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Increasing studies have proved that malignant tumors are associated with energy
metabolism. This study was aimed to explore biological variables that impact the
prognosis of patients in the glycolysis-related subgroups of lung adenocarcinoma
(LUAD). The mRNA expression profiling and mutation data in large LUAD samples
were collected from the Cancer Genome Atlas (TCGA) database. Then, we identified
the expression level and prognostic value of glycolysis-related genes, as well as the
fractions of 22 immune cells in the tumor microenvironment. The differences between
glycolysis activity, mutation, and immune infiltrates were discussed in these groups,
respectively. Two hundred fifty-five glycolysis-related genes were identified from gene set
enrichment analysis (GSEA), of which 43 genes had prognostic values (p < 0.05). Next,
we constructed a glycolysis-related competing endogenous RNA (ceRNA) network
which related to the survival of LUAD. Then, two subgroups of LUAD (clusters 1 and 2)
were identified by applying unsupervised consensus clustering to 43 glycolysis-related
genes. The survival analysis showed that the cluster 1 patients had a worse prognosis
(p < 0.001), and upregulated differentially expressed genes (DEGs) are interestingly
enriched in malignancy-related biological processes. The differences between the two
subgroups are SPTA1, KEAP1, USH2A, and KRAS among top 10 mutated signatures,
which may be the underlying mechanism of grouping. Combined high tumor mutational
burden (TMB) with tumor subgroups preferably predicts the prognosis of LUAD patients.
The CIBERSORT algorithm results revealed that low TMB samples were concerned
with increased infiltration level of memory resting CD4+ T cell (p = 0.03), resting mast
cells (p = 0.044), and neutrophils (p = 0.002) in cluster 1 and high TMB samples were
concerned with increased infiltration level of memory B cells, plasma cells, CD4 memory-
activated T cells, macrophages M1, and activated mast cells in cluster 2, while reduced
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infiltration of monocytes, resting dendritic cells, and resting mast cells was captured in
cluster 2. In conclusion, significant different gene expression characteristics were pooled
according to the two subgroups of LUAD. The combination of subgroups, TMB and
tumor-infiltrating immune cell signature, might be a novel prognostic biomarker in LUAD.

Keywords: lung adenocarcinoma, glycolysis, tumor mutational burdens, prognosis, tumor-infiltrating immune cell

INTRODUCTION

Lung adenocarcinoma (LUAD) is a highly fatal cancer of the
respiratory system worldwide, and the 5-year survival rate of
LUAD is less than 17% (Hirsch et al., 2017). It is reported
that application of biomarkers may provide effective prognostic
values in LUAD. For example, CAV1 and DCN participate in
regulating LUAD progression (Yan et al., 2019). Despite progress
in molecular researches, more prognostic biomarkers need to be
further explored in LUAD.

Glycolysis is one of the well-studied pathways of glucose
metabolism. Normal mammalian cells are inhibited by glycolysis
under aerobic conditions, while malignant tumor cells are active
in glycolysis even under a sufficient-oxygen environment. This
metabolic feature of aerobic glycolysis is called the Warburg
effect, which is manifested by high glucose uptake rate, active
glycolysis, and high lactic acid content of metabolites (Allard
et al., 1994). Previous studies have confirmed that increased
levels of glycolysis are involved in malignancy progression,
such as proliferation, invasion, and migration (Ganapathy-
Kanniappan and Geschwind, 2013; Jin et al., 2017). It is
reported that downregulation of Barx2 promotes aerobic
glycolysis and predicts a poor prognosis in non-small cell
lung carcinoma (NSCLC) (Chen et al., 2018). Given that,
understanding the mechanisms associated with glycolysis could
be a major breakthrough for finding potential prognostic targets.
In this study, we aimed to explore new biomarker strategies
of glycolysis-related tumor subgroups, which was associated
with tumor-infiltrating immune cells, a tumor mutational
burden (TMB) in LUAD.

The immune system plays key roles in the surveillance
and elimination of tumor cells. The malignant phenotype of
tumors is determined not only by the internal activity of
tumor cells but also by the tumor-infiltrating immune cells
in the tumor microenvironment (Swann and Smyth, 2007),
which can promote or suppress the development and growth
of tumors (Shiao et al., 2011). Previous studies have shown that
the infiltration by immune cells in tumor tissues may have a
prognostic value (Fridman et al., 2012). Therefore, the signature
of tumor-infiltrating immune cells may be regarded as a potential
predictive prognostic biomarker.

Tumor cell mutations could change the function and
expression of proteins, resulting in the appearance of tumor-
specific neoantigens. T-cells then recognize these neoantigens,
causing an antitumor response. Increasing the activation
of immune cells through immunotherapy may remove
immune-mediated tumor cells and ultimately improve the
patients’ prognosis. Researchers have identified that high
levels of TMB may be more responsive to immunotherapy
(Rooney et al., 2015; Fancello et al., 2019), and KRAS mutation

can be regarded as a predictive biomarker in lung cancer
(Hainsworth and Anthony Greco, 2016). Thus, further studies
of mutation signature should be explored to identify prognostic
biomarkers for LUAD.

One single prediction method always makes the results
inaccurate. Therefore, in the present study, the combination of
TMB and tumor-infiltrating immune cells to assess prognosis in
different tumor subgroups of LUAD could provide more accurate
and effective biomarkers.

