative DAF, an advised fund

of Silicon Valley Community Foundation. L.M.W., S.C.H. and L.C.-T.

were supported by National Institutes of Health/NIMH U01MH122849 to

S.C.H. and L.C.-T. D.Ris. was supported by ‘Programma per Giovani

Ricercatori Rita Levi Montalcini’ granted by the Italian Ministry of

Education, University, and Research and by the National Cancer Institute

of the National Institutes of Health [2U24CA180996]. S.G. was supported

by a Royal Society Newton International Fellowship [NIF\R1\181950].

Conflict of Interest: none declared.

Data availability

The SpatialExperiment package is available from Bioconductor at https://biocon
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Data and https://bioconductor.org/packages/ggspavis, respectively. The package

versions described in this manuscript are available in Bioconductor version 3.15

onwards. Datasets from Supplementary Tables S1 and S2 and Supplementary

Figure S1 are available as SpatialExperiment objects from the STexampleData

and TENxVisiumData packages, and the full original datasets are available from

the sources listed in Supplementary Tables S1 and S2 (10x Genomics, 2021b;

Lohoff et al., 2021; Maynard et al., 2021; Pardo et al., 2022).
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