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Abstract
Assessing	 the	 geographic	 structure	 of	 populations	 has	 relied	 heavily	 on	 Sewell	
Wright’s	F‐statistics	and	their	numerous	analogues	for	many	decades.	However,	it	is	
well	appreciated	that,	due	to	their	nonlinear	relationship	with	gene	flow,	F‐statistics	
frequently	 fail	 to	 reject	 the	null	model	 of	 panmixia	 in	 species	with	 relatively	 high	
levels	of	 gene	 flow	and	 large	population	 sizes.	Coalescent	genealogy	 samplers	 in-
stead	allow	a	model‐selection	approach	to	the	characterization	of	population	struc-
ture,	thereby	providing	the	opportunity	for	stronger	inference.	Here,	we	validate	the	
use	of	coalescent	samplers	in	a	high	gene	flow	context	using	simulations	of	a	step-
ping‐stone	model.	 In	 an	 example	 case	 study,	we	 then	 re‐analyze	 genetic	 datasets	
from	41	marine	 species	 sampled	 from	 throughout	 the	Hawaiian	archipelago	using	
coalescent	model	selection.	Due	to	the	archipelago’s	linear	nature,	it	is	expected	that	
most	species	will	conform	to	some	sort	of	stepping‐stone	model	(leading	to	an	ex-
pected	pattern	of	isolation	by	distance),	but	F‐statistics	have	only	supported	this	in-
ference	in	~10%	of	these	datasets.	Our	simulation	analysis	shows	that	a	coalescent	
sampler	can	make	a	correct	inference	of	stepping‐stone	gene	flow	in	nearly	100%	of	
cases	where	gene	flow	is	≤100	migrants	per	generation	(equivalent	to	FST	=	0.002),	
while F‐statistics	had	mixed	results.	Our	re‐analysis	of	empirical	datasets	found	that	
nearly	70%	of	datasets	with	an	unambiguous	result	fit	a	stepping‐stone	model	with	
varying	population	sizes	and	rates	of	gene	flow,	although	37%	of	datasets	yielded	
ambiguous	results.	Together,	our	results	demonstrate	that	coalescent	samplers	hold	
great	promise	for	detecting	weak	but	meaningful	population	structure,	and	defining	
appropriate	management	units.
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1  | INTRODUC TION

The	delineation	of	population	genetic	structure	is	a	long‐standing	
problem	in	ecology	and	conservation	of	natural	populations	(Funk,	
McKay,	Hohenlohe,	&	Allendorf,	 2012;	Hellberg,	 2009;	 Palsbøll,	
Bérubé,	&	Allendorf,	2007;	Selkoe,	D’Aloia,	et	al.,	2016;	Waples,	
1998).	Particularly	 in	marine	 systems,	 large	population	 sizes	and	
relatively	high	rates	of	gene	flow	(via	a	planktonic	larval	stage)	co-
incide	 to	 create	 high‐diversity	 datasets	with	 low	 or	 nonexistent	
genetic	structure	as	measured	by	traditional	F‐statistics	(Gagnaire	
et	al.,	2015;	Riginos,	Crandall,	Liggins,	Bongaerts,	&	Treml,	2016).	
This	is	chiefly	because	FST	has	a	nonlinear	relationship	with	gene	
flow	such	that	flows	greater	than	about	10	migrants	per	genera-
tion	cannot	be	statistically	distinguished	from	FST	=	0	using	real-
istic	 sample	 sizes	 (Waples,	 1998).	As	 a	 result,	 studies	of	 species	
with	 large	and	variable	population	sizes	and	moderate	gene	flow	
are	often	unable	to	reject	the	null	hypothesis	that	all	sampled	in-
dividuals	 are	 part	 of	 a	 single,	 randomly	mating	 population	 (pan-
mixia),	even	when	population	samples	are	separated	by	hundreds	
of	kilometers.

This	problem	is	especially	acute	in	the	face	of	growing	evidence	
that	mean	 larval	dispersal	distances	are	 typically	<100	km	 (Almany	
et	al.,	2017;	Cowen	&	Sponaugle,	2009;	D’Aloia	et	al.,	2015;	Kinlan	
&	Gaines,	2003;	Schunter,	Pascual,	Garza,	Raventos,	&	Macpherson,	
2014).	We	would	thus	expect	population	structure	for	marine	species	
with	 larval	dispersal	to	be	governed	by	a	model	of	 isolation	by	dis-
tance	(IBD;	Wright,	1943),	wherein	nearby	individuals	are	more	likely	

to	mate	than	distant	individuals,	or,	more	specifically,	by	a	stepping‐
stone	model,	 a	 special	 case	of	 IBD	wherein	 individuals	 are	 lumped	
into	 spatially	 discrete	 demes	 and	 dispersal	 occurs	 only	 between	
neighboring	 demes	 (Kimura	 &	Weiss,	 1964),	 such	 as	would	 be	 ex-
pected	in	an	island	archipelago	system.	However,	less	than	one	third	
of	marine	population	genetic	studies	to	date	have	found	a	significant	
correlation	between	geographic	distance	and	FST	that	is	diagnostic	of	
IBD	(Selkoe	&	Toonen,	2011),	probably	due	to	(a)	lack	of	sensitivity	to	
weak	structure	in	species	with	high	gene	flow	and	large	population	
sizes	discussed	above,	and	(b)	a	lack	of	equilibrium	between	genetic	
drift	and	gene	flow	caused	by	population	growth	and	range	expan-
sions,	especially	those	that	followed	the	Last	Glacial	Maximum	(LGM)	
(Crandall,	Sbrocco,	DeBoer,	Barber,	&	Carpenter,	2012;	Slatkin,	1993).

Coalescent	 genealogy	 samplers	 provide	 a	 promising	 alterna-
tive	to	methods	based	on	F‐statistics	(reviewed	by	Kuhner,	2009;	
Marko	&	Hart,	2011).	When	viewed	backward	in	time,	a	metapop-
ulation’s	genealogy	will	coalesce	to	nodes	of	common	ancestry.	By	
repeatedly	 evaluating	 genealogies	 and	 favoring	 those	 with	 high	
likelihood	of	describing	the	data	in	a	Bayesian	Markov	chain	Monte	
Carlo	framework,	coalescent	samplers	can	obtain	estimates	of	pop-
ulation	genetic	parameters,	 such	as	effective	population	size	 (Ne)	
and	 the	proportion	of	migrants	 (m).	By	adding	additional	Markov	
chains	with	higher	acceptance	ratios	that	search	most	of	parameter	
space	(path	sampling),	these	programs	are	also	able	to	evaluate	the	
marginal	 likelihood	 of	 alternative	models	 of	 population	 structure	
(Beerli	&	Palczewski,	2010).	 In	comparison	with	FST	methods,	co-
alescent	methods	 use	 information	 from	 genealogy	 in	 addition	 to	

F I G U R E  1  Map	of	the	Hawaiian	archipelago,	with	names	and	abbreviations	of	sample	sites
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information	about	allele	frequency,	and	should	be	much	better	able	
to	characterize	gene	flows	higher	than	10	migrants	per	generation	
so	long	as	Ne	is	large	and	m	is	relatively	small	(the	structured	coales-
cent;	Wakeley,	2004;	Crandall,	Treml,	&	Barber,	2012).

Extending	almost	linearly	more	than	2,500	km	from	the	hotspot	
in	 the	 southeast	 to	Kure	Atoll	 in	 the	 northwest,	 the	Hawaiian	 ar-
chipelago	 provides	 an	 excellent	 test	 of	 our	 ability	 to	 characterize	
population	genetic	structure	in	a	linear	stepping‐stone	array	of	pop-
ulations	 (Figure	1).	The	archipelago	 supports	 coral	 reef	habitat	on	
every	island	and	atoll	and	is	isolated	from	the	rest	of	the	Indo‐Pacific	
region	by	more	 than	800	km	of	open	ocean.	Biophysical	modeling	
demonstrates	a	clear	expectation	for	IBD,	with	neighboring	islands	
exchanging	many	more	larvae	than	distant	islands	(Wren,	Kobayashi,	
Jia,	&	Toonen,	2016).	However,	population	genetic	surveys	of	over	
40	marine	species	have	yielded	only	 four	 that	show	the	predicted	
correlation	 between	FST	 and	 geographic	 distance,	with	 the	major-
ity	 showing	 some	 form	 of	 genetic	 structure	 separating	 large	 pan-
mictic	 regions	 (regional	 structure),	 with	 smaller	 fractions	 showing	
“chaotic”	population	structure	with	no	relationship	to	geography,	or	
apparent	panmixia	across	the	entire	archipelago	(reviewed	in	Selkoe,	
Gaggiotti,	Bowen,	&	Toonen,	2014;	Toonen	et	al.,	2011).

In	 this	 study,	 we	 re‐examine	 genetic	 datasets	 from	 41	marine	
species	in	a	model‐selection	framework	using	a	popular	coalescent	
sampler:	migrate‐n	(Beerli	&	Felsenstein,	2001;	Beerli	&	Palczewski,	
2010).	We	first	validate	the	method	through	simulation	of	stepping‐
stone	 dispersal	 at	 the	 characteristically	 high	 effective	 population	
sizes	and	rates	of	gene	flow	that	are	expected	for	marine	species.	
We	then	analyze	each	dataset,	calculating	the	relative	probability	of	
a	 stepping‐stone	model	 in	 comparison	with	panmixia,	 the	n‐island	
model	(equal	gene	flow	exchanged	between	all	populations;	Wright,	
1931)	and	various	hypotheses	of	regional	structure	to	compare	the	
model‐selection	approach	to	direct	interpretation	of	F‐statistics.

2  | METHODS

2.1 | Simulations

Using	 IBDsim	 2.0	 (Leblois,	 Estoup,	 &	 Rousset,	 2009),	 we	 simu-
lated	 stepping‐stone	dispersal	 among	10	 equally	 sized	demes	 in	 a	

Parameter set
Effective population size 
(Ne)

Proportion of 
migrants (m)

Effective number of 
migrants (Nem)

1 104 10−3 10

2 105 10−4 10

3 106 10−5 10

4 104 10−2 100

5 105 10−3 100

6 106 10−4 100

7 104 10−1 1,000

8 105 10−2 1,000

9 106 10−3 1,000

TA B L E  1  Parameter	sets	for	
simulations	of	stepping‐stone	dispersal	
with	equal	levels	of	migration	among	
equally	sized	demes	using	IBDsim.	100	
datasets	were	simulated	per	parameter	
set

F I G U R E  2  Migrate‐n	models	that	were	evaluated	for	each	
dataset	simulated	in	Table	1.	Squares	represent	a	single	Θ 
parameter	across	all	populations,	and	circles	represent	distinct	
parameters	Θ	for	all	populations.	Gray	lines	represent	a	single	
m/μ	parameter	across	all	populations,	while	black	lines	represent	
distinct	m/μ	across	all	populations.	(a)	Panmixia,	(b)	five	regional	
groups	with	a	shared	Θ and m/μ	parameters,	(c)	five	regional	groups	
with	a	distinct	Θ and m/μ	parameters,	(d)	island	model,	(e)	island	
model	for	five	regional	groups,	(f)	stepping‐stone	model	with	shared	
values	for	Θ and m/μ	parameters	(the	true	model),	(g)	stepping‐
stone	model	with	distinct	parameters	for	Θ and m/μ	parameters