MATERIALS AND METHODS

Data Collection, Processing, and
Validation
We firstly gathered RNA-sequencing data and prognostic
information of LUAD from the GDC tool1. Then, we
downloaded somatic mutation data of all patients processed by
VarScan software, and the “maftools” package and “pheatmap”
package in R were used to further analyze the mutation
data. Subsequently, the “ConsensusClusterPlus” package was
performed to construct consensus analysis and PCA was
applied to verify the accuracy of the classification. Eventually,
the “limma” package was performed to identify differentially
expressed lncRNAs (DElncRNAs), differentially expressed
miRNAs (DEmiRNAs), and differentially expressed genes
(DEGs) with |logFC > 1| and p < 0.05. The independent
cohort GSE72094 was downloaded from the Gene Expression
Omnibus (GEO) database2 for data validation. The dataset
contains both expression levels of related genes and
clinical information such as age, gender, survival status,
and survival time.

Gene Set Enrichment Analysis (GSEA)
Gene set enrichment analysis3 (Subramanian et al., 2005) was
used to explore whether the selected gene sets revealed significant
differences between the tumors tissues and normal tissues.
We obtained glycolysis-related data (KEGG GLYCOLYSIS
GLUCONEOGENESIS, BIOCARTA GLYCOLYSIS PATHWAY,
HALLMARK GLYCOLYSIS, and REACTOME GLYCOLYSIS)
from the MsigDB database4. p < 0.05 was the standard to assess
whether to further investigate.

1https://portal.gdc.cancer.gov/
2http://www.ncbi.nlm.nih.gov/geo/
3http://www.broadinstitute.org/gsea/index.jsp
4http://software.broadinstitute.org/gsea/msigdb/
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Construction of a Glycolysis-Related
Competing Endogenous RNA (ceRNA)
Network
The miRTarBase5 (Chou et al., 2018) and miRDB6 (Chen and
Wang, 2020) databases were used to obtain miRNA-targeted
glycolysis-related genes. StarBase7 (Li et al., 2014) was performed
to predict relationships between lncRNAs and miRNAs.

Functional Enrichment Analysis of DEGs
and Protein–Protein Interaction (PPI)
Network Construction Across Two
Clusters
To figure out the functional enrichment of glycolysis-related
DEGs, the “GOplot” package and “ClusterProfiler” package were
used to further analyze by gene ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways, and
p < 0.05 was considered as statistically significant. Then, a
protein–protein interaction (PPI) network was constructed using

5http://mirtarbase.mbc.nctu.edu.tw/
6http://www.mirdb.org/
7http://starbase.sysu.edu.cn/

the STRING database (Szklarczyk et al., 2015) and the cytoHubba
plugin of Cytoscape software (Shannon et al., 2003).

Evaluation of Tumor-Infiltrating Immune
Cells
CIBERSORT is a new algorithm used for calculating fractions of
22 immune cells subsets via RNA-seq or microarray data. The
immune cells included seven types of T cells and three types of B
cells, NK cells and various myeloid cells. We selected the samples
with p < 0.05 to elevate the accuracy.

Validation of 43 Significant
Glycolysis-Related DEGs Using
Quantitative Reverse
Transcription-Polymerase Chain
Reaction (qRT-PCR)
Total RNA was extracted from 16HBE and H1299 cells using the
TRIzol reagent (Invitrogen, Carlsbad, CA, United States). After
the purity and concentration of the total RNA were determined,
the total RNA was reverse transcribed into cDNA using the
PrimeScript RT reagent kit (Accurate Biology). The qRT-PCR was

FIGURE 1 | Relationship between glycolysis and tumorigenesis in LUAD. (A) Enrichment plots of three gene sets which were differentiated between in LUAD and
normal tissues via GSEA, p < 0.05 was considered to be statistically significant. (B) The expression level of 255 glycolysis-related genes in LUAD and normal tissues.
Red is up-regulated and blue is down-regulated. Genes are in rows; samples are in columns. LUAD, lung adenocarcinoma; GSEA, gene set enrichment analysis.
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performed using the SYBR Green Premix Ex Taq II (Accurate
Biology). The PCR conditions were set as follows: 95◦C for 30 s,
followed by 40 cycles at 95◦C for 5 s and 60◦C for 30 s for each
specific primer. Finally, the relative mRNA expression levels of
43 genes were calculated using the 2−11CT method. The primer
sequences are listed in Supplementary Data Sheet 2.

Statistical Analysis
Statistical analysis was utilized by R software (version 4.0.3) and
GraphPad Prism (version 7.0). The differences of expression
levels between two groups were determined by Student’s t-test.
We used the “survival” packages to process the survival analysis,
and survival curves were visualized by the Kaplan–Meier plotter8,
which was examined by the log-rank test. The difference of
infiltrating immune cells between the high-TMB group and the

8https://kmplot.com/analysis/

low-TMB group was determined by unpaired t-test, as well as the
expression level of the glycolysis-related genes between cluster 1
and cluster 2. Differences were considered significant at p < 0.05.

RESULTS

Glycolysis Is Associated With the
Tumorigenesis of LUAD
We firstly obtained the RNA sequencing data and clinical data
of LUAD from TCGA. Then, gene set enrichment analysis
(GSEA) was used to further analyze the relationship between
glycolysis and LUAD. The GSEