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Commonality in dysregulated expression of
gene sets in cortical brains of individuals
with autism, schizophrenia, and bipolar
disorder
Jinting Guan1,2, James J. Cai 3,4, Guoli Ji1,2,5 and Pak Chung Sham6,7

Abstract
Individuals affected with different neuropsychiatric disorders such as autism (AUT), schizophrenia (SCZ) and bipolar
disorder (BPD), may share similar clinical manifestations, suggesting shared genetic influences and common biological
mechanisms underlying these disorders. Using brain transcriptome data gathered from postmortem donors affected
with AUT, SCZ and BPD, it is now possible to identify shared dysregulated gene sets, i.e., those abnormally expressed in
brains of neuropsychiatric patients, compared to non-psychiatric controls. Here, we apply a novel aberrant gene
expression analysis method, coupled with consensus co-expression network analysis, to identify gene sets with shared
dysregulated expression in cortical brains of individuals affected with AUT, SCZ and BPD. We identify eight gene sets
with dysregulated expression shared by AUT, SCZ and BPD, 23 by AUT and SCZ, four by AUT and BPD, and two by SCZ
and BPD. The identified genes are enriched with functions relevant to amino acid transport, synapse, neurotransmitter
release, oxidative stress, nitric oxide synthase biosynthesis, immune response, protein folding, lysophosphatidic acid-
mediated signaling and glycolysis. Our method has been proven to be effective in discovering and revealing
multigene sets with dysregulated expression shared by different neuropsychiatric disorders. Our findings provide new
insights into the common molecular mechanisms underlying the pathogenesis and progression of AUT, SCZ and BPD,
contributing to the study of etiological overlap between these neuropsychiatric disorders.

Introduction
Autism (AUT), schizophrenia (SCZ) and bipolar dis-

order (BPD) are three major neuropsychiatric disorders.
AUT patients present with impairments in social inter-
action and communication, and repetitive and restricted
behaviors. SCZ is characterized by delusions, hallucina-
tions, disordered thoughts and blunted affect. The
symptoms of BPD include recurrent mania and depres-
sion, frequently with delusions. Patients with these severe
neuropsychiatric disorders share similar behavioral, social,

cognitive, and perceptual impairments. Up to 30% of
individuals diagnosed with AUT during childhood will
develop SCZ in adulthood1. The presence of SCZ or BPD
in first-degree relatives is a consistent and significant risk
factor for AUT2. Similarity in clinic symptoms, as well as
shared genetic influences, between AUT, SCZ and BPD,
have been the focus of several recent studies3–7.
Genetic studies have identified genetic variants that

contribute to the risk of developing AUT8–14, SCZ15–18

and BPD19–22. However, for any of these disorders, it
remains elusive how these reported variants lead to the
pathogenesis of disorder. One possibility is that these
variants cause gene expression alternations in brain
(during a certain stage or across several stages of brain
development) and eventually lead to the neuropsychiatric
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disorders. Measuring and analyzing gene expression
information in postmortem brains is thus valuable for
understanding the pathogenesis of neuropsychiatric dis-
orders. The availability of samples from brains of diseased
cases and healthy controls makes it possible to measure
the gene expression from this primarily affected organ for
understanding AUT23,24, SCZ25,26 and BPD27,28. To study
the effect of genetic correlation in these disorders, some
researchers focused on studying the overlap of gene
expression alterations between diseases29–32. For example,
a transcriptome analysis of anterior cingulate cortex
samples from SCZ, BPD and controls was conducted by
Zhao et al.31. They showed the gene expression of SCZ
and BPD are correlated, and dysregulation of cytoskeleton
remodeling and lysosomal function underlies the com-
mon causes of SCZ and BPD. In a more recent study, Ellis
et al. integrated and analyzed the transcriptomic RNA-
sequencing data of cortex samples of AUT, SCZ, BPD and
controls combined from two previous studies24,31. Ellis
et al. used univariate analysis method, i.e., single gene-
based differential expression analysis, to first identify
differentially expressed genes associated with each dis-
ease, and then obtained a list of differentially expressed
genes shared by those disorders. They reported the
transcriptomes of AUT and SCZ are correlated, and
altered neurotransmission and synapse regulation are
shared between these two disorders32.
To reveal shared dysregulated gene sets between AUT,

SCZ and BPD, herein we re-analyze the gene expression
data of cortical brain tissue samples from AUT, SCZ, BPD
and healthy controls32 but applying multivariate analysis
methods. We construct gene co-expression networks to
find consensus modules shared across disorders. To
consider the gene expression dispersion, we apply aber-
rant gene expression analysis to identify shared gene sets
tend to be aberrantly expressed across diseases. By ana-
lyzing the shared dysregulated gene sets, we evaluate the
extent of similarity between gene expression of AUT, SCZ
and BPD and gain better understanding the downstream
impact of genetic overlap in these neuropsychiatric
disorders.

Materials and methods
Gene expression data
The gene expression data of 104 cortical brain tissue

samples (47 AUT and 57 controls), which was normalized
using conditional quantile normalization (CQN)33 to
remove technical variability, was obtained from the study
of Ellis et al.32. We denoted it as data I. These 104 samples
were from three brain regions, of which 62, 14 and 28
were from cerebral cortex (BA 19), anterior prefrontal
cortex (BA 10), and a part of the frontal cortex (BA 44)
respectively, involving 40 healthy and 32 autistic indivi-
duals. The transcriptomes of the 104 samples were

originally sequenced by Gupta et al.24. The CQN nor-
malized gene expression data of 82 anterior cingulate
cortex (BA24) samples (involving 31 SCZ patients, 25
BPD patients, and 26 controls) was also obtained from the
study of Ellis et al.32, which we denoted as data II. These
samples were originally from Stanley Medical Research
Institute (SMRI) and the whole transcriptome sequencing
was performed by Zhao et al.31. For these two datasets
(data I and data II), the sequencing reads were subjected
to a common pre-processing pipeline for obtaining the
gene expression data32.
In this study, we first combined data I and data II, and

processed the combined data using the algorithm of
ComBat34 for removing the effect caused by different data
sources and regressing out the covariates (age, gender and
brain region). Next, we applied the algorithm of prob-
abilistic estimation of expression residuals (PEER)35 to
discover up to 20 possible hidden determinants of
expression variation and then regressed out the hidden
factors that were uncorrelated with disease status. The
lowly expressed genes with expression median < 2 were
excluded. The final data matrix contains the expression
level of 8485 protein-coding genes in 186 samples (47
AUT, 31 SCZ, 25 BPD and 83 controls).

Curated gene sets
The gene sets (n= 17,786) used in the Gene Set

Enrichment Analysis (GSEA) were obtained from the
molecular signatures database (MSigDB v6.1)36. The
GSEA gene sets include 50 hallmark gene sets, 326 posi-
tional gene sets, 4738 curated gene sets, 836 motif gene
sets, 858 computational gene sets, 5917 GO gene sets, 189
oncogenic signatures and 4872 immunologic signatures.
A total of 1007 AUT-candidate genes were downloaded
from gene scoring module in Simons Foundation Autism
Research Initiative (SFARI), which includes 68, 25, 59,
176, 406, 157, and 21 genes from categories S (syn-
dromic), 1 (high confidence), 2 (strong candidate), 3
(suggestive evidence), 4 (minimal evidence), 5 (hypothe-
sized but untested) and 6 (evidence does not support a
role). We downloaded 2752 genes associated with SCZ
from SZDB37, database for schizophrenia genetic
research, and these genes were identified by different
kinds of studies including convergent functional geno-
mics, CNV, differentially expression, GWAS, genetic
linkage and association studies, Sherlock integrative
analysis and Pascal gene-based test. We also downloaded
599 BPD-associated genes from BDgene database38, and
each gene is positively supported by at least one kind of
studies.

Aberrant gene expression analysis
The aberrant gene expression analysis39 is a multivariate

method, which adopts Mahalanobis distance (MD)40 to
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quantify the dissimilarity in multigene expression patterns
between diseased samples and control group. Here we
firstly applied aberrant gene expression analysis to identify
gene sets that may be expressed aberrantly in each of the
three disorders (AUT, SCZ and BPD). Specifically, based
on the final data matrix including 186 samples (47 AUT,
31 SCZ, 25 BPD and 83 controls), we first calculated, for
each disorder and each given gene set, the MD from each
diseased sample i to the robust multivariate centroid of
control group (including 83 controls), denoted as MDi.
MD measures the number of standard deviations from
case sample to the robust mean of controls. To reduce the
influence of possible outliers in control group, we adopted
the algorithm of Minimum Covariance Determinant
(MCD)41 to obtain the robust location estimator
(expression mean) and scattering estimator (covariance
matrix) of the controls. The MCD algorithm subsamples h
observations (set h= 0.8n, where n is the number of
controls) whose covariance matrix had the smallest cov-
ariance determinant, and the MCD robust estimates of
location and scattering were imputed from these h con-
trols. Then MDi was calculated as:

MDi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxi� � ycÞTψ�1
c ðxi� � ycÞ

q

where xi∙ is the vector of gene expression levels for dis-
eased sample i, yc is the vector of expression means of
genes across h control samples, and ψc is the covariance
matrix estimated from the h controls.

