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Objective: We aimed to investigate the potential role of ERBB signaling pathway–related
genes in kidney renal clear cell carcinoma (KIRC) and establish a new predictive risk model
using various bioinformatics methods.

Methods:We downloaded the KIRC dataset and clinicopathological information from The
Cancer Genome Atlas database. Univariate Cox analysis was used to identify essential
genes significantly associated with KIRC progression. Next, we used the STRING website
to construct a protein–protein interaction network of ERBB signaling pathway–related
molecules. We then used the least the absolute shrinkage and selection operator (LASSO)
regression analysis to build a predictive risk model for KIRC patients. Next, we used
multiple bioinformatics methods to analyze the copy number variation, single-nucleotide
variation, and overall survival of these risk model genes in pan-cancer. At last, we used the
Genomics of Drug Sensitivity in Cancer to investigate the correlation between the mRNA
expression of genes associated with this risk model gene and drug sensitivity.

Results: Through the LASSO regression analysis, we constructed a novel KIRC
prognosis–related risk model using 12 genes: SHC1, GAB1, SOS2, SRC, AKT3,
EREG, EIF4EBP1, ERBB3, MAPK3, transforming growth factor-alpha, CDKN1A, and
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PIK3CD. Based on this risk model, the overall survival rate of KIRC patients in the low-risk
group was significantly higher than that in the high-risk group (p = 1.221 × 10−15).
Furthermore, this risk model was associated with cancer metastasis, tumor size, node,
stage, grade, sex, and fustat in KIRC patients. The receiver operating characteristic curve
results showed that the model had better prediction accuracy. Multivariate Cox regression
analysis showed that the model’s risk score was an independent risk factor for KIRC. The
Human Protein Atlas database was used to validate the protein expression of risk
model–associated molecules in tumors and adjacent normal tissues. The validation
results were consistent with our previous findings.

Conclusions: We successfully established a prognostic-related risk model for KIRC,
which will provide clinicians with a helpful reference for future disease diagnosis and
treatment.

Keywords: TCGA, KIRC, ERBB signaling pathway, pan-cancer, GDSC

INTRODUCTION

Renal cell carcinoma (RCC) is the most common urinary system
tumor, and its incidence rate is increasing annually (Qi et al.,
2021). RCC is the most common primary renal malignancy,
accounting for 90–95% of all renal cancer cases (Xu et al., 2020b).
Although the detailed mechanism and etiology of RCC have yet
to be fully elucidated, its incidence rate may be related to
smoking, hypercholesterolemia, occupational contact
carcinogens, and genetic factors (Che et al., 2021). The main
treatment methods for RCC include surgery, chemotherapy, and
immunotherapy. However, approximately one-third of RCC
patients still have distant metastasis (Gupta et al., 2008).
Metastatic RCC exhibits obvious drug resistance to
immunotherapy and radiotherapy due to the high dynamics,
adaptability, and heterogeneity of the tumor microenvironment
(Lai et al., 2021). Therefore, identifying new treatment options for
RCC is highly necessary. There are multiple subtypes of RCC, and
approximately 70% of patients are diagnosed with clear cell renal
cell carcinoma (ccRCC), also known as kidney renal clear cell
carcinoma (KIRC) (Jonasch et al., 2021). With the application of
targeted drugs for KIRC, an increasing number of patients with
advanced RCC have achieved better therapeutic effects. However,
these patients still have several issues with the treatment progress,
such as drug resistance (Makhov et al., 2018). This is because the
occurrence of tumors is a complex process that is not caused by
the activation of a single proto-oncogene or the imbalance of
tumor suppressor genes. This may be caused by the activation or
imbalance of multiple biological pathways (Porporato et al.,
2018). Therefore, this principle is used to research the role of
the entire pathway in KIRC, understand the pathogenesis of
KIRC, and explore new treatments.

ERBB tyrosine kinase family members share some common gene
changes in cancer. Through gene changes, abnormally activated
tyrosine kinases can promote tumor occurrence, growth, and
development. More importantly, abnormal signals of ERBB
family members play an essential role in tumorigenesis and
evasion of antitumor immunity in many tumors (Kumagai et al.,