(a) (b) (c)

(d) (e) (f) (g)
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one‐dimensional	lattice	with	a	fixed	proportion	of	migrants	moving	
between	 neighboring	 demes.	 We	 created	 nine	 simulated	 param-
eter	sets	that	varied	effective	population	size	 (Ne = {104,	105,	106})	
and	proportion	of	migrants	(m = {10−1,	10−2,	10−3,	10−4,	10−5})	for	all	
combinations	where	Nem	was	equal	 to	10,	100,	or	1,000	migrants	
per	 generation,	 as	well	 as	 a	 panmictic	 dataset	 that	was	 simulated	
as	a	single	population	with	Ne = 106	 that	was	then	subdivided	 into	
10	demes	 (Table	1).	Because	 the	Hawaiian	marine	populations	are	
thought	 to	 have	 undergone	 demographic	 expansion	 following	 sea	
level	 rise	 after	 the	 LGM	which	 ended	 14–20	 thousand	 years	 ago	
(Baums,	Godwin,	 Franklin,	Carlon,	&	Toonen,	 2013),	we	 simulated	
an	order	of	magnitude	increase	in	effective	population	size	for	each	
deme	to	reach	the	final,	given	value	for	Ne.	This	population	expan-
sion	occurred	10,000	generations	ago,	approximating	the	end	of	the	
LGM	(many	of	the	study	species	have	a	generation	time	of	~2	years).	
We	 sampled	 20	 post‐dispersal	 individuals	 from	 each	 population,	
with	a	simulated	sequence	of	500	bp	of	haploid	DNA	evolving	under	
the	HKY85	model	(transition/transversion	ratio	=	9.0,	base	frequen-
cies	set	to	default),	with	a	per‐base	mutation	rate	of	10%	per	million	
generations	 (i.e.,	mitochondrial	DNA,	 see	Crandall,	 Sbrocco,	 et	 al.,	
2012).	We	simulated	100	replicate	datasets	of	each	parameter	set.

For	 each	 replicate	 simulated	 dataset,	 we	 calculated	 pairwise	
ΦST	(Excoffier,	Smouse,	&	Quattro,	1992)	and	θ	(Weir	&	Cockerham,	
1984)	with	the	StrataG	package	for	R	(Archer,	Adams,	&	Schneiders,	
2017),	 and	 then	 assessed	 the	 significance	 of	 the	 relationship	 be-
tween	pairwise	genetic	distance	and	geographic	distance	along	the	
lattice	(i.e.,	IBD)	using	a	Mantel	test	as	implemented	in	the	adegenet	

package	for	R	(Jombart	&	Ahmed,	2011).	For	10	replicate	datasets	
from	each	parameter	set,	we	also	estimated	the	marginal	likelihood	
of	seven	different	metapopulation	models	 in	migrate‐n	 (Figure	2):	
(a)	a	stepping‐stone	model	with	freely	varying	m/μ and Θ = Neμ	pa-
rameters	 (where	Ne	 is	 the	effective	population	size,	m	 is	 the	pro-
portion	of	individuals	in	the	population	that	are	migrants,	and	μ	 is	
mutation	rate),	(b)	a	stepping‐stone	model	with	single	estimated	pa-
rameters	for	m/μ and Θ	(the	true	model),	(c)	a	stepping‐stone	model	
between	five	lumped	pairs	of	demes	with	freely	varying	parameters	
or	 (d)	single	estimated	parameters	for	m/μ and Θ	 (models	3	and	4	
representing	regional	structure),	(e)	an	island	model	with	10	demes	
(migration	between	all	possible	demes	pairs	with	a	single	estimated	
parameter	for	m/μ and Θ)	(f)	an	island	model	with	five	demes,	and	
(g)	a	model	of	panmixia.	Migrate‐n	was	 run	with	 the	same	priors,	
and	 other	 parameter	 file	 settings	 as	 are	 described	 below	 for	 the	
empirical	datasets.

2.2 | Migrate‐n analysis of empirical data

Empirical	 datasets	 comprised	 mitochondrial	 data	 from	 41	 species	
sampled	during	NOAA	expeditions	 throughout	 the	main	Hawaiian	
archipelago	 and	 Northwestern	 Hawaiian	 Islands	 from	 2005	 to	
2012	 (Figure	 1,	 Supporting	 Information	 Table	 S1;	 Selkoe	 et	 al.,	
2014;	Selkoe,	Gaggiotti,	et	al.,	2016;	Toonen	et	al.,	2011).	Locality	
samples	were	grouped	by	 island,	 and	each	dataset	was	 converted	
from	Arlequin	format	to	Nexus	and	migrate‐n	formats	 in	batch	via	
PGDSPiDer 2.0.5.1	 (version	 2.0.5.1;	 Lischer	 &	 Excoffier,	 2012).	 An	

F I G U R E  3  Migrate‐n	models	that	were	evaluated	for	each	empirical	dataset.	Squares	represent	a	single	Θ	parameter	across	all	
populations	and	circles	represent	distinct	parameters	Θ	for	all	populations.	Gray	arrows	represent	a	single	m/μ	parameter	across	all	
populations,	while	black	arrows	represent	distinct	m/μ	across	all	populations.	High	islands	are	shaded	dark	gray,	while	atolls	and	reefs	are	
shaded	light	gray.	Panmictic	populations	are	enclosed	in	ellipses.	(a)	Panmixia,	(b)	regional	structure	between	the	main	Hawaiian	islands	and	
the	Northwestern	Hawaiian	Islands,	(c)	regional	structure	due	to	a	current	passing	between	French	Frigate	Shoals	and	Gardner	Pinnacles,	(d)	
regional	structure	due	to	the	current	in	C,	and	another	current	between	Lisianski	Atoll	and	Pearl	and	Hermes	Atoll,	(e)	an	island	model,	(f)	a	
stepping‐stone	model	with	shared	values	for	Θ and m/μ	parameters,	(g)	a	stepping‐stone	model	with	independent	values	for	Θ and m/μ
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optimal	HKY	model	of	molecular	evolution	for	each	dataset	was	se-
lected	with	jModelTest	(Darriba,	Taboada,	Doallo,	&	Posada,	2012).

Parameter	 input	 files	 for	 migrate‐n	 were	 constructed	 using	 a	
custom	script	in	R.	All	models	had	identical,	windowed	exponential	
priors	 on	Θ	 (lower	 bound:	 1	×	10−5,	 upper	 bound:	 1	×	10−1,	mean:	
0.01)	and	m/μ	(lower	bound:	1	×	10−4,	upper	bound:	1	×	106,	mean:	
1	×	105)	 parameters.	Assuming	a	mutation	 rate	of	10%	per	million	
years,	these	priors	represent	the	belief	that	each	island	population’s	
effective	size	is	<1	million	(Hare	et	al.,	2011),	and	the	proportion	of	
migrants	is	<10%	of	that	(i.e.,	<100,000	migrants/generation;	Wren	
et	al.,	2016).	We	used	 four	heated	chains	with	 temperatures	of	1,	
1.5,	3,	and	1	×	105	to	ensure	a	thorough	search	of	parameter	space,	
thereby	enabling	an	estimate	of	model	marginal	likelihood	via	path	
sampling	(Beerli	&	Palczewski,	2010).	Migrate‐n	was	set	to	optimize	
on	the	m/μ	parameter	rather	than	the	joint	parameter	Nem,	and	with	
an	 inheritance	scalar	 that	 reflected	 the	haploid,	uniparental	 trans-
mission	of	mtDNA.	For	each	model,	the	coolest	chain	explored	five	
million	 genealogies,	 sampling	 every	 100	 iterations,	 and	 discarding	
the	first	two	million	genealogies	as	burn‐in.	Parameter	files	for	each	
species	and	each	model	are	available	in	the	Github	repository.

For	 each	 species’	 dataset,	 we	 created	 seven	 or	 eight	 meta-
population	 models	 to	 compare	 in	 a	 model‐selection	 framework	
(Figure	3).	We	first	modeled	panmixia	as	all	samples	belonging	to	a	
single	deme	(K	=	1,	1	Θ	parameter).	We	modeled	regional	structure	
as	two	panmictic	demes	(K	=	2,	2	Θ	parameters,	2	m/μ	parameters),	
with	a	barrier	to	gene	flow	occurring	(a)	between	the	MHI	and	the	
NWHI	(high–low	hypothesis),	(b)	between	French	Frigate	Shoals	and	
Gardner	Pinnacles	due	to	a	current	that	bisects	the	archipelago	there	
(Wren	et	al.,	2016),	(c)	regional	structure	as	three	panmictic	demes	

with	two	barriers	based	on	currents	that	run	between	French	Frigate	
Shoals	and	Gardner	Pinnacles,	and	between	Lisianski	Atoll	and	Pearl	
and	Hermes	Atoll	(two‐currents	hypothesis,	K	=	3,	3	Θ	parameters,	
6 m/μ	parameters).	We	modeled	the	island	model	as	migration	at	a	
single	rate	between	all	n	sampled	populations,	which	have	a	single	
shared	population	size	(K = n,	1	Θ	parameter,	1	m/μ	parameter).	We	
modeled	stepping‐stone	migration	between	neighboring	islands	by	
either	fixing	Θ and m/μ	each	to	a	single	estimated	parameter	(step-
ping‐stone	two‐parameter	hypothesis,	K = n,	1	Θ	parameter,	1	m/μ 
parameter),	 or	 allowing	 each	 parameter	 to	 vary	 freely	 (stepping‐
stone	hypothesis,	K = n,	n Θ	 parameters,	 [2n	−	2]	m/μ	 parameters).	
Finally,	for	some	species	where	Selkoe	et	al.	(2014)	had	inferred	re-
gional	structure	that	departs	from	the	models	specified	above,	we	
modeled	the	observed	empirical	structure	for	that	species.

Three	replicates	of	each	metapopulation	model	were	run	using	
migrate‐n	version	3.6.9	prior	to	estimation	of	the	marginal	 likeli-
hood	via	path	sampling.	We	used	the	Bezier‐corrected	estimate	in	
each	case	as	it	provides	a	good	approximation	to	a	marginal	like-
lihood	calculated	from	a	 large	number	of	heated	chains	(Beerli	&	
Palczewski,	 2010).	We	 then	 reran	 all	models	 for	 all	 species	 two	
more	times	for	a	total	of	nine	replicate	runs	of	each	model,	yielding	
three	 estimates	of	marginal	 likelihood.	All	model	 runs	were	per-
formed	on	the	University	of	Hawaii	high‐performance	computing	
(HPC)	cluster.

Model	runs	did	not	always	yield	the	same	marginal	likelihood,	but	
were	usually	similar	(within	~10	points	of	log‐likelihood;	Supporting	
Information	 Figure	 S1),	 so	 we	 took	 the	 mean	 marginal	 likelihood	
values	across	the	three	replicate	runs.	To	accommodate	variance	in	
estimated	log‐likelihood	across	replicates,	we	tested	for	significance	

F I G U R E  4  Proportion	of	simulated	
datasets	showing	a	significant	relationship	
between	lattice	distance	and	ΦST	or	Weir	
and	Cockerham's	θ
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of	the	best	model	by	comparing	the	mean	marginal	likelihood	to	the	
second‐best	model	for	each	species	using	a	permutation	t	test	exe-
cuted	in	the	R‐package	perm	(Fay	&	Shaw,	2010).	Species	with	a	per-
mutation	 t	 test	p‐value	>	0.05	were	considered	 to	have	significant	
ambiguity	in	their	top‐ranked	metapopulation	model.

For	species	 that	had	a	non‐ambiguous	 inference	of	a	 full	 step-
ping‐stone	model,	we	tested	for	a	significant	relationship	between	
area	of	shallow	ocean	habitat	<10	fathoms	deep	in	square	kilometers	
(Rohmann,	Hayes,	Newhall,	Monaco,	&	Grigg,	2005)	and	the	natural	
log	of	Θ	=	Ne.	We	also	tested	for	a	significant	relationship	between	
approximate	census	size	of	each	island	(as	estimated	from	densities	
reported	in	McCoy	et	al.	(2017))	and	the	natural	log	of	Θ.	We	did	this	
by	evaluating	the	slope	for	10,000	linear	models	created	by	match-
ing	 the	 area	or	 census	 size	of	 each	 sampled	 island	with	 a	 random	
draw	from	the	posterior	distribution	of	Θ	for	that	island.	A	significant	

relationship	between	island	size	and	Θ	was	determined	for	any	spe-
cies	that	had	a	positive	slope	in	at	least	95%	of	the	linear	models.

Finally,	we	 asked	whether	 life	 history	 traits	were	 predictive	 of	
metapopulation	model	(e.g.,	Does	a	long	pelagic	larval	duration	lead	
to	 inference	 of	 panmixia?).	We	 used	 the	 suite	 of	 life	 history	 traits	
assembled	by	Selkoe	et	al.	(2014,	Supporting	Information	Table	S1),	
which	included	pelagic	larval	duration,	depth	range,	adult	length,	hab-
itat	specialist,	attached	eggs,	herbivore,	fish,	and	endemic,	with	the	
first	three	predictors	being	log	transformed	and	the	last	five	coded	as	
logical	values.	We	created	a	multinomial	regression	model	using	the	
nnet	package	in	R	(Venables	&	Ripley,	2002),	and	treating	our	expec-
tation	of	a	stepping‐stone	model	as	the	reference	level,	with	the	other	
three	levels	being	regional	structure,	n‐island,	and	panmixia.	The	sig-
nificance	of	 each	predictor	was	 tested	using	 a	 z	 test	with	 the	 test	
statistic	calculated	as	the	model	coefficient	divided	by	 its	standard	

F I G U R E  5  Relative	probability	for	
each	of	seven	models	evaluated	with	
migrate‐n	(depicted	in	Figure	2)	for	each	
simulated	dataset	in	Table	1.	Probabilities	
are	averaged	across	10	replicate	simulated	
datasets	for	each	combination	of	effective	
population	size	(Ne)	and	proportion	of	
migrants	(m)
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error.	All	R	code,	and	infiles	for	IBDsim	and	migrate‐n	are	available	on	
the	GitHub	repository	linked	in	the	data	archiving	statement.

3  | RESULTS

3.1 | Simulations

The	two	estimators	of	FST	(ΦST and θ)	had	markedly	different	abil-
ity	to	recover	a	significant	correlation	with	distance	along	the	lat-
tice	in	different	simulated	scenarios	(Figure	4).	In	particular,	when	
Ne = 106,	ΦST	 was	 more	 likely	 to	 be	 significant	 with	 distance	 at	
Nem	=	10,	while	θ	was	more	 likely	to	be	significant	with	distance	
when Nem	=	1,000.	ΦST	ranged	from	18%	to	86%	of	datasets	with	
a	 significant	 relationship	 to	 distance	 while	 θ	 ranged	 from	 12%	
to	98%.	Neither	statistic	showed	any	evidence	of	 false‐positives	
when	evaluating	the	panmictic	dataset.

Migrate‐n	chose	the	true	model	(Stepping‐stone	two	parame-
ter)	for	all	10	datasets	for	each	parameter	set	where	Nem	=	10	with	
one	exception	(Figure	5).	 In	one	of	ten	datasets	for	Ne = 104,	the	
full	 28‐parameter	 stepping‐stone	 model	 was	 selected.	 Similarly,	
for	parameter	sets	where	Nem	=	100,	migrate‐n	selected	the	true	
model	 in	 every	 case	 except	when	Ne	 was	 10

4.	 For	 this	 parame-
ter	set,	 it	chose	some	version	of	a	regional	model	 (five	stepping‐
stone	populations)	 in	 six	out	of	10	datasets.	For	datasets	where	
Nem	=	1,000,	migrate‐n	never	recovered	the	true	model,	inferring	
mostly	panmixia	for	Ne	of	10

5 and 106,	and	a	variety	of	models	for	
Ne	of	10

4.	When	the	true	model	was	panmixia,	migrate‐n	selected	
panmixia	for	five	of	the	replicates	and	the	n‐island	model	for	the	
other	five.

Parameter	 estimates	 for	Nem and Ne	 were	 consistently	 about	
one	 twentieth	 to	one	half	of	 the	 true	simulated	value	 (Supporting	
Information	 Figure	 S2).	 We	 attribute	 this	 outcome	 to	 the	

F I G U R E  6  Relative	probability	for	each	of	eight	models	evaluated	with	migrate‐n	(depicted	in	Figure	3)	for	each	empirical	dataset.	
Probabilities	are	averaged	across	three	replicate	migrate‐n	runs.	Species	names	for	which	the	best	model	was	unambiguous	are	printed	in	
boldface
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order‐of‐magnitude	population	growth	experienced	by	each	popula-
tion,	as	migrate‐n	estimates	of	Θ	are	expected	to	be	downwardly	bi-
ased	in	the	case	of	such	population	growth	(Beerli,	2009).	Saturation	
is	also	likely	to	play	a	role	when	Ne	=	1	million,	as	these	datasets	had	
over	60%	variable	 sites.	Migrate’s	 estimates	of	 gene	 flow	are	also	
known	to	be	downwardly	biased	when	true	migration	is	high,	due	to	
the	need	to	truncate	the	number	of	migration	events	to	avoid	mem-
ory	overflow	(Beerli	&	Felsenstein,	1999).

3.2 | Empirical data

Migrate‐n	 inferred	 some	 form	 of	 stepping‐stone	 model	 for	 18	 of	
26	species	for	which	the	model	was	unambiguous	 (69%;	Figure	6).	
Regional	structure	was	inferred	for	three	species,	the	sergeant	major	
Abedefduf abdominalis,	spinner	dolphin	Stenella longirostris, and yel-
lowstripe	goatfish,	Mulloidichthys flavolineatus.	For	all	three	of	these	
species,	migrate‐n	analysis	confirmed	inferences	based	on	FST	of	re-
gional	 structure,	 regional	 structure,	 and	chaotic	 structure,	 respec-
tively	(Selkoe	et	al.,	2014).	An	island	model	was	selected	for	the	spiny	
lobster,	Panulirus marginatus,	and	panmixia	was	the	best	model	for	
four	species:	two	with	Indo‐Pacific	distributions:	Bluestripe	snapper	
(Lutjanus kasmira)	and	Zebra	hermit	crab	(Calcinus seurati),	and	two	
Hawaiian	 endemics:	 Bluestripe	 Butterflyfish	 (Chaetodon fremblii)	
and	Hawaiian	grouper	(Epinephelus quernus).

There	was	no	clear	pattern	in	the	15	species	that	did	not	yield	
a	single	best	model	over	three	replicates.	Five	species	had	the	full	
stepping‐stone	model	at	an	average	posterior	probability	over	50%,	
while	four	species	had	the	same	for	panmixia	and	one	for	the	n‐is-
land	model.	The	other	five	had	no	majority	model.	A	logistic	regres-
sion	found	that	haplotype	diversity	and	ΦST	were	not	predictive	of	
whether	a	dataset	gave	ambiguous	results	or	not.

For	the	species	that	yielded	a	single	unambiguous	model,	poste-
rior	distributions	for	Θ,	m/μ,	and	their	product	Nem	all	had	effective	
sample	sizes	greater	than	200	(with	the	exception	of	some	parame-
ters	for	Etelis marshii).	However,	while	Θ	posteriors	converged,	many	
m/μ	 posteriors	 did	 not	 converge	well,	 as	 indicated	 by	multimodal	
distributions	(Supporting	Information	Figure	S3)	and	scale	reduction	
factors	>1.2.	For	this	reason,	we	focus	only	on	the	minimum	and	max-
imum	values	(upper	and	lower	bounds	of	95%	highest	posterior	den-
sity	intervals)	estimated	for	these	parameters.	The	lowest	m/μ value 
that	fell	within	the	95%	highest	posterior	density	for	any	species	was	
3	×	10−4	(Cellana talcosa),	and	the	highest	was	9.9	×	105	 (Chaetodon 
lunulatus).	The	lowest	Θ	value	for	any	species	was	2.9	×	10−6	(Cellana 
exarata),	while	the	highest	value	was	4	×	10−1	(Gymnothorax flavimar‐
ginatus).	 For	Nem,	 the	 lowest	 value	 for	 any	 species	was	5.2	×	10−7 
(Cellana talcosa)	and	the	highest	value	was	2.3	×	104	female	migrants	
per	generation	(Chaetodon lunulatus).

The	 limpet	 Cellana exarata	 was	 the	 only	 species	 that	 showed	
a	 significant	 relationship	 between	 habitat	 size	 and	 log	 Θ	 (p	=	0,	
Supporting	Information	Figure	S4).	No	species	showed	a	significant	
relationship	between	census	size	and	log	Θ.	The	only	life	history	trait	
that	was	significantly	correlated	with	our	inferred	models	was	her-
bivory,	which	was	negatively	correlated	with	panmixia	(p	=	0).

4  | DISCUSSION

Our	analysis	of	41	marine	species	sampled	along	the	Hawaiian	archi-
pelago	with	a	coalescent	genealogy	sampler	represents	the	largest	and	
most	thorough	application	of	such	a	model	testing	framework	to	date.	
Out	of	the	species	for	which	we	could	select	a	model	without	significant	
ambiguity,	we	found	that	nearly	70%	conformed	to	a	stepping‐stone	
model	of	gene	flow	(Figure	6).	This	result	should	not	be	surprising	given	
what	we	know	about	relatively	short	mean	larval	dispersal	(D’Aloia	et	
al.,	2015;	Treml	et	al.,	2012)	and	the	seascape	of	the	Hawaiian	archipel-
ago	(Wren	et	al.,	2016).	Yet	this	finding	represents	a	striking	departure	
from	inferences	based	on	FST,	which	have	only	found	evidence	for	IBD	
in	about	10%	of	the	species	(Selkoe	et	al.,	2014).

Although	our	result	agrees	with	intuition,	such	a	striking	reversal	
requires	some	skepticism.	What	if	our	coalescent	approach	is	some-
how	biased	toward	stepping‐stone	models,	or	what	if	there	is	simply	
not	enough	information	in	mitochondrial	datasets	to	make	a	reliable	
inference?	For	 this	 reason,	we	conducted	extensive	 simulations	 in	
the	 large	population	 size	 and	high	 gene	 flow	 region	of	 population	
genetic	 parameter	 space	 that	 is	 occupied	 by	most	marine	 species	
(Gagnaire	 et	 al.,	 2015;	Waples,	 1998).	We	 found	 that	migrate‐n	 is	
able	 to	 return	a	correct	 inference	of	some	form	of	stepping‐stone	
model	 (including	 regional	 structure)	 in	100%	of	 cases	where	gene	
flow	is	100	effective	migrants	per	generation	or	less	(Figure	5).	This	
compares	quite	favorably	to	two	analogs	of	FST which had variable 
success	that	hovered	around	75%	(Figure	4)	for	gene	flows	of	100	
migrants	per	generation	or	less.	Moreover,	migrate‐n	and	FST	meth-
ods	both	have	 low	 false‐positive	 rates,	never	 inferring	a	 stepping‐
stone	model	when	the	true	model	was	panmixia	(although	migrate‐n	
did	infer	an	island	model	50%	of	the	time).

When	dealing	with	“real‐world”	mitochondrial	datasets,	the	suc-
cess	rate	of	both	coalescent	(69%)	and	FST‐based	(10%)	methods	is	
apparently	 lower	 than	 the	simulations	would	predict	 (perhaps	due	
in	part	to	natural	selection	on	the	mitochondrial	genome;	Ballard	&	
Whitlock,	2004;	Crandall,	Sbrocco,	et	al.,	2012,	Teske	et	al.,	2018),	if	
we	assume	that	some	sort	of	isolation‐by‐distance	model	is	correct	
in	most	marine	species	with	 larval	dispersal.	 Indeed,	 IBD	 it	 is	only	
detected	in	about	33%	of	studies	globally	(Selkoe	&	Toonen,	2011).	
Mitochondrial	DNA	data	in	particular	are	viewed	as	being	problem-
atic	 in	this	application	(Teske	et	al.,	2018).	However,	 it	may	not	be	
the	data	that	are	failing	so	much	as	the	analytical	approach:	Given	
that	F‐statistics	remain	the	primary	method	by	which	marine	popu-
lation	structure	is	diagnosed	(Selkoe,	D’Aloia,	et	al.,	2016),	the	10%	
success	rate	of	FST	methods	in	the	Hawaiian	archipelago	(Selkoe	et	
al.,	2014;	Toonen	et	al.,	2011)	and	~33%	success	rate	globally	(Selkoe	
&	Toonen,	2011)	 are	 conspicuously	 low.	Our	 combined	 simulation	
and	empirical	 results	 suggest	 that	 coalescent	 samplers	 can	detect	
population	genetic	 structure	even	when	FST	or	Mantel’s	R	are	not	
significantly	different	from	zero,	because	FST	and	its	analogues	are	
simply	not	sensitive	enough	to	detect	it	given	realistic	limitations	to	
sampling	designs	for	marine	populations.

Coalescent	methods	provide	a	powerful	 complement	 to	FST	 for	
the	analysis	of	marine	population	genetic	data	(Marko	&	Hart,	2011).	
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Large	marine	population	sizes	slow	the	effects	of	genetic	drift	and	
frequently	create	very	low	values	of	FST	(Whitlock	&	McCauley,	1999).	
However,	the	fraction	of	migrants	(m)	that	successfully	disperse	more	
than	~100	km	(or	in	our	specific	case,	the	fraction	that	disperse	be-
tween	islands)	is	probably	quite	low,	but	still	appreciably	higher	than	
the	mutation	rate.	This	fraction	of	migrants	also	scales	with	the	size	
of	 the	 source	 population	 (Treml	 et	 al.,	 2012),	meaning	 that	marine	
populations	are	an	excellent	approximation	of	the	structured	coales-
cent	model	(Wakeley,	2004).	In	this	case	where	Ne >> Nem >> μ we 
have	shown	that	migrate‐n	can	successfully	identify	a	stepping‐stone	
structure	with	Nem	up	to	100	migrants	per	generation	(i.e.,	Ne	at	about	
10,000	times	larger	than	Nem,	which	is	still	up	to	10,000	times	larger	
than	μ),	even	with	relatively	coarse	mitochondrial	datasets.	This	level	
of	sensitivity	is	analogous	to	successfully	resolving	IBD	using	signif-
icant	FST	 values	 of	 around	 0.002,	 something	 that	 is	 generally	 only	
possible	with	sample	sizes	well	over	100	(Waples,	1998)	and	with	nu-
merous	limiting	assumptions	(Whitlock	&	McCauley,	1999).	It	is	worth	
noting	 that	 migrate‐n	 actually	 estimated	Nem	 as	 greater	 than	 100	
migrants	per	generation	in	every	species	in	our	dataset	(Figure	S3).	
We	posit	that	reason	for	these	higher	estimated	values	is	twofold:	(a)	
because	migrate‐n	assumes	that	shared	alleles	are	due	to	gene	flow	
rather	than	recent	divergence	and	(b)	because	some	larvae	disperse	
further	than	the	neighboring	island	(Wren	et	al.,	2016),	meaning	that	
the	true	model	departs	from	a	pure	stepping‐stone	model.	However,	
with	the	current	single‐locus	datasets,	migrate‐n	was	not	able	to	dis-
tinguish	between	models	that	allowed	single	versus	multi‐island	dis-
persal,	so	we	did	not	include	these	here	(data	not	shown).