Next, the sum of squared MDi, denoted as SSMD:

SSMD ¼
Xm

i¼1
MD2

i

was calculated to measure the overall dispersion of m
cases to the robust centroid of control group. To assess
the significance of SSMD of a given gene set, we performed
permutation tests using N randomly reconstructed gene
sets with the same size. As SSMD measures the
overall dispersion of cases relative to the control group,
even if the robust centroid of controls may change when
we performed permutation tests, but it would not affect
the calculation of a relative measure, i.e., SSMD. The P-
value of permutations, Pperm, was determined by M/N,
where M is the number of random gene sets whose SSMD
values are greater than that of the given gene set, N is the
total number of random gene sets. The correction for
multiple testing was performed by controlling the false
discovery rate (FDR) with the Benjamini–Hochberg
method42.
To assess the relative contribution of each gene in a

significant gene set to the total SSMD, we calculated the
difference between the total SSMD value and the SSMD
value calculated after the gene was excluded from the
gene set, which we denoted as ΔSSMD. The ΔSSMD of

gene j was calculated as:

ΔSSMDj ¼ SSMD� SSMDexclude gene j

Then we sorted the genes by their ΔSSMD values for a
significant gene set.

Clustering of aberrantly expressed gene sets
For any pair of significant aberrantly expressed gene sets

a and b, we adopted Jaccard distance43 to measure their
dissimilarity, which was calculated as:

1� Jða; bÞ ¼ 1� a \ bj j
a∪ bj j

where J(a, b) is Jaccard similarity coefficient and is defined
as the number of genes in the intersection of a and b
divided by the number of genes in the union of a and b.
Based on the Jaccard distance, we generated a hierarchical
cluster tree to group the gene sets whose distances are less
than 0.3.

Consensus gene co-expression network analysis
In addition to aberrant gene expression analysis, we also

performed gene co-expression network analysis. We first
split the final data matrix into three sub-datasets, denoted
as datasets 1, 2 and 3, each containing the data for a
disorder and their respective controls. Then weighted
gene co-expression network analysis (WGCNA)44 was
applied to find consensus modules between datasets 1, 2
and 3. The signed consensus modules were built using the
function of blockwiseConsensusModules in WGCNA
package45. Modules were defined using biweight mid-
correlation (bicor) which is more robust to outliers
compared to Pearson correlation46, along with the soft-
threshold power of 5 for all datasets achieving approx-
imate scale-free topology (R2 > 0.8), minimum module
size of 20 and FALSE pamStage. The module eigengene
(the first principal component) was used to represent the
expression level of each consensus module and was
associated with the traits (age, gender, and disease status)
to compute the correlation coefficients and P-values. The
P-values were then corrected by controlling the FDR with
the Benjamini–Hochberg method42. Gene ontology ana-
lysis was performed using the database for annotation,
visualization and integrated discovery (DAVID)47,48. Gene
lists of modules were uploaded, and the GO terms whose
Bonferroni-adjusted P-value < 0.05 were reported as sig-
nificant in the ‘Functional Annotation Chart’ generated
using the minimum number of genes involved in the
term of 10.

Results
Analysis workflow
Figure 1 describes the analysis workflow. The analyses

of this study were conducted with the gene expression
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datasets, normalized using conditional quantile normal-
ization (CQN)33 to remove technical variability, from the
study of Ellis et al.32, including (1) the gene expression
data of 104 cortical brain tissue samples (47 AUT and 57
controls), here denoted as data I, and (2) the gene
expression data of 82 anterior cingulate cortex samples
(31 SCZ, 25 BPD, and 26 controls), denoted as data II.
Firstly, we combined data I and data II and processed the
combined data with the algorithm of ComBat34 to remove
batch effect. Then the data was subjected to the algorithm
of probabilistic estimation of expression residuals
(PEER)35 to regress out up to 20 possible hidden factors
that were uncorrelated with disease status (Materials and
Methods). The final data matrix contains the expression
level of 8,485 protein-coding genes in 186 samples (47
AUT, 31 SCZ, 25 BPD and 83 controls) (Supplementary
Data 1).
Next, we applied the aberrant gene expression analysis39

to identify significant gene sets for each disorder and then
obtained shared ones across disorders by generating a
hierarchical cluster tree. In addition, we used weighted

gene co-expression network analysis (WGCNA)44 to find
consensus modules shared across disorders. We then
compared the results from these two kinds of analysis
methods, aberrant gene expression analysis and WGCNA.
By analyzing the identified shared sets of dysregulated
genes, we assessed the commonality between AUT, SCZ,
and BPD.

Shared aberrantly expressed gene sets across disorders
Dysregulated gene expression is characterized by

increased level of expression dispersion between indivi-
duals23,39. To assess the gene expression dispersion in
diseased individuals, we used aberrant gene expression
analysis method39 to identify gene sets tend to be aber-
rantly expressed in AUT, SCZ and BPD separately based
on the final data matrix including 47 AUT, 31 SCZ, 25
BPD samples and 83 controls (Materials and Methods).
From 17,786 GSEA (Gene Set Enrichment Analysis) gene
sets36, 156, 102, 51 gene sets were identified to be asso-
ciated with AUT, SCZ and BPD respectively (P-value ≤
0.01) (Fig. 2). To consider the effect of different case

Fig. 1 The analysis workflow used in parallel, including aberrant gene expression analysis and consensus gene co-expression analysis
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sample sizes for different diseases, we re-run the aberrant
gene expression analysis by using a same diseased sample
size (i.e., the minimum sample size among AUT, SCZ and
BPD cases, which is equal to 25). In specific, we randomly
picked 25 case samples from all AUT cases, and used their
gene expression to perform aberrant gene expression
analysis. This process was repeated for 100 times, and we
found that the average number of identified gene sets
associated with AUT is 137. For SCZ, we also performed
aberrant gene expression analysis for 100 times by using
the gene expression of 25 randomly selected SCZ cases in
each time. We found that the average number of identi-
fied gene sets associated with SCZ is 97. It can be seen
that after we controlled the effect of different case sample
sizes, the differences in the number of identified gene sets
associated with different disorders still exist, especially
between AUT and BPD, SCZ and BPD. It may because for
our analyzed gene expression data AUT cases tend to
show disruption in more gene sets or more biological
functions relative to SCZ, and especially BPD.
Then we clustered the significant gene sets (156, 102

and 51 gene sets associated with AUT, SCZ and BPD
respectively) to obtain shared ones by more than one
disorders (Materials and Methods). As a result, there are
21 gene sets shared by AUT and SCZ, four shared by AUT
and BPD, one shared by SCZ and BPD, four shared by all
three disorders (Fig. 2). The shared GSEA gene sets are
listed in Table 1. When the cutoff of P-value was set to
0.05, 119 gene sets are shared by AUT and SCZ, 44 shared

by AUT and BPD, 25 shared by SCZ and BPD, 31 shared
by all three disorders (Supplementary Table 1). To assess
the overlap between genes in identified gene sets and
disease-associated genes, we downloaded 1,007 AUT-
associated genes from Simons Foundation Autism
Research Initiative (SFARI), 2752 SCZ candidate genes
from SZDB37 and 599 BPD candidate genes from
BDgene38 (Materials and Methods). Many dysregulated
gene sets are enriched with disease-associated genes
(Table 1). To measure the relative contribution of each
gene in a significant gene set, we calculated ΔSSMD value
of each gene (Materials and Methods) and sorted the
genes by their ΔSSMD values. For each disease, the genes
with top three ΔSSMD values are listed for each sig-
nificant gene set, and the ones overlapping with disease-
associated genes are bold (Table 1).

Shared gene sets involved in amino acid transport
In Table 1, five gene sets, associated with AUT and SCZ,

are related to amino acid transport including GO_AMI-
NO_ACID_TRANSMEMBRANE_TRANSPORTER_ACTIVI
TY, GO_NEUTRAL_AMINO_ACID_TRANSPORT, GO_L_
AMINO_ACID_TRANSMEMBRANE_TRANSPORTER_-
ACTIVITY, GO_L_AMINO_ACID_TRANSPORT and
REACTOME_AMINO_ACID_TRANSPORT_ACROSS_
THE_PLASMA_MEMBRANE. This is in line with the
known link between amino acid transport and AUT or SCZ
—amino acids are essential in cognitive functioning and
brain development49. For example, increased transport
capacity of alanine across the cell membrane and decreased
affinity for transport sites of tyrosine may be associated with
the development of AUT in children, demonstrating the
disturbances in transport mechanisms for amino acids at the
membrane level may influence the transport of amino acids
across the blood brain barrier49. The solute carrier trans-
porter 7a5 (SLC7A5), a large neutral amino acid transporter
localized at the blood brain barrier, is important in main-
taining normal levels of brain branched chain amino acids;
the abnormalities in branched-chain amino acid catabolic
pathway may cause AUT50. The aberrant amino acid
transport activities, such as the aberrant tyrosine transport
across the cell membrane51 and excitatory amino acid
transport52, were also found in patients with SCZ.
In these five shared gene sets, genes CLN8, KCNJ10,

SLC1A1, SLC1A2, SLC25A12, SLC38A10, SLC6A1,
SLC6A8, SLC7A3, SLC7A5, and SLC7A7 are overlapped
with SFARI AUT-associated genes. Nine of them belong
to SLC family, of which SLC1A2 and SLC6A1 belong to
category S (syndromic), and SLC6A1 is a strong candidate
(category 2) for AUT. Among these genes, SLC1A1 and
SLC1A2 are also associated with SCZ. In particular, gene
SLC1A2 have been linked to SCZ by studies of convergent
functional genomics, linkage and association, and differ-
ential expression analysis according to the explanation in

4 21

4

1

127

76

42 BPD

SCZ

AUT

Fig. 2 The Venn diagram shows the number of identified aberrantly
expressed gene sets associated with AUT, SCZ, and BPD

Guan et al. Translational Psychiatry           (2019) 9:152 Page 5 of 15



Ta
b
le

1
Th

e
id
en

ti
fi
ed

sh
ar
ed

G
SE

A
g
en

e
se
ts

fr
om

ab
er
ra
n
t
g
en

e
ex

p
re
ss
io
n
an

al
ys
is

G
en

e
se
t
na

m
e

N
um

b
er

of
G
en

es
Sh

ar
ed

b
y

N
um

b
er

of
as
so
ci
at
ed

g
en

es
(P
-v
al
ue

)
G
en

es
w
it
h
to
p
th
re
e
Δ
SS
M
D
va
lu
es

(1
00

%
×
Δ
SS
M
D
/

SS
M
D
)

Re
fe
re
nc

e

A
U
T

SC
Z

B
PD

A
U
T

SC
Z

B
PD

G
O
_A

M
IN
O
_A

C
ID
_T

RA
N
SM

EM
B
RA

N
E_

TR
A
N
SP

O
RT

ER
_A

C
TI
V
IT
Y

34
/7
9

A
U
T,
SC

Z
9
(0
.0
03
0)

16
(0
.0
02
0)

3
(0
.0
38
9)

SL
C6
A1
5
(1
5.
04
%
),

SL
C4
3A
2
(9
.3
1%

),
SL
C2
5A
22

(7
.4
0%

)

SL
C6
A6

(1
3.
91
%
),

SL
C3

8A
5
(1
3.
84
%
),

SL
C3
6A
1
(1
2.
09
%
)

SL
C2
5A
12

(1
0.
90
%
),

SL
C6
A1

(1
0.
80
%
),

SL
C7
A8

(9
.2
1%

)

49
–5
2

G
O
_R

EG
U
LA

TI
O
N
_O

F_
O
X
ID
A
TI
V
E_

ST
RE

SS
_I
N
D
U
C
ED

_I
N
TR

IN
SI
C
_A

PO
PT

O
TI
C
_S

IG
N
A
LI
N
G
_P

A
TH

W
A
Y

23
/2
9

A
U
T,
SC

Z
2
(0
.2
45
9)

6
(0
.0
39
)

3
(0
.0
10
3)

H
SP
H
1
(2
5.
36
%
),

U
BQ

LN
1
(1
7.
83
%
),

FB
XW

7
(1
3.
65
%
)

SF
PQ

(1
3.
58
%
),

H
SP

B1
(1
3.
45
%
),

SO
D
2
(1
3.
30
%
)

P4
H
B
(1
7.
10
%
),

H
SP
H
1
(1
5.
62
%
),

U
BQ

LN
1
(1
1.
61
%
)

70
–7
2

G
O
_N

EG
A
TI
V
E_

RE
G
U
LA

TI
O
N
_O

F_
O
X
ID
A
TI
V
E_

ST
RE

SS
_I
N
D
U
C
ED

_I
N
TR

IN
SI
C
_A

PO
PT

O
TI
C
_S

IG
N
A
LI
N
G
_P

A
TH

W
A
Y

16
/2
1

A
U
T,
SC

Z
1
(0
.3
39
9)

6
(0
.0
04
5)

3
(0
.0
02
6)

H
SP
H
1
(1
9.
12
%
),

H
SP
B1

(1
9.
08
%
),

SO
D
2
(1
8.
75
%
)

H
SP

H
1
(2
1.
68
%
),

H
SP

B1
(1
7.
89
%
),

SO
D
2
(1
1.
82
%
)

H
SP
H
1
(2
3.
67
%
),

H
SP
B1

(1
3.
80
%
),

A
KT

1
(1
1.
23
%
)

70
–7
2

RE
A
C
TO

M
E_

G
LY

C
O
LY

SI
S

19
/2
9

A
U
T,
SC

Z
2
(0
.1
66
4)

5
(0
.2
92
3)

1
(0
.1
61
8)

PP
P2

R5
D

(1
5.
30
%
),
PG

AM
1

(1
4.
51
%
),
PF
KF
B2

(1
3.
60
%
)

PP
P2
R5
D
(2
3.
04
),

PP
P2
CB

(1
6.
19
%
),

G
PI

(1
5.
19
%
)

PP
P2
CB

(1
8.
48
%
),

PF
KF
B2

(1
6.
64
%
),

PF
KF
B3

(1
4.
21
%
)

94
–9
6

G
O
_N

EU
TR

A
L_
A
M
IN
O
_A

C
ID
_T

RA
N
SP

O
RT

19
/3
4

A
U
T,
SC

Z
2
(0
.1
66
4)

7
(0
.0
03
2)

2
(0
.0
33
7)

SL
C3
8A
5
(2
0.
32
%
),

SL
C3
2A
1
(1
7.
56
%
),

SL
C6
A1
5
(1
6.
75
%
)

SL
C3

8A
5
(2
4.
24
),

SL
C3

2A
1
(2
3.
77
%
),

SL
C7
A8

(2
1.
49
%
)

SL
C4
3A
2
(1
7.
03
%
),

SL
C6
A1
5
(1
2.
56
%
),

SL
C7
A8

(1
0.
63
%
)

49
–5
2

RE
A
C
TO

M
E_

N
EU

RO
TR

A
N
SM

IT
TE

R_
RE

LE
A
SE

_C
Y
C
LE

27
/3
4

A
U
T,
SC

Z
13

(1
.5
7E
-8
)

13
(0
.0
00
2)

6
(0
.0
00
4)

G
LS

(1
6.
82
%
),

RA
B3
A
(1
3.
80
%
),

SL
C1
A6

(1
3.
16
%
)

SL
C6
A1
2
(9
.0
5%

),
H
SP

A
8
(8
.4
8)
,

AL
D
H
5A
1
(7
.4
6%

)

G
AD

2
(1
8.
88
%
),

AL
D
H
5A
1
(1
4.
37
%
),

G
A
D
1
(1
4.
28
%
)

57

RE
A
C
TO

M
E_
JN
K_
C
_J
U
N
_K
IN
A
SE
S_
PH

O
SP
H
O
RY
LA

TI
O
N
_A

N
D
_A

C
TI
VA

TI
O
N
_M

ED
IA
TE
D
_B
Y_
A
C
TI
VA

TE
D
_H

U
M
A
N
_T
A
K1

10
/1
6

A
U
T,
SC

Z
0
(0
.5
41
4)

1
(0
.4
36
7)

0
(0
.3
21
8)

M
AP
K9

(2
5.
17
%
),

TA
B1

(1
8.
19
%
),

M
AP
2K
4
(1
7.
56
%
)

IR
AK
1
(2
9.
17
%
),

M
A
PK

9
(2
0.
91
%
),

TA
B1

(1
9.
21
%
)

M
AP
K9

(2
1.
92
%
),

IR
AK
1
(1
8.
64
%
),

TA
B1

(1
7.
60
%
)