2021). Evidence shows that the immune response is critical in KIRC
(Xu et al., 2019). Therefore, we hypothesized that the ERBB signaling
pathway plays a vital role in the occurrence and development of
KIRC. The type I subclass of the receptor tyrosine kinase family
consists of ERBB or epidermal growth factor receptors (EGFRs),
including ERBB1/HER1, ERBB2/HER2, ERBB3/HER3, and ERBB4/
HER4 (Hynes, 2007). ERBB receptors are activated via
homodimerization or heterodimerization. The ERBB family is
unique among various receptor tyrosine kinases; ERBB3 has
impaired kinase activity, whereas ERBB2 has no direct ligand.
Therefore, heterodimerization is an important mechanism that
allows all ERBB receptors to be activated by ligand stimulation.
The activated ERBB receptor binds to many signaling molecules and
activates related signaling pathways (Yarden and Pines, 2012). In
cancer, abnormal activation of EGFR and HER2 can be induced by
gene amplification, point mutation, deletion, and autocrine
ligand–receptor stimulation (Sharma and Settleman, 2009). These
genemutations abnormally activate EGFR/ERBB1 and ERBB signals
and are independent of ligand–receptor stimulation, resulting in the
occurrence and development of tumors. Owing to its limited kinase
activity, the carcinogenic function of ERBB3 is largely mediated by
its overexpression and interaction with EGFR/ERBB1 or ERBB2
(Jaiswal et al., 2013). The role of ERBB4 in tumor development is
inconsistent because its proto-oncogene and tumor suppressor gene
subtypes have different activities. EGFR/ERBB1 is mainly associated
with lung adenocarcinoma and squamous cell carcinoma
development. ERBB2 is abnormally activated in extensive
changes, especially in breast cancer, glioblastoma, and non-small
cell lung cancer (Bargmann et al., 1986). ERBB3 is closely associated
with ovarian, gastrointestinal, and bladder tumors (Jaiswal et al.,
2013). ERBB4 regulates the occurrence and development of lung
cancer and metastatic melanoma (Roskoski, 2014). According to
research on the relationship between ERBB and its signaling
pathway in tumors, it is expected to become a target for cancer
treatment.

The genes associated with the ERBB pathway in KIRC were
investigated in the current study, and most showed significant
expression differences. By conducting least the absolute shrinkage
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and selection operator (LASSO) regression analysis, we found
that most genes in the ERBB pathway play a crucial role in KIRC.
At the same time, 12 ERBB pathway–related genes were
constructed into a KIRC prognostic risk model. Better
prediction accuracy of the model is shown by the receiver
operating characteristic (ROC) curve. In addition, increasing
evidence shows that the occurrence and development of
tumors are strongly correlated with immune infiltration. We
explored the relationship between related genes and immune
infiltration. Our results provide a new approach to clinical
diagnosis and treatment for KIRC patients.

MATERIALS AND METHODS

Data Acquisition
In November 2021, KIRC mRNA expression data and clinical
datasets were obtained from The Cancer Genome Atlas (TCGA)
database (https://portal.gdc.cancer.gov/). The KIRC dataset in
TCGA database includes 72 normal samples and 539 KIRC
samples. The ERBB pathway was found in the gene set
enrichment analysis (GSEA) database (https://www.gsea-
msigdb.org/gsea/index.jsp), and the genes in this pathway
were evaluated (Mootha et al., 2003; Subramanian et al.,
2005). The path was named KEGG_ERBB_SIGNALING_
PATHWAY, and the systematic path was named M12775. In
addition, to verify whether the risk model can be applied to
other databases, we obtained RNAseq data and corresponding
clinical information of 136 RCCs from the ICGC database
(https://dcc.icgc.org/releases/current/Projects). We used
multivariate Cox regression analysis to construct a predictive
model, log-rank was used to test the KM survival analysis to
compare the survival differences between the aforementioned
two or more groups, and timeROC analysis was performed to
judge the accuracy of the prediction model.

Data Processing and Analysis
The Perl language was used to organize and transform the data,
combined with a powerful manipulation software, namely, the R
software, for statistical analysis and graphing. Heatmaps were
drawn by manipulating the “pheatmap” package and
performing statistical analysis by running the “limma” package.
In addition, we performed LASSO regression curve analysis for
ERBB signaling pathway–related genes in KIRC using the “glmnet”
and “survival” packages. Afterward, the Kaplan–Meier survival
“survival” package was used to draw survival curves, and the
“ROC” package was used to draw ROC curves. At last, we
performed univariate and multivariate Cox analyses based on
this risk model.

GEPIA Website
The GEPIA website integrates TCGA cancer big data and GTEx
normal tissue big data using bioinformatics technology to solve
significant problems in cancer biology, revealing cancer subtypes,
driver genes, alleles, and differentially expressed or carcinogenic
factors to dig deeper into novel cancer targets and markers
(http://gepia2.cancer-pku.cn/#index) (Tang et al., 2017). We

utilized the GEPIA database to investigate the overall survival
of ERBB pathway–related genes in various tumors.