Waples	(1998)	astutely	pointed	out	that	even	if	a	method	is	sen-
sitive	 enough	 to	 detect	 population	 structure,	 significant	 genetic	
structure	may	not	be	biologically	meaningful.	Waples	and	Gaggiotti	
(2006)	 identified	 several	 criteria	 for	 biological	 relevance.	 First,	 for	
populations	 to	be	evolutionarily	distinct,	Nem	must	be	 less	 than	~1	
–	25	migrants	per	generation.	Second,	for	populations	to	be	ecologi-
cally	distinct	(demographically	independent)	the	fraction	of	migrants	
m	must	be	less	than	10%	(Hastings,	1993).	In	terms	of	the	first	crite-
rion,	our	estimates	for	Nem	were	generally	above	100,	and	no	species	
was	geographically	 reciprocally	monophyletic,	suggesting	that	most	
Hawaiian	marine	species	comprise	a	single	evolutionarily	significant	
unit	 (ESU).	 However,	 given	 census	 sizes	 in	 the	 millions	 per	 island	
(McCoy	et	al.,	2017),	hundreds	or	even	tens	of	thousands	of	effective	
migrants	per	generation	will	not	be	ecologically	relevant	for	conserva-
tion	and	management.	We	suggest	that	species	for	which	we	inferred	
a	stepping‐stone	model	with	a	prior	limit	on	the	fraction	of	migrants	
of	10%	(assuming	a	mutation	rate	of	10%/million	years)	have	 island	
populations	 that	 are	 demographically	 independent	 of	 one	 another.	
Confirmation	of	this	suggestion	would	require	a	study	with	more	loci,	
but	 in	 general,	 our	 results	 support	 earlier	 suggestions	 that	 each	 is-
land	should	be	treated	as	a	distinct	management	unit	(MU;	Funk	et	al.,	
2012;	Moritz,	1994;	Palsbøll	et	al.,	2007;	Toonen	et	al.,	2011).

Although	we	did	not	find	much	correlation	between	Θ	and	habitat	
size	or	abundance,	 it	 is	notable	that	our	approach	detected	hetero-
geneous	population	sizes	and	migration	rates	in	most	species.	Of	the	
18	species	for	which	migrate‐n	inferred	a	stepping‐stone	model,	a	full	

model	where	these	parameters	were	free	to	vary	was	selected	for	all	
but	 two,	 for	which	 a	 simplified	 two‐parameter	 stepping‐stone	was	
selected	 (Figure	6).	 This	 is	 not	 a	 case	 of	 overfitting:	 In	 contrast	 to	
the	empirical	data,	the	simulations	involved	homogenous	population	
sizes	and	migration	rates,	and	migrate‐n	almost	always	selected	the	
corresponding	two‐parameter	model	(Figure	5).	Again,	the	inference	
of	heterogeneous	population	sizes	and	migration	rates	is	not	surpris-
ing	from	a	biological	standpoint,	but	it	marks	an	important	improve-
ment	on	what	is	detectable	with	traditional	F‐statistics.	Indeed,	it	has	
been	shown	that	this	parameter	heterogeneity	is	likely	masking	the	
expected	 correlation	 between	 pelagic	 larval	 duration	 and	 genetic	
structure	 (Faurby	&	Barber,	2012).	We	expect	 that	parameter	esti-
mates	will	improve	with	the	addition	of	more	loci	(Felsenstein,	2006).

While	migrate‐n	did	much	better	than	FST	with	simulated	data,	
and	 inferred	structure	more	 readily	with	 the	empirical	data,	 it	 is	
also	 instructive	 to	 look	 at	 seven	 cases	where	migrate‐n	 did	 not	
detect	IBD.	Of	the	four	species	for	which	migrate‐n	inferred	pan-
mixia,	 we	 know	 that	 one	 of	 them,	 Lutjanus kasmira,	 is	 an	 alien	
invasive	 species	 recently	 introduced	 to	 the	 archipelago	 that	 has	
undergone	 rapid	 population	 growth	 indicative	 of	 the	 source	
population	 rather	 than	 geographic	 structure	 (Gaither,	 Toonen,	
&	Bowen,	2012).	As	 is	often	 inferred	 in	 the	 literature	 for	 results	
where FST	 is	not	 significantly	different	 from	zero,	we	do	not	be-
lieve	that	the	other	three	species	are	truly	panmictic,	but	that	they	
simply	have	recent,	non‐equilibrium	gene	flow	throughout	the	ar-
chipelago	that	is	substantially	greater	than	100	migrants	per	gen-
eration	(resulting	from,	e.g.,	range	expansions;	Dawson,	Grosberg,	
Stuart,	&	Sanford,	2010).	 In	three	cases	when	migrate‐n	 inferred	
regional	structure,	the	inference	was	in	complete	agreement	with	
that	 achieved	 by	 F‐statistics	 (Supporting	 Information	 Table	 S1).	
Again,	we	doubt	that	each	region	is	fully	panmictic,	but	rather	that	
we	are	likely	detecting	hierarchical	structure	on	top	of	weaker	iso-
lation‐by‐distance	processes.

Twenty	years	ago,	when	Waples	(1998)	first	described	the	chal-
lenges	inherent	to	describing	population	structure	in	marine	species	
with	genetic	data,	he	highlighted	a	low	signal‐to‐noise	ratio	in	genetic	
data	that	has	persisted	through	to	today’s	research	(Selkoe,	D’Aloia,	
et	 al.,	 2016).	 Here,	 we	 have	 shown	 that,	 using	 a	 model‐selection	
framework,	 coalescent	 genealogy	 samplers	 are	 able	 to	 distinguish	
demographically	independent	stocks,	or	management	units	(signal),	
in	marine	species	with	evolutionarily	high	levels	of	gene	flow	(noise)	
that	overwhelm	traditional	F‐statistics.	With	the	recent	availability	
of	data	from	thousands	of	loci,	such	as	microhaplotypes	(Baetscher,	
Clemento,	Ng,	Anderson,	&	Garza,	2018)	or	whole	genome	sequenc-
ing,	we	expect	that	our	approach	will	be	of	great	use	when	applied	
by	marine	ecologists	and	managers	looking	for	more	sensitive	tools	
for	stock	delineation,	and	that	this	approach	will	help	to	define	the	
appropriate	geographic	scale	for	management.
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