BI
O
C
A
RT
A
_N

D
KD

YN
A
M
IN
_P
A
TH

W
A
Y

16
/2
1

A
U
T,
SC

Z
2
(0
.1
13
1)

3
(0
.4
15
0)

1
(0
.1
22
2)

EP
N
1
(1
5.
65
%
),

AM
PH

(1
2.
16
%
),

BI
N
1
(1
1.
53
%
)

EP
N
1
(3
4.
05
%
),

CA
LM

3
(2
5.
69
%
),

PP
P3
CA

(1
7.
24
%
)

EP
N
1
(2
5.
64
%
),

EP
S1
5
(1
4.
80
%
),

PI
CA

LM
(1
3.
19
%
)

G
O
_N

EG
A
TI
V
E_

RE
G
U
LA

TI
O
N
_O

F_
C
A
TE

C
H
O
LA

M
IN
E_

SE
C
RE

TI
O
N

5/
16

A
U
T,
SC

Z
6
(0
.0
03
7)

6
(0
.0
01
9)

3
(0
.1
76
4)

A
BA

T
(3
5.
25
%
),

AD
RA

2A
(2
7.
67
%
),

CH
G
A
(2
5.
70
%
)

AB
AT

(3
5.
40
%
),

CN
R1

(3
5.
02
%
),

AD
RA

2A
(2
8.
29
%
)

CN
R1

(3
3.
40
%
),

AB
AT

(3
3.
06
%
),

AD
RA

2A
(3
0.
65
%
)

63
–6
5

G
O
_P

O
SI
TI
V
E_

RE
G
U
LA

TI
O
N
_O

F_
N
IT
RI
C
_O

X
ID
E_

SY
N
TH

A
SE

_B
IO
SY

N
TH

ET
IC
_P

RO
C
ES

S
2/
14

A
U
T,
SC

Z
0
(0
.1
44
3)

5
(0
.0
21
0)

4
(0
.0
01
4)

M
AP
K9

(6
9.
64
%
),

N
AM

PT
(4
3.
63
%
),

M
A
PK

9
(7
9.
72
%
),

N
AM

PT
(2
5.
30
%
)

M
AP
K9

(8
5.
87
%
),

N
A
M
PT

(1
4.
47
%
)

71
,7
4–
77

G
O
_R

EG
U
LA

TI
O
N
_O

F_
N
IT
RI
C
_O

X
ID
E_

SY
N
TH

A
SE

_B
IO
SY

N
TH

ET
IC
_P

RO
C
ES

S
3/
19

A
U
T,
SC

Z
0
(0
.2
08
5)

6
(0
.0
56
8)

4
(0
.0
04
2)

N
AM

PT
(3
6.
75
%
),

M
AP
K9

(2
8.
79
%
),

G
ST
P1

(1
9.
81
%
)

M
A
PK

9
(4
2.
53
%
),

N
AM

PT
(2
5.
36
%
),

G
ST
P1

(2
0.
25
%
)

M
AP
K9

(4
4.
01
%
),

G
ST
P1

(2
8.
57
%
),

N
A
M
PT

(1
1.
78
%
)

71
,7
4–
77

KE
G
G
_P
RI
O
N
_D

IS
EA

SE
S

17
/3
5

A
U
T,
SC

Z
4
(0
.0
33
9)

8
(0
.0
87
4)

4
(0
.0
25
0)

EL
K1

(1
4.
45
%
),

H
SP
A5

(1
3.
45
%
),

PR
N
P
(1
3.
04
%
)

EG
R1

(1
8.
08
%
),

M
AP
K1

(1
3.
14
%
),

EL
K1

(1
2.
18
%
)

H
SP
A5

(1
9.
20
%
),

EL
K1

(1
5.
93
%
),

EG
R1

(1
5.
65
%
)

G
O
_L
_A

M
IN
O
_A

C
ID
_T

RA
N
SM

EM
B
RA

N
E_

TR
A
N
SP

O
RT

ER
_A

C
TI
V
IT
Y

25
/5
4

A
U
T,
SC

Z
6
(0
.0
35
3)

13
(0
.0
01
6)

3
(0
.0
13
8)

SL
C3
8A
5
(1
8.
11
%
),

SL
C6
A1
5
(1
6.
75
%
),

SE
RI
N
C3

(1
3.
94
%
)

SE
RI
N
C3

(1
8.
89
%
),

SL
C3

8A
5
(1
7.
91
%
),

SL
C3
6A
1
(1
5.
69
%
)

SL
C4
3A
2
(1
7.
06
%
),

SL
C3
8A
5
(1
6.
14
%
),

SL
C3
6A
4
(1
3.
91
%
)

49
–5
2

G
O
_L
_A

M
IN
O
_A

C
ID
_T

RA
N
SP

O
RT

29
/5
8

A
U
T,
SC

Z
8
(0
.0
04
7)

14
(0
.0
00
4)

3
(0
.0
23
1)

SE
RI
N
C3

(1
6.
86
%
),

SL
C7
A8

(1
6.
65
%
),

SL
C3
6A
4
(1
3.
75
%
)

SL
C7
A8

(1
9.
52
%
),

SL
C3

8A
5
(1
8.
49
%
),

SL
C3

2A
1
(1
3.
92
%
)

SE
RI
N
C3

(1
7.
51
%
),

SL
C3
6A
4
(1
4.
88
%
),

SL
C7
A8

(1
4.
30
%
)

49
–5
2

RE
A
C
TO

M
E_

A
M
IN
O
_A

C
ID
_T

RA
N
SP

O
RT

_A
C
RO

SS
_T

H
E_

PL
A
SM

A
_M

EM
B
RA

N
E

14
/3
1

A
U
T,
SC

Z
3
(0
.2
82
9)

6
(0
.0
40
8)

0
(0
.4
19
4)

SL
C3
8A
5
(2
0.
77
%
),

SL
C7

A
5
(1
9.
53
%
),

SL
C3
A2

(1
7.
81
%
)

SL
C3

8A
5
(2
2.
59
%
),

SL
C3
8A
2
(1
4.
81
%
),

SL
C7
A5

(1
4.
00
%
)

SL
C4
3A
2
(1
3.
49
%
),

SL
C6
A1
5
(1
2.
37
%
),

SL
C3
8A
5
(1
0.
94
%
)

49
–5
2

G
O
_G

LU
TA

M
A
TE

_S
EC

RE
TI
O
N

27
/2
8

A
U
T,
SC

Z
9
(1
.3
6E
-5
)

9
(0
.0
03
2)

7
(4
.7
6E
-6
)

SL
C1
7A
7
(1
2.
71
%
),

SL
C1

A
1
(1
2.
19
%
),

PP
FI
A4

(1
1.
87
%
)

RI
M
S1

(1
2.
46
%
),

SL
C3
8A
2
(1
0.
67
%
),

G
IP
C1

(8
.1
7%

)

U
N
C1
3B

(2
0.
75
%
),

CP
LX
1
(1
4.
43
%
),

SL
C1
7A
7
(1
4.
37
%
)

59
–6
2

ST
_P

A
C
1_

RE
C
EP

TO
R_

PA
TH

W
A
Y

5/
7

A
U
T,
SC

Z
0
(0
.3
22
7)

0
(0
.5
42
8)

0
(0
.1
76
4)

AS
AH

1
(4
3.
59
%
),

D
AG

1
(4
0.
54
%
),

IT
PK
A
(3
3.
57
%
)

D
AG

1
(3
6.
17
%
),

IT
PK
B
(3
5.
09
%
),

IT
PK
A
(3
4.
83
%
)

D
AG

1
(3
0.
20
%
),

AS
AH

1
(2
9.
48
%
),

IT
PK
B
(2
8.
75
%
)

10
1–
10
4

G
O
_I
N
H
IB
IT
O
RY

_S
Y
N
A
PS

E
8/
12

A
U
T,
SC

Z
2
(0
.0
17
6)

2
(0
.3
26
5)

1
(0
.2
67
0)

IQ
SE
C3

(3
3.
44
%
),

SL
C3
2A
1
(3
1.
26
%
),

G
AD

2
(2
8.
51
%
)

BS
N
(2
0.
42
%
),

N
PT
N
(1
8.
29
%
),

N
LG
N
3
(7
.7
2%

)

G
AD

2
(2
4.
48
%
),

IQ
SE
C3

(2
2.
83
%
),

SL
C3
2A
1
(1
5.
91
%
)

66
–6
8

G
O
_S

Y
N
A
PT

IC
_V

ES
IC
LE
_R

EC
Y
C
LI
N
G

20
/2
3

A
U
T,
SC

Z
2
(0
.1
85
6)

3
(0
.5
69
9)

1
(0
.1
75
5)

53
–5
6

Guan et al. Translational Psychiatry           (2019) 9:152 Page 6 of 15



S-

Ta
b
le

1
(c
on

tin
ue

d)

G
en

e
se
t
na

m
e

N
um

b
er

of
G
en

es
Sh

ar
ed

b
y

N
um

b
er

of
as
so
ci
at
ed

g
en

es
(P
-v
al
ue

)
G
en

es
w
it
h
to
p
th
re
e
Δ
SS
M
D
va
lu
es

(1
00

%
×
Δ
SS
M
D
/

SS
M
D
)

Re
fe
re
nc

e

A
U
T

SC
Z

B
PD

A
U
T

SC
Z

B
PD

SH
3G

L2
(1
8.
31
%
),

SY
T5

(1
2.
87
%
),

SY
N
J1

(1
1.
79
%
)

PA
CS
IN
1
(1
5.
57
%
),

SY
T2

(1
2.
31
%
),

CA
N
X
(1
0.
92
%
)

RA
B5
A
(1
4.
77
%
),

G
RN

(1
4.
25
%
),

CA
N
X
(1
3.
74
%
)

G
O
_S

Y
N
A
PT

IC
_V

ES
IC
LE
_E

N
D
O
C
YT

O
SI
S

17
/1
7

A
U
T,
SC

Z
2
(0
.1
30
1)

2
(0
.4
55
8)

1
(0
.1
35
1)

SH
3G

L2
(1
4.
40
%
),

SY
T1

(1
1.
25
%
),

SY
T2

(1
0.
06
%
)

SY
T2

(1
9.
04
%
),

CA
N
X
(1
7.
58
%
),

SY
T1
2
(1
3.
76
%
)

G
RN

(2
1.
94
%
),

CA
N
X
(1
4.
44
%
),

SC
RI
B
(1
3.
51
%
)

53
–5
6

G
O
_R
ES
PO

N
SE
_T
O
_C

O
LD

22
/4
3

A
U
T,
SC

Z
5
(0
.2
25
4)

7
(0
.6
37
1)

5
(0
.0
49
3)

VG
F
(1
3.
57
%
),

PP
AR

G
C1
A

(1
1.
54
%
),

H
SP
90
AA

1
(1
0.
43
%
)

VG
F
(1
1.
16
%
),

CI
RB
P
(8
.3
0%

),
PC
SK
1N

(7
.2
1%

)

EI
F2
AK
4
(1
4.
25
%
),

AT
P2
B1

(9
.2
7%

),
FO

XO
1
(9
.2
6%

)

G
O
_C

A
M
P_

B
IO
SY

N
TH

ET
IC
_P

RO
C
ES

S
7/
17

A
U
T,
BP
D

3
(0
.0
11
7)

4
(0
.2
69
0)

4
(6
.5
9E
-5
)

A
D
CY

5
(2
6.
57
%
),

AD
CY

9
(2
0.
36
%
),

A
D
CY

3
(1
9.
20
%
)

AD
CY

5
(3
0.
68
%
),

A
D
CY

8
(2
6.
01
%
),

AD
CY

9
(2
0.
13
%
)

AD
CY

5
(4
3.
90
%
),

A
D
CY

8
(1
8.
44
%
),

A
D
CY

2
(1
6.
09
%
)

97
–9
9

G
O
_C

EL
L_
A
C
TI
V
A
TI
O
N
_I
N
V
O
LV

ED
_I
N
_I
M
M
U
N
E_

RE
SP

O
N
SE

41
/1
39

A
U
T,
BP
D

10
(0
.1
90
3)

22
(0
.0
11
1)

4
(0
.2
04
0)

PL
CL
2
(8
.3
5%

),
RN

F1
68

(7
.7
4%

),
S1
00
A1
3
(7
.5
0%

)

LG
AL
S1

(2
1.
57
%
),

PL
CL
2
(1
5.
12
%
),

G
BF
1
(1
4.
01
%
)

TI
CA

M
1
(1
0.
42
%
),

H
SP
D
1
(9
.0
8%

),
PR
KC
E
(6
.1
4%

)

78
–8
1

G
O
_L
Y
M
PH

O
C
Y
TE

_A
C
TI
V
A
TI
O
N
_I
N
V
O
LV

ED
_I
N
_I
M
M
U
N
E_

RE
SP

O
N
SE

29
/9
8

A
U
T,
BP
D

6
(0
.1
68
7)

17
(0
.0
17
9)

4
(0
.0
96
5)

H
SP
D
1
(1
6.
48
%
),

PT
K2
B
(1
6.
08
%
),

N
O
TC
H
2
(1
6.
00
%
)

H
SP

D
1
(1
7.
79
%
),

EI
F2
AK
4
(1
4.
57
%
),

PT
K2
B
(9
.9
8%

)

EI
F2
AK
4
(2
1.
75
%
),

PS
EN

1
(1
4.
88
%
),

H
SP
D
1
(1
4.
61
%
)

78
–8
1

G
O
_L
YM

PH
O
C
YT
E_
C
H
EM

O
TA

XI
S

3/
38

A
U
T,
BP
D

2
(0
.2
08
5)

2
(0
.3
74
7)

1
(0
.1
09
9)

G
AS
6
(5
0.
33
%
),

CX
3C
L1

(4
1.
10
%
),

PI
K3
CD

(3
6.
18
%
)

G
AS
6
(4
4.
40
%
),

CX
3C
L1

(3
8.
61
%
),

PI
K3
CD

(2
1.
99
%
)

G
AS
6
(5
7.
14
%
),

CX
3C
L1

(4
6.
90
%
),

PI
K3
CD

(3
9.
55
%
)

G
O
_P
O
SI
TI
VE
_R
EG

U
LA

TI
O
N
_O

F_
W
O
U
N
D
_H

EA
LI
N
G

16
/4
8

SC
Z,

BP
D

5
(0
.1
13
1)

9
(0
.4
15
0)

4
(0
.1
22
2)

PR
KC
E
(1
7.
32
%
),

U
SF
1
(1
6.
93
%
),

AR
FG

EF
1
(1
1.
96
%
)

PR
KC
E
(3
8.
85
%
),

AR
FG

EF
1
(2
2.
08
%
),

EP
B4
9
(2
1.
36
%
)

U
SF
1
(1
5.
18
%
),

PR
KC
E
(1
3.
66
%
),

M
YL
K
(9
.6
5%

)

G
O
_D

E_
N
O
V
O
_P

O
ST

TR
A
N
SL
A
TI
O
N
A
L_
PR

O
TE

IN
_F
O
LD

IN
G

12
/1
4

A
U
T,

SC
Z,

BP
D

0
(0
.6
07
6)

6
(0
.0
00
5)

0
(0
.3
72
5)

H
SP
H
1
(2
8.
95
%
),

D
N
AJ
B1

(1
6.
38
%
),

H
SP
E1

(1
6.
11
%
)

D
N
A
JB
1
(2
1.
82
%
),

H
SP

E1
(1
7.
90
%
),

H
SP

H
1
(1
6.
17
%
)

H
SP
H
1
(2
1.
43
),

H
SP
E1

(1
8.
28
%
),

D
N
AJ
B1

(1
4.
56
%
)

88
,9
0,
91

G
O
_D

E_
N
O
V
O
_P

RO
TE

IN
_F
O
LD

IN
G

17
/1
9

A
U
T,

SC
Z,

BP
D

0
(0
.7
34
4)

7
(0
.0
01
4)

0
(0
.4
83
4)

CH
CH

D
4
(1
1.
84
%
),

D
N
AJ
B1

(1
0.
57
%
),

H
SP
H
1
(1
0.
30
%
)

D
N
A
JB
1
(2
2.
56
%
),

H
SP

D
1
(1
4.
58
%
),

CH
CH

D
4
(1
1.
04
%
)

D
N
AJ
B1

(2
0.
22
%
),

H
SP
D
1
(1
0.
96
%
),

CH
CH

D
4
(1
0.
21
%
)

88
,9
0,
91

G
O
_P
RO

TE
IN
_T
A
RG

ET
IN
G
_T
O
_P
LA

SM
A
_M

EM
BR
A
N
E

19
/2
3

A
U
T,

SC
Z,

BP
D

4
(0
.0
11
2)

4
(0
.5
33
5)

1
(0
.1
61
8)

IN
PP
5K

(1
7.
73
%
),

G
AS
6
(1
5.
78
%
),
BS
G

(1
5.
72
%
),

IN
PP
5K

(1
6.
30
%
),

M
YA

D
M

(1
4.
08
%
),

EH
D
3
(1
2.
05
%
)