Gene Set Cancer Analysis Website
The Gene Set Cancer Analysis website integrates cancer genome
data from TCGA for 33 cancer types, drug response data from the
Genomics of Drug Sensitivity in Cancer (GDSC) and the Cancer
Therapeutics Response Portal, and normal tissue data fromGTEx
for the dynamic and visual analysis of cancer genomes (http://
bioinfo.life.hust.edu.cn/web/GSCALite/) (Liu et al., 2018). In
addition, gene set analysis can be performed using the unified
data analysis pipeline of the database. We used this database to
study gene mutation levels, methylation levels, and immune cell
infiltration of ERBB signaling pathway–related risk model genes
in various tumors. Furthermore, the database also analyzed the
relationship between the risk model genes related to the ERBB
signaling and tumor pathways.

ImmuCellAI Website
ImmuCellAI, a network platform for the comprehensive analysis
of immune cell abundance, estimates the infiltration abundance
of 24 immune cells based on gene expression datasets, including
RNAseq and microarray data (http://bioinfo.life.hust.edu.cn/
ImmuCellAI/). At the same time, ImmuCellAI can predict the
response of patients to immune checkpoint inhibitor therapy.
The 24 immune cells of ImmuCellAI consist of 18 T-cell subtypes
and six other immune cells: B cells, natural killer cells, monocytes,
macrophages, neutrophils, and dendritic cells (Miao et al., 2020).
Based on the established risk model associated with the ERBB
signaling pathway, we analyzed the infiltration of 24 types of
immune cells in various cancers. We then used the R software to
draw the corresponding heatmap for visual analysis. Spearman’s
correlation coefficient was used for the statistical analysis.

TIMER Website
TIMER2.0 (http://timer.cistrome.org/) was used to provide a
more accurate level of immune infiltration for the cancer
genome map or tumor contour supplied by researchers. At the
same time, each module can be used to study the relationship
between immune infiltration and clinical characteristics and the
relationship with cancer in TCGA cohort. Each module can
generate a functional heatmap table (Li et al., 2020). We
conducted a more in-depth exploration using the TIMER
database to further understand the correlation between ERBB
signaling pathway–related risk model genes in KIRC and various
immune cell infiltrations. We displayed it in the form of a
heatmap using the R software.

Genomics of Drug Sensitivity in Cancer
Database
GDSC contains screening data for 1,000 human cancer cell lines
and anticancer drugs. In particular, it includes drug information,
omics information of cell lines, and the drug response (IC50) of
cancer cell lines. The cell lines in the database generally have typical
genetic characteristics and have been widely used for anticancer
drug screening. Anticancer drugs include clinically used
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chemotherapeutic drugs, targeted drugs, and potential cancer
treatment drugs (https://www.cancerrxgene.org/) (Rahman et al.,
2019). We used this database to explore the sensitivity of ERBB
signaling pathway–related risk model genes and various anticancer
drugs and plot the corresponding heatmap display.

The Human Protein Atlas Database
The Human Protein Atlas (HPA) database provides tissue and
cellular distribution information for all 24,000 human proteins
and is freely available for public inquiries (http://www.
proteinatlas.org/) (Thul et al., 2017). The tissue and cellular
expression levels of many human proteins can be found in
this database. We used this database to explore the protein
expression levels of risk model genes associated with the ERBB
signaling pathway in normal renal and KIRC tissues.

Collection of Clinical Tissue Samples
Between January and April 2022, we collected KIRC tumors and
adjacent normal tissue samples from six patients undergoing
radical nephrectomy at Shandong Provincial Hospital. This study
was approved by the ethics committee of Shandong Provincial
Hospital. All patients signed an agreement allowing their tissue
samples and other clinical information to be available for research
purposes.

Total RNA Extraction and Quantitative
Reverse Transcription-Polymerase Chain
Reaction Experiments
Total RNA was extracted from tissue samples using the TRIzol
reagent (Thermo Fisher Scientific, Waltham, MA, United States)
according to the manufacturer’s instructions and then reverse-
transcribed into cDNA using the PrimeScript RT reagent
(Takara, Japan). At last, qRT-PCR was performed using the
SYBR Premix Ex Taq reagent (Takara, Japan).

Statistical Analyses
In the current study, we compared the differences in the
expression of ERBB pathway–related genes in KIRC tumor
tissues and adjacent normal tissues via one-way ANOVA. The
student’s t-test was used to estimate the expression differences of
ERBB pathway–related genes for different pathological features in
the KIRC dataset. The “survminer” package was used to
determine the cutoff value of each risk score in the tumor
group, and the patients were divided into high- and low-risk
groups. The R Studio package was used for statistical analyses.
Statistical significance was set to p < 0.05.