G
AS
6
(1
6.
52
%
),

IN
PP
5K

(1
4.
40
%
),

PA
LM

(1
3.
35
%
)

PI
D
_L
PA

4_
PA

TH
W
A
Y

12
/1
5

A
U
T,

SC
Z,

BP
D

2
(0
.0
55
4)

2
(0
.2
46
5)

4
(4
.9
2E
-5
)

AD
CY

8
(1
4.
99
%
),

PR
KC
E
(1
2.
68
%
),

RP
S6
KA
5
(1
1.
95
%
)

PR
KC
E
(2
4.
85
%
),

RP
S6
KA

5
(2
2.
22
%
),

A
D
CY

8
(2
2.
18
%
)

AD
CY

5
(1
8.
87
%
),

A
D
CY

8
(1
8.
13
%
),

PR
KC
E
(1
6.
52
%
)

92
,9
3

Th
e
nu

m
be

rs
of

in
cl
ud

ed
ge

ne
s
in

th
e
an

al
yz
ed

ge
ne

ex
pr
es
si
on

da
ta

an
d
th
e
nu

m
be

r
of

to
ta
lg

en
es

in
th
e
ge

ne
se
ta

re
lis
te
d.
Th

e
m
en

tio
ne

d
ge

ne
se
ts
ar
e
bo

ld
.I
n
ea
ch

ge
ne

se
t,
th
e
nu

m
be

ro
fg

en
es

w
hi
ch

ar
e
ov

er
la
pp

ed
w
ith

A
U
T,
SC

Z
an

d
BP

D
-a
ss
oc
ia
te
d
ge

ne
s
is
sh
ow

n
w
ith

hy
pe

rg
eo

m
et
ric

te
st
P-
va
lu
e.
Fo

r
ea
ch

di
se
as
e,
th
e
ge

ne
s
w
ith

to
p
th
re
e
Δ
SS
M
D
va
lu
es

ar
e
lis
te
d
fo
r
ea
ch

ge
ne

se
t,
an

d
th
e
on

es
ov

er
la
pp

in
g
w
ith

di
se
as
e-
as
so
ci
at
ed

ge
ne

s
ar
e
bo

ld

Guan et al. Translational Psychiatry           (2019) 9:152 Page 7 of 15



ZDB37. There are 15 more genes associated with SCZ
including ARL6IP5, OCA2, SLC16A12, SLC1A3, SLC1A4,
SLC32A1, SLC38A5, SLC38A7, SLC3A1, SLC43A2,
SLC6A11, SLC6A17, SLC7A1, SLC7A4, and SLC7A6.
Thirteen of these gene belong to SLC family, of which
SLC1A3, SLC32A1 and SLC38A7 are strong candidates for
SCZ. Most disease-associated genes in the gene sets
belong to SLC family, implying the important role of SLC
in AUT and SCZ.

Shared gene sets involved in synapse and neurotransmitter
release
Identified gene sets shared by AUT and SCZ also include

REACTOME_NEUROTRANSMITTER_RELEASE_CYCLE,
GO_SYNAPTIC_VESICLE_RECYCLING, GO_SYNAPTIC_
VESICLE_ ENDOCYTOSIS, GO_GLUTAMATE_SECRE-
TION, GO_NEGATIVE_REGULATION_OF_ CATECHO-
LAMINE_SECRETION, and GO_INHIBITORY_SYNAPSE.
The function of brains is dependent on neurotransmission
and its alteration is linked to neuropsychiatric disorders.
Neurotransmitter release requires the rapid recycling of
synaptic vesicles by endocytosis. Evidence has shown
synaptic vesicle recycling and endocytosis are related to
AUT and SCZ53–56. In a study57, the identified pathways
related to SCZ involved neuronal systems and one hub
centered around the neurotransmitter release cycle includ-
ing the release cycles for dopamine, serotonin, nor-
epinephrine and glutamate neurotransmitters. Glutamate is
the main excitatory neurotransmitter of brains and may be a
key neurotransmitter involved in neuropsychiatric dis-
orders58. Glutamatergic dysfunction is a possible mechanism
of AUT59,60 and SCZ61,62. Catecholamines are monoamine
neurotransmitters, including epinephrine, norepinephrine
and dopamine. Studies in human neural stem cell models
indicated that the dysregulation in catecholamine secretion
may contribute to the pathogenesis of AUT63,64. It has also
been demonstrated that SCZ cases show increased secreted
catecholamine and SCZ neuronal cultures show a higher
percentage of tyrosine hydroxylase-positive neurons, the
first enzymatic step for catecholamine biosynthesis65. There
also have been studies demonstrating the presence of exci-
tatory and inhibitory imbalance in AUT and SCZ66,67, and
SCZ-associated cortical inhibitory neurons68, thus GO_IN-
HIBITORY_SYNAPSE is also likely a related gene set.
In these six shared gene sets, 26 genes are associated

with AUT, of which ALDH5A1, NF1, NTRK2, SLC1A2,
SLC6A1 and STXBP1 belong to category S (syndromic),
NLGN3, RIMS1 and SLC6A1 belong to category 2 (strong
candidate), CNR1, OPHN1 and STXBP1 belong to cate-
gory 3 (suggestive evidence) in SFARI. There are 26 genes
associated with SCZ, of which DRD2, CNR1 and SLC1A2
are the top three strongest candidates, and genes
GABBR1, GAD1, IGSF9B, MAOA, SLC1A3, SLC32A1 and
SYN2 have been also linked to SCZ by two kinds of

studies in SZDB. Thirteen genes are associated with both
AUT and SCZ, including CNR1, DRD2, GAD1, MAOA,
NTRK2, OPHN1, PPFIA1, RIMS1, SLC1A1, SLC1A2,
SNAP25, STX1A and SYN2.

Shared gene sets involved in oxidative stress and nitric oxide
synthase biosynthesis
Two gene sets involved in oxidative stress induced

apoptosis were identified to be associated with AUT and
SCZ, including GO_REGULATION_OF_OXIDATIVE_STR
ESS_INDUCED_INTRINSIC_APOPTOTIC_SIGNALING_
PATHWAY and GO_NEGATIVE_REGULATION_OF_OX-
IDATIVE_STRESS_INDUCED_INTRINSIC_APOPTOTIC_
SIGNALING_PATHWAY. The intrinsic apoptotic pathway
can be activated following oxidative and peroxidative
damage driven by excessive levels of reactive oxygen species
(ROS) and reactive nitrogen species (RNS)69. When the
levels of ROS exceed the antioxidant capacities of a cell,
oxidative stress occurs which often leads to the death of a
cell70. There have been studies showing that oxidative stress
is higher in AUT70 and SCZ71. It also has been shown that
oxidative stress can affect the apoptosis of neurons as a
mediator in neuropsychiatric disorders, such as SCZ72.
Gene sets, associated with nitric oxide synthase bio-

synthesis, GO_POSITIVE_REGULATION_OF_ NITRI-
C_OXIDE_SYNTHASE_BIOSYNTHETIC_PROCESS and
GO_REGULATION_OF_NITRIC_ OXIDE_SYNTHASE_-
BIOSYNTHETIC_PROCESS, are also related to AUT and
SCZ. There have been some clues showing the link
between nitric oxide synthase biosynthesis and neu-
ropsychiatric disorders. The unbalance between anti-
oxidant capacity and oxidative stress leads to an excess of
RNS, such as nitric oxide (NO)73. NO, produced by NO
synthase (NOS), modulates short-term and long-term
synaptic plasticity and is essential in the regulation of
many physiological processes such as neurotransmitter
release, neuronal excitability, long-term potentiation and
neurovascular coupling74. NO affects the function of ROS
in the local cellular environment, in which biological
antioxidants are present. NO shows both neuroprotective
and neurotoxic effects. As the disease progresses, NO can
depend on the adaptive functions of the antioxidant
capacity and oxidative stress-related ROS/RNS73. Given
the roles of NO, its alteration may lead to the neurode-
velopmental changes associated with neuropsychiatric
diseases. Indeed, several studies have indicated that NO or
NOS is involved in the pathogenesis of many neu-
ropsychiatric disorders including AUT74–77 and SCZ71.
In these four gene sets, there are two genes associated

with AUT, including GPX1 (glutathione peroxidase 1) and
SOD1 (superoxide dismutase 1), both of which belong to
category 4 (minimal evidence). There are 12 genes asso-
ciated with SCZ, of which BAG5 and CPEB1 have been
linked to SCZ by two kinds of studies in SZDB. Checking
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the function of these genes, we found some of them are
indeed involved in oxidative stress. The protein encoded
by gene GPX1 catalyzes the reduction of organic hydro-
peroxides and hydrogen peroxide by glutathione, pro-
tecting cells against oxidative damage. The protein
encoded by gene SOD1 is an isozyme responsible for
destroying free superoxide radicals in the body, convert-
ing naturally generating but harmful superoxide radicals
to molecular oxygen and hydrogen peroxide. The protein
encoded by gene BAG5 belongs to BAG1-related protein
family, and BAG1 is an anti-apoptotic protein interacting
with a variety of proteins involved in cell apoptosis and
growth.

Shared gene sets involved in immune response
Gene sets GO_CELL_ACTIVATION_INVOLVED_I-

N_IMMUNE_RESPONSE and GO_LYMPHOCYTE_ACT
IVATION_INVOLVED_IN_IMMUNE_RESPONSE were
identified associated with AUT and BPD. Abnormal
immunological phenomena have been noted in AUT,
involving cytokines, immunoglobulins, inflammation and
cellular activation. The increased pro-inflammatory
cytokines in brains and the activation of resident
immune cells known as microglia in AUT individuals,
may interfering with the development and function of
normal brains, potentially lead to AUT78. In a study79, the
finding suggested immune activation, including activation
of T-lymphocyte subsets, may be essential in modulating
and potentially improving behaviors in some AUT
patients. It was also found that AUT individuals often
have alterations in immune cells, immunoglobulins and
autoantibodies. For BPD, the immunological dysfunction
was also described, including distinct immune cell profile,
release of/altered cytokines by stimulated mononuclear
cells, elevated levels of circulating immune markers,
inflammatory changes in the central nervous system80 and
the expansion of activated T cells81.
These two shared gene sets contain 10 SFARI AUT

candidate genes, and four genes associated with BPD. The
10 genes are ADA, CX3CR1, FOXP1, IFNG, IL6, KIT, LAT,
PIK3CG, RORA and TSC1. TSC1 belong to category S,
and FOXP1 is also a strong candidate for AUT. There are
two genes associated with both AUT and BPD, which are
IFNG and RORA. Both belong to category 5 (hypothesized
but untested) in SFARI; nevertheless, the link between
these genes and AUT, especially for RORA, is well sup-
ported82–84. Among the four genes associated with BPD,
RORA and IFNG also appear as the strongest candidates
for BPD85–87.

Shared gene sets involved in protein folding
Two gene sets, GO_DE_NOVO_POSTTRANSLATIONAL

_PROTEIN_FOLDING and GO_DE_NOVO_PROTEIN_
FOLDING, were identified to be associated with AUT, SCZ

and BPD. There have been some clues showing the link
between protein folding and neuropsychiatric disorders.
Neuroligins (NLs), postsynaptic cell-adhesion molecules, are
essential for the normal function of synapse. Mutations in
neuroligin-4 (NL4) (gene symbol: NLGN4) have been asso-
ciated with AUT, for instance R87W substitution (a single
amino-acid substitution in NL4)88. R87W substitution, a
loss-of-function mutation, impairs the normal folding of
NL4, completely traps NL4 in the endoplasmic reticulum
and blocks NL4 transport to the cell surface. As a result, the
synapse formation activity of NL4 will be inactivated and the
functional effect of NL4 on synapse strength will be
blocked88.
In the cellular environment, molecular chaperones are

required to ensure the correct folding of many other
proteins89. Heat shock protein (HSP) is a kind of mole-
cular chaperone targeting misfolded proteins that accu-
mulate in response to cellular stress, facilitating protein
refolding and targeting damaged proteins for degradation
in proteasomes90. HSPs play an essential role in the
development of neuropsychiatric disorder, such as HSP70
(heat shock protein-70). HSP70 participates in many cel-
lular processes including protein folding, transport across
membranes, prevention of protein aggregation and
degradation. Genetic variations of HSP70 have been
associated with the presence of SCZ91. Looking at the
genes contained in these two gene sets, we found seven
genes are associated with SCZ, including CHCHD4,
DNAJB1, HSPA8, HSPD1, HSPE1, HSPH1, TOR1A. Over
half of these genes belong to HSP family, implying the
important role of HSP in SCZ.

Shared gene sets involved in miscellaneous functions
Gene set PID_LPA4_PATHWAY was identified asso-

ciated with all three diseases. Lysophospholipids (LPs) are
an important family of lipid signaling molecules, and
lysophosphatidic acid (LPA) is a major member of this
family within the nervous system. LPA effects are now
known to act through cognate, cell-surface G protein-
coupled receptors termed LPA receptors (LPARs). There
are currently six LPARs: protein names LPA1-6, gene
names LPAR1-6. Large evidence has been shown that LPA1

signaling is essential in normal cognition. For instance,
LPAR1 null mice display a variety of negative behavioral
signs and cognitive deficits including the traits commonly
seen in AUT and SCZ patients. LPA is also known to
reduce glutamate uptake involving an LPA1-independent
mechanism while glutamatergic signaling alterations are
implicated in AUT, SCZ and other related neu-
ropsychiatric disorders92. LPA1 has been particularly
associated with neuropsychiatric disorders, while other
LPA receptor subtypes may also have disease relevance93,
which may provide new insights into complex neu-
ropsychiatric disorders. In the gene set, genes ADCY3 and
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ADCY5 are associated with AUT; ADCY8 and RPS6KA5
are associated with SCZ; ADCY2, ADCY8, ADCY9, and
CREB1 are associated with BPD.
Gene set REACTOME_GLYCOLYSIS was identified

associated with AUT and SCZ. The majority of glucose
metabolites are significantly disturbed in SCZ patients,
suggesting the disturbance of glucose metabolism may be
implicated in SCZ94,95. Additionally, the findings of a
recent study in 2018 have also suggested an elevation of
glycolysis through the phenomenon of aerobic glycolysis
in AUT, while the dysregulation of aerobic glycolysis had
been proposed as a candidate cause of AUT96. In the gene
set, genes PPP2R1B and PPP2R5D belong to category 4
(minimal evidence) in SFARI, and PPP2R5D also belongs
to category S. Genes ALDOA, ALDOB, PFKFB1, PGK1
and PPP2CA are linked to SCZ.
Gene set GO_CAMP_BIOSYNTHETIC_PROCESS was

associated with AUT and BPD. cAMP (cyclic adenosine
monophosphate, or cyclic AMP) is a second messenger,
which is important in many biological processes. There
have been studies showing the link between cAMP and
AUT, such as the study showing reduced cAMP induction
may be a cause of fragile X and AUT97, and the study
pointing out the role of cAMP pathology in AUT98. Fur-
thermore, a genetic association study of cAMP signaling
genes with BPD found several statistically significant
single-SNP associations and SNP-SNP associations with
BPD, suggesting that variants in several cAMP signaling
pathway genes increase the risk of BPD99. In the gene set,
genes ADCY3 belongs to category 3 (suggestive evidence),
and ADCY5 and ADORA2A belong to category 4 (mini-
mal evidence) in SFARI. Genes ADCY2, ADCY8, ADCY9,
and ADM are associated with BPD.
Gene set ST_PAC1_RECEPTOR_PATHWAY is asso-

ciated with AUT and SCZ. PAC1 is a receptor of PACAP
(pituitary adenylate cyclase-activating polypeptide, a neu-
ropeptide with neurotransmission modulating activity).
PACAP and its receptor PAC1 are important for the
development and function of brains, psychiatric conditions
and stress response100. Studies raised the potential relation
between PACAP signaling dysfunctions and neuropsychia-
tric disorders characterized by social reciprocity impair-
ments such as AUT101. PAC1 gene contains many putative
splicing factor recognition sites which might be activated at
different stages of neuronal activation. PAC1 signaling
controls many cellular and physiological responses, such as
proliferation, differentiation, cell cycle regulation, neuro-
transmitter, and hormone release and adaptation to
stressful challenges102. The regulation of PAC1 splicing and
its outcomes might be relevant to the etiology of some
neurological and psychiatric disorders102. A genetic study103

showed that the variants of the genes encoding PACAP and
PAC1 receptor are associated with SCZ. The transcriptome
sequencing of the cortex of SCZ patients revealed

significant differences in the alternative splicing of PAC1
receptor104. The evidences above show the link of PAC1
receptor pathway to neuropsychiatric disorders.