RESULTS

Expression of ERBB Signaling
Pathway–Related Genes in KIRC and
Univariate Cox Analysis
First, we drew the corresponding flow chart (Figure 1) to clearly
show the research process. Next, we generated heatmaps to study

ERBB pathway–associated gene expression in KIRC (Figure 2A).
We observed significant differences in most related genes in the
ERBB pathway between cancer tissues and paracancerous tissues
in the heatmap. Therefore, we can infer that it can change due to
changes in the ERBB pathway in the process of tumor occurrence
and development. Next, the ERBB pathway–associated genes in
KIRC were analyzed via univariate Cox regression analysis
(Figure 2B). The results showed that the risk ratio of ERBB
pathway–related genes had a 95% confidence interval and
p-value. The results demonstrated that genes encoding
mitogen-activated protein kinase 3 (MAPK3), cyclin-
dependent kinase inhibitor 1B (CDKN1B),
phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic
subunit beta (PIK3CB), MAPK9, Cbl proto-oncogene (CBL),
B-Raf proto-oncogene (BRAF), MAPK8, MAPK1,
phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1), Erb-
B2 receptor tyrosine kinase 2 (ERBB2), SOS Ras/Rac guanine
nucleotide exchange factor 1 (SOS1), PIK3R3, protein tyrosine
kinase 2 (PTK2), A-Raf proto-oncogene (ARAF), NRAS,
CDKN1A, and GRB2-associated binding protein 1 (GAB1),
PIK3CA, and KRAS, transforming growth factor-alpha
(TGFA), signal transducer and activator of transcription 5B
(STAT5B), AKT3, SOS2, and ERBB3, glycogen synthase kinase
3 beta (GSK3B), MAP2K4, NCK adaptor protein 1 (NCK1),
MAPK10, neuregulin 1 (NRG1), CRK, and mechanistic target of
rapamycin kinase were associated with good survival in KIRC
patients. To study the interaction between related genes in the
ERBB pathway, we used the STRING online database to map the
corresponding protein–protein interaction (PPI) network and the
Cytoscape tool to identify the PPI network (Figure 2C). The PPI
network diagram showed a close interaction between the genes
involved in the ERBB pathway.

Construction of a Novel Prognostic-Related
Survival Model in KIRC
To explore whether a prognostic-related risk model can be
constructed in KIRC using ERBB signaling pathway–related
genes, we conducted an in-depth exploration using LASSO
regression curve analysis (Figures 3A,B). During this
process, we created a 12-gene risk model that included
12 molecules: SHC1, GAB1, SOS2, SRC, AKT3, epiregulin
(EREG), eukaryotic translation initiation factor 4E binding
protein 1 (EIF4EBP1), Erb-B2 receptor tyrosine kinase 3
(ERBB3), MAPK3, TGFA, CDKN1A, and PIK3CD. We then
used this prognostic model to classify KIRC patients into two
risk groups. From the survival curve, the overall survival rate of
KIRC patients in the low-risk group was significantly higher
than that in the low-risk group (p = 1.221 × 10–15) (Figure 3C).
Next, the prognostic prediction performance of this survival
model was validated in KIRC patients by analyzing the ROC
curves. From the ROC curve analysis, we obtained a 5-year area
under the curve (AUC) value of 0.747 (Figure 3D), a 7-year
AUC value of 0.748 (Figure 3E), and a 10-year AUC value of
0.757 (Figure 3F), indicating that the model can accurately
predict 5-, 7-, and 10-year survival in KIRC patients. The
formula for calculating the risk model is as follows:
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FIGURE 1 | Flow chart of this study.

FIGURE 2 | (A) Heatmap showing the expression of ERBB signaling pathway-related genes in KIRC. (B) Dendrogram showing the results of the univariate Cox
analysis of ERBB signaling pathway-related genes in KIRC. (C) PPI network showing the interactions and correlations between ERBB pathway molecules. *p < 0:05;
**p < 0:01; ***p < 0.001.
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ERBB Risk Signature = 0.0153348967199206 × SHC1 +
0.0430172526487226 × SRC + 0.0736183869698676 × EREG
+0.000614229224522567 × EIF4EBP1 + 0.006822712 ×
PIK3CD − 0.0733341107404134 × GAB1 −
0.0265211809527625 × SOS2 − 0.0230517422131536 ×
AKT3 − 0.007240958 × ERBB3 − 0.006311165 × MAPK3 −
0.001331008 × TGFA −0.003804552 × CDKN1A.

Relationship Between the Risk Model and
Clinicopathological Characteristics and
Plotting the Corresponding Nomogram in
KIRC
Next, we generated a heatmap between relevant clinical data and
model genes to study the relationship between prognosis risk
models and clinicopathological features (Figure 4A). The risk
model was associated with cancer metastasis (M), tumor size (T),
node (N), stage, grade, sex, and fustat. The patients in the low-risk
group typically had a lower histological grade and clinical stage.
In addition, we investigated the relationship between KIRC
patient prognosis and multiple clinicopathological features via
a univariate Cox regression analysis (Figure 4B). The
corresponding forest plot showed that the overall survival
rate of patients was related to the age, grade, stage, T, M,
and risk score. Next, using multivariate Cox regression
analysis, we found that tumor grade and risk score were
independent risk factors associated with overall survival in
KIRC patients (Figure 4C). Through two different regression

analyses, we observed that the risk score of this model could be
used as an excellent prognostic feature for KIRC patients.
Afterward, in the nomogram generated based on the risk
model, the second to ninth rows represent the age, grade,
stage, risk score, total points, and 5-, 7-, and 10-year survival
rates of KIRC patients, respectively (Figure 4D).

Overall Survival and Variation of Model
Genes in Pan-Cancer
To study the significance of ERBB signaling pathway–related
risk genes in pan-cancer, we analyzed the correlation between
the overall survival rate of patients with various tumors in the
TCGA database and the expression of the risk model genes,
followed by the construction of an overall survival heatmap of
these genes (Figure 5A). The square with a solid line on the map
indicates statistical significance. High expression of CDKN1A,
TGFA, MAPK3, ERBB3, AKT3, SOS2, and GAB1 is associated
with a better prognosis in KIRC patients. EIF4EBP1 and EREG
function as oncogenes in the malignant progression of KIRC.
Furthermore, EIF4EBP1 acts as an oncogene in adenoid cystic
carcinoma, bladder urothelial carcinoma, breast cancer (BRCA),
KIRC, acute myeloid leukemia, liver hepatocellular carcinoma,
lung adenocarcinoma, mesothelioma, and sarcoma. Next, we
retrieved copy number variants (CNV) and single-nucleotide
variants (SNV) data for 32 tumors from TCGA database. We
visualized and displayed the variant data in the R software
(Figures 5B,C). From Figure 5B, we can see that these 12 risk

FIGURE 3 | (A,B) Construction of a prognostic-related risk model in KIRC using LASSO regression. (C) Survival curve based on this model. Red and blue indicate
high- and low-risk groups, respectively. (D–F) The 5-year AUCwas 0.747, the 7-year AUCwas 0.748, and the 10-year AUCwas 0.757. ROC curve of 5, 7, and 10 years.
AUC value greater than 0.7 indicates that the model has more accurate prediction accuracy.
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model genes had higher CNVs in the uterine carcinosarcoma,
BRCA, esophageal carcinoma, and ovarian cancer. Figure 5C
shows the SNVs of the 12 risk model genes in the different
cancer types. The higher the mutation frequency, the darker the
red color. ERBB3 had higher SNVs in uterine corpus
endometrial carcinoma (UCEC), bladder urothelial
carcinoma, and stomach adenocarcinoma, whereas SOS2 had
higher SNVs in UCEC and skin cutaneous melanoma.
Furthermore, ERBB3, SOS2, PIK3CD, AKT3, and GAB1 had
extensive SNVs in the UCEC. ERBB3 had up to 33% of pan-
cancer mutations. As a critical gene in the ERBB signaling
pathway, we speculated that ERBB3 plays an important role
in carcinogenesis (Figures 5D,E). We explored the correlation
between these risk model genes and multiple critical biological
pathways during carcinogenesis (Figure 5F). We found that

SHC1, PIK3CD, and AKT3 could activate epithelial-to-
mesenchymal transition (EMT), a vital biological process.

Immune Infiltration, Methylation, and Drug
Sensitivity of Model Genes in Pan-Cancer
ERBB family molecules may play an essential role in evading
antitumor immune response (Gainor et al., 2016; Huang and Fu,
2019; Sugiyama et al., 2020). Based on the ImmuCellAI database, we
used the R software to visualize the correlation of these risk model
genes with 24 immune cell infiltrations in pan-cancer and used
Spearman’s correlation coefficient for statistical analysis
(Figure 6A). These results indicated that thyroid carcinoma and
thymoma induced extensive immune cell infiltration. We observed
that these risk model genes were positively correlated with tumor

FIGURE 4 | In-depth exploration of the clinical significance of this risk model in KIRC. (A) Heatmap showing the relationship between risk scores and
clinicopathological features of KIRC. **p < 0.01, ***p < 0.001. (B,C) Results of univariate and multivariate Cox regression analyses depicting the correlation among age,
sex, grade, stage, tumor size (T), metastasis (M), risk score, and prognosis in KIRC patients. (D) The corresponding nomogram based on the risk model, which predicts
5-, 7-, and 10-year overall survival in KIRC patients. Among them, the total points in the sixth row are the sum of scores of each item in the second row to the
fifth row.
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immune cells, such as Tfh, NK, cytotoxic, and NKT, in KIRC. To
further explore the correlation between these risk model genes and
major immune cell infiltration in KIRC, we analyzed the correlation
between 12 risk model genes and six major tumor immune cells using
the TIMER database (Figure 6B). We found that TGFA, SHC1,
PIK3CD, GAB1, and AKT3 were negatively correlated with six tumor
immune cells in KIRC, and EIF4EBP1 was positively correlated with
macrophage infiltration. At the same time, we analyzed the
methylation differences of these 12 risk model genes between
tumor and normal tissues. The results showed significant
differences in the methylation of these genes between the normal
and tumor tissues (Figure 6C). The larger and darker red the bubbles
in the figure, the higher the degree of methylation in the tumor tissue
than in the normal tissue. As shown in the figure, the methylation
degree of EREG in BRCA is higher than that in the normal tissue,
whereas the methylation degree of CDKN1A in KIRC is lower than
that in the normal tissue. In particular, to study the link between the
mRNA expression of 12 risk model genes and drug sensitivity, we
downloaded a variety of drug sensitivity data from the GDSC

database, combined the mRNA expression of these 12 risk model
genes, and analyzed the 12 risk models. The relationship between
model gene expression and drug sensitivity and a corresponding
heatmap was drawn using the R software (Figure 6D).

We observed that the mRNA expression of ERBB3 is positively
correlated with the ATM kinase inhibitor CP466722. The higher
the mRNA expression level of ERBB3, the more sensitive it is to
ATM kinase inhibitors. The mRNA expression was negatively
correlated with afatinib sensitivity. By analyzing the relationship
between these risk model genes and anticancer drug
susceptibility, the results could provide a valuable reference for
clinicians in clinical medication.

Verification of Protein Expression of Model
Genes Between KIRC Tissues and Normal
Tissues
To study the protein expression levels of these risk model genes
in KIRC, we explored the expression of AKT3, CDKN1A,

FIGURE 5 |Overall survival and variation analyses of the risk model genes in pan-cancer. (A)Heatmap shows the survival landscape across cancer types. The color
code bar on the right side shows the corresponding value of log10 (HR). Red and blue represent positive and negative correlations, respectively. (B) Heatmap showing
copy number variation across cancer types. Light red Hete. Amp. represents heterozygous amplification; light green Hete. Del., represents heterozygous deletion; dark
red Homo. Amp., represents homozygous amplification; dark green Homo. Del., represents homozygous deletion; and gray represents no CNV. (C–E) Heatmap
showing SNV across cancer types. Color on the square trend fromwhite to red as the frequency of mutation increases. (F)Heatmap showing correlations between these
risk model genes and biological pathways. Red and blue represent the positive and negative correlations, respectively.
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EIF4EBP1, GAB1, MAPK3, PIK3CD, SHC1, SOS2, SRC, and
TGFA in normal kidney and KIRC tissues from the HPA
website (Figures 7A–J). The results show that the protein
expression levels of CDKN1A, EIF4EBP1, MAPK3, PIK3CD,
SHC1, SRC, and TGFA in KIRC tissues are higher than those
in normal kidney tissues. Through further mechanistic
research and clinical validation of these risk model genes in
KIRC, they may be potential targets for the future treatment of
KIRC. Afterward, to increase the credibility of our results, we
validated the mRNA expression of these risk model genes
using clinical specimens collected in the clinic
(Supplementary Figures S1A–L). At last, to verify the
reliability of the risk model in other databases, we used the
ICGC database for validation. The validated results showed
that the risk model also had a high predictive value in the ICGC
database. The risk model could successfully classify patients in
ICGC into high- and low-risk groups with significant
prognostic differences (p = 0.00413). The 3-year AUC value
of the ROC curve was 0.707, suggesting that the model has
good predictive accuracy in ICGC (Supplementary Figures
S2A–C).

DISCUSSION

In the past decades, studies on the relationship between the ERBB
pathway and tumors have been ongoing; however, we lack direct
evidence on the preciseness of the results. Most researchers
believe that activating the ERBB pathway is essential for
promoting tumorigenesis and development (Wang, 2017). The
ERBB signaling pathway was found to be closely related to tumor
immunity. Previous studies have found that immune cells and
their extracellular factors play essential roles in anticancer
immunity (Lai et al., 2021). Cancer-associated fibroblasts can
limit the recruitment of immune effector cells, such as CD8+

T cells, to tumor tissues by secreting different chemokines (Mao
et al., 2021). A recent study showed that programmed death-
ligand 1 (PD-L1) expression and T-cell infiltration in patients
with EGFR–mutant non-small cell lung cancer are related to
immunotherapy (Chen et al., 2020). This suggests that the ERBB
pathway affects cancer development through tumor immunity. In
KIRC, EGFR overexpression is considered an extremely vital
factor in the occurrence and development of RCC. The
membranous expression of EGFR is related to high nuclear

FIGURE 6 | Immune infiltration, methylation, and drug sensitivity analyses of the risk model genes in pan-cancer. (A)Heatmap showing the association between the
risk model genes and 24 types of immune cell infiltration in pan-cancer. *p-value ≤ 0.05, #FDR ≤0.05. (B) Heatmap showing the association between the risk model
genes and six major immune cell infiltrations in KIRC. Blue and red represent the positive and negative correlations, respectively. *p < 0.05, **p < 0.01. (C) Heatmap
showing the methylation differences of the risk model genes in pan-cancer. Red and blue indicate the positive and negative correlations, respectively. (D)Heatmap
showing the correlation between the GDSC database drug susceptibility and the mRNA expression of the risk model genes. Red and blue indicate the positive and
negative correlations, respectively.
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grade and poorly differentiated tumors (Ahel et al., 2015). In
addition, the VHL-HIF-2α axis induces SET And MYND
domain-containing 3 (SMYD3) upregulation, thereby
activating EGFR to promote RCC progression (Liu et al.,
2020). Furthermore, overexpression of EGFR and ERBB-2 is
associated with the dedifferentiation and metastasis of RCC
(Stumm et al., 1996). In the present study, we aimed to
integrate the related genes in the ERBB pathway and establish
a prognostic model for related KIRC patients.

AKT3 consists of two splice variants, Akt3 + s472 and Akt3 −
s472, which mainly exist in the nerve cells and testes (Suyama
et al., 2018). AKT/PKB plays a vital role in cell proliferation and
apoptosis. After knocking out AKT3 in bladder cancer and lung
cancer, the mitochondrial oxygen consumption in cancer cells
rapidly decrease, indicating that AKT3 plays a vital role in the
normal respiration of cancer cells (Kim et al., 2016). In addition,
Akt3 plays an important role in brain development (Konishi et al.,
1995). CDKN1Amainly regulates the cell cycle and DNA damage
repair, affecting the occurrence and development of non-small
cell lung cancer (Wu and Levine, 1997; Zamagni et al., 2020).
Furthermore, CDKN1A participates in the occurrence and
burgeoning of multiple myeloma along with p53 (Drozdkova
et al., 2020). In previous studies, EIF4EBP1 was involved in tumor
occurrence, invasion, and drug resistance (D’Abronzo and
Ghosh, 2018). In KIRC, BRDT reduces the expression of
c-MYC in RCC by regulating EIF4EBP1 and further enhances
BRDT-targeted treatment RCC by regulating EIF4EBP1 or
c-MYC (Wan et al., 2020). In addition, EIF4EBP1 is associated
with the progression and poor prognosis of patients with liver

tumors (Cha et al., 2015). ERBB3 encodes a transmembrane
receptor tyrosine kinase composed of four domains (Kraus et al.,
1989). The ERBB3 receptor has strong resistance to the
pharmacological inhibition of EGFR and HER2 receptor
tyrosine kinases in tumors (Eliseev et al., 2021). It was
associated with GAB1 in the tumor proliferation and
metastasis of head and neck squamous cell carcinoma and
colorectal cancer (Seiden-Long et al., 2008; Hoeben et al.,
2013). GAB1 promotes BRCA metastasis by interacting with
the critical component PAR3 of the PAR complex and EMT
of mammary gland tumors. In chronic liver injury, GAB1 plays
an essential role in inhibiting apoptosis and reducing liver injury,
fibrosis, and tumorigenesis (Mizutani et al., 2021).

Mitogen-activated protein kinase was considered a serine/
threonine-protein kinase, which mainly exists in mammals. It
is associated with cell proliferation, differentiation, inflammation,
apoptosis, and various physiological and pathological processes
(Yu et al., 2020). MicroRNA-143 regulates the proliferation and
bone metastasis of human BRCA cells by targeting MAPK3 (Du
et al., 2020). MAPK1/MAPK3 kinase can also reduce
mitochondrial autophagy through ULK1 degradation and
promote bone metastasis in BRCA (Deng et al., 2021).
PIK3CD encodes the phosphatidylinositol 3-kinase (PI3K)
catalytic subunit P110 δ related to cancer, and PIK3C
deactivates the AKT/GSK-3 β/β-catenin signaling pathway,
promoting the occurrence and development of colorectal
cancer (Chen et al., 2019). The long-chain noncoding RNA
PIK3CD-AS2 promotes the occurrence and evolution of lung
adenocarcinoma by inhibiting the YBX1–mediated p53 pathway,

FIGURE 7 | Results of immunohistochemistry. (A–J) Immunohistochemical images from the HPA database showing AKT3, CDKN1A, EIF4EBP1, GAB1, MAPK3,
PIK3CD, SHC1, SOS2, SRC, and TGFA protein expressions in kidney tissues (N) and KIRC (T) tissues.
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suggesting that PIK3CD-AS2 is a crucial regulator of LUAD
(Zheng et al., 2020). SHC1 is an essential molecule that
DEPDC1B regulates the evolution of bladder cancer
progression. SHC1 knockout can reduce the effect of
DEPDC1B on bladder cancer induction (Lai et al., 2020).
Furthermore, SHC1 can regulate PTRF expression through
certain pathways associated with the occurrence and evolution
of KIRC (Zhao et al., 2020). SRC regulates tumorigenesis and
angiogenesis through related signal transduction pathways. The
activation of c-SRC (SRC) induces EMT, leading to the
development of pancreatic cancer (Nagathihalli and Merchant,
2012). SRC mediates the activation of receptor tyrosine kinases
and constitutes another bypass mechanism of transactivation
after drug inhibition. This bypass mechanism is essential for
colorectal cancer cells to develop resistance to EGFR-targeted
therapy (Gargalionis et al., 2014). MALAT1 can increase the
expression of TGFA and promote the proliferation andmetastasis
of osteosarcoma by inhibiting mir376a (Luo et al., 2016). MiR-
137 controls the occurrence and development of non-small cell
lung cancer by regulating TGFA (Liu et al., 2017).

RCC is a highly complicated process that is controlled by
multiple target genes. With the increase in research, there are
many related prognostic models in KIRC patients (Xu et al., 2020b;
Wu et al., 2021). This study mainly used the LASSO regression
analysis to establish a risk model associated with the ERBB
signaling pathway for KIRC patients. LASSO regression is a
compressed estimation. It obtains a more refined model by
constructing a penalty function, compressing some coefficients,
and setting some coefficients to zero. It can realize the selection of
variables simultaneously as parameter estimation, to better solve
the multicollinearity problem in the regression analysis, and
explain the results well. However, the disadvantages are also
obvious. Compressing some coefficients will cause underfitting
of the model, and it is not easy to calibrate. The current study
successfully used SHC1, GAB1, SOS2, SRC, AKT3, EREG,
EIF4EBP1, ERBB3, MAPK3, TGFA, CDKN1A, and PIK3CD in
the ERBB pathway to establish a risk model for predicting the
prognosis of KIRC patients. We drew 5-, 7- and 10-year ROC
curves based on the risk model. In general, the AUC value was
greater than 0.7, indicating that the risk model has high prediction
accuracy. In general, our prognostic model has higher prediction
accuracy than other prognostic models and is also a supplement to
other prognostic models. However, LASSO regression has
limitations in gene-selection research. The problem with model
interpretation ability is that many variables in a multiple linear
regression model may be independent of the response variables.
Multicollinearity can be produced when there is an apparent
correlation between multiple prediction variables. These
situations increase the complexity of the model and weaken its

interpretative abilities. At present, variable selection is required;
however, our prognostic model may provide a more
comprehensive and personalized treatment for KIRC patients.

CONCLUSION

Our study identified that the 12 genes used to build prognostic
risk models were studied to varying degrees in a variety of tumors.
However, some risk model genes have not been intensively
studied in KIRC. Therefore, they must be closely monitored in
future studies.We believe that our established prognostic risk
model related to the prognosis of KIRC patients can provide
individualized treatment options for future diagnosis and
treatment.
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