Results obtained using consensus co-expression analysis
In addition to aberrant gene expression analysis, we

performed gene co-expression analysis using WGCNA44.
Specifically, after obtaining final data matrix containing
the expression level of 8,485 protein-coding genes in
186 samples (47 AUT, 31 SCZ, 25 BPD and 83 controls),
we firstly split the data into three sub-datasets, denoted as
datasets 1, 2, and 3, each of which contains respective
cases and controls (Fig. 1). Dataset 1 contains the gene
expression level of 47 AUT and 57 controls from data I;
dataset 2 contains 31 SCZ and 26 controls from data II;
dataset 3 contains 25 BPD and 26 controls from data II.
Note that, SCZ and BPD cases are originally from data II,
so the respective controls are also from data II. Next, we
applied WGCNA to find consensus modules between
datasets 1, 2 and 3, and 22 modules were identified
(Materials and Methods, Fig. 3a). As the 26 controls
included in datasets 2 and 3 are shared, we used a strategy
similar to that in the study of Ellis et al.32, where these
controls were split randomly into two halves. Specifically,
we divided the 26 controls randomly into two halves, and
one half was assigned to a new dataset 2 along with all SCZ
cases, and another half was assigned to a new dataset 3
along with all BPD cases. Then we reconstructed networks
to find consensus modules with the same parameters
between dataset 1, new datasets 2 and 3. The procedure
above was repeated for 100 times. To demonstrate the
robustness of the consensus modules built in full data with
datasets 2 and 3 containing 26 controls respectively, we
used a similar method in a previous study46 showing the
clustering tree (dendrogram) of genes together with con-
sensus modules built from the full data and the 100 ones
built from the resampled data with new datasets 2 and 3
containing 13 controls respectively (Supplementary Figure
1). Most of the 22 identified consensus modules built in
full data are robust and can be identified in most or all
resampled data sets, so we used these 22 consensus
modules as the final module assignments.
We associated each consensus module with traits (age,

gender and disease status) (Materials and Methods) and
found 17 modules are shared by more than one diseases
(FDR-corrected P-value < 0.1) (Supplementary Table 2).
We used the database for annotation, visualization and
integrated discovery (DAVID)47,48 to perform gene
ontology analysis and seven modules left were enriched in
GO categories. Modules M1, M2, M4 and M11 are
associated with all disorders; M3 and M22 are shared by
AUT and SCZ; M8 is shared by SCZ and BPD (Fig. 3b).
The top three significant GO terms enriched in these
modules include neuron part, synapse, neuron projection,
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adherens junction, biological adhesion, anchoring junc-
tion, poly(A) RNA binding, RNA binding, nuclear part,
nervous system development, mitochondrion, macro-
molecular complex, ncRNA metabolic process, and
negative regulation of biosynthetic and nitrogen com-
pound metabolic processes (Fig. 3c).
Comparing aberrant gene expression analysis with

WGCNA, we found functions of gene sets identified by
these two methods are similar and largely overlapped
(Supplementary Table 3). There are 301 unique genes
included in the 30 shared aberrantly expressed gene sets
and 736 genes included in the seven shared WGCNA
gene modules. Among them, 52 genes were overlapped
and their functions include many of those related to
synapse, neuron, cell projection, localization, cell-cell
signaling and so on (Supplementary Table 3). Thus,
aberrant gene expression analysis and WGCNA produce
consistent results and are complementary to each other to
guarantee the identification of comprehensive gene sets
associated with neuropsychiatric disorders.

Discussion
Between AUT, SCZ and BPD, similar clinic symptoms

and shared genetic etiology have been reported3–7. With the
availability of human brain transcriptome data from post-
mortem donors affected with different neuropsychiatric
disorders, gene expression anlaysis has been widely used to
identify shared genetic component underlying different
disorders; nevertheless, depending on the analytic methods
adopted, the results of analysis may vary, each capturing
different features of underlying mechanisms of dysregula-
tion. For example, Ellis et al. analyzed the transcriptomic
RNA-sequencing data of cortex samples of AUT, SCZ, BPD
and controls from two previous study24,31 using single gene-
based differential expression analysis. They found the
transcriptomes of AUT and SCZ are correlated, and altered
neurotransmission and synapse regulation are shared
between these two disorders32. Their analysis method
focused on obtaining single differentially expressed genes
for each disease and then finding the shared ones across
disorders. Different from that, here we used multivariate

Fig. 3 a The clustering tree (dendrogram) of genes and the identified consensus modules. The mentioned modules (M1, M2, M3, M4, M8, M11 and
M22) in the main text are marked. For these modules, b shows the correlation between module eigengenes and disease status. FDR-corrected P <
0.001(***); <0.01 (**); <0.05 (*); <0.1 (#). c The top three significant GO terms enriched in responding modules are shown with Bonferroni adjusted P-
values
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analysis methods to re-analyze the gene expression data for
identifying shared dysregulated gene sets across AUT, SCZ
and BPD.
The most common gene expression analysis method for

identifying shared genes across disorders is based on
differential gene expression analysis. Differential gene
expression analysis is used to detect the genes with sig-
nificant difference in gene expression means between
diseased and control samples and then the shared differ-
entially expressed genes across diseases are identified.
Except from the difference of gene expression means
between groups, the difference of gene expression varia-
bility also need to be captured. In addition, the major
assumption underlying differential expression analysis is:
diseased cases have the same or similar gene expression
change phenotypes, which makes them as a separate
group have significantly higher or lower gene expression
than the controls. This assumption contradicts the fact
that neuropsychiatric disorders have substantial genetic
and phenotypic heterogeneity. Therefore, we need to
capture the gene expression variability in diseased sam-
ples affected by complex neuropsychiatric disorders. For
this, we applied aberrant gene expression analysis
method39, quantitatively measuring the departure of
multigene expression dispersion between groups, to
identify shared dysregulated gene sets across AUT, SCZ
and BPD. The identified shared gene sets include the ones
associated with amino acid transport activity, neuro-
transmitter release, synaptic vesicle, excitatory and inhi-
bitory synapse, oxidative stress, nitric oxide synthase
biosynthesis, immune response, protein folding, lysopho-
sphatidic acid-mediated signaling and glycolysis. Our
method is not dependent on the prior knowledge about
gene function or mutations in genes. Thus, it can be used
for discovering and identifying genes or gene sets pre-
viously unknown to be involved in the progression of
AUT, SCZ and BPD. Aberrant gene expression analysis is
effective in discovering and revealing shared dysregulated
gene sets across disorders, contributing to the study of
gene expression overlap between AUT, SCZ and BPD.
In addition to aberrant gene expression analysis, we also

applied weighted gene co-expression network analysis to
identify shared gene modules across disorders. The
functions of several identified modules have been asso-
ciated with neuropsychiatric disorders. For instance, the
modules shared by AUT, SCZ and BPD are enriched for
GO terms related to neuron, synapse, adherens junction,
RNA binding and nervous system development. For
adherens junction, there has been literature documenting
the links with AUT, SCZ and BPD105–108. Adherens
junctions are cadherin-based intercellular adhesions109

and the cadherin genes implicated in psychiatric disorders
were overrepresented in cell-cell adhesion and adherens
junction organization108. There also have been many

studies documenting the contribution of dozens of RNA
binding proteins to neurodegenerative and neurodeve-
lopmental disorders such as AUT and SCZ110. For
example, the loss of function of FMRP, a polyribosome-
associated neuronal RNA-binding protein, causes Fragile
X syndrome and autistic features. FMRP interacts with the
coding region of transcripts which encode pre- and
postsynaptic proteins and transcripts implicated in AUT.
FMRP target genes significantly overlap with AUT can-
didate genes in SFARI111. Recently, a paper has studied
the link between poly(A) binding protein nuclear I and
synaptic plasticity112, implying the relation between poly
(A) RNA binding and neuropsychiatric disorders. Another
WGCNA gene module, shared by AUT and SCZ, is
enriched for GO terms related to mitochondrion. Large
literature reported the mitochondrial dysfunction in AUT
and SCZ, including evidences of decreased activity of
mitochondrial respiratory chain complexes, the presence
of biomarkers of oxidative stress and mitochondrial dys-
function and an indication of mtDNA mutations113–116.
Comparing aberrant gene expression analysis and
WGCNA, we found the functions of gene sets identified
by these two kinds of methods are similar and overlapped.
These two kinds of analysis methods complement to each
other and promote to identify more comprehensive gene
sets associated with neuropsychiatric disorders.
To identify genetic overlap between AUT, SCZ, and BPD,

we applied multigene aberrant expression analysis, along
with consensus co-expression network analysis, to identify
shared dysregulated gene sets in cortical brains of indivi-
duals affected with different diseases. Our findings provide
new insights into the common molecular mechanisms
underlying the pathogenesis and progression of AUT, SCZ
and BPD, contributing to the study of etiological overlap
between these neuropsychiatric disorders. We show that
the aberrant gene expression analysis reveals the variability
in gene expression among diseased samples. This method,
complementing with the network-based method, is effective
in detecting dysregulated gene sets shared across neu-
ropsychiatric disorders, and is applicable in genetic overlap
analysis for other complex diseases.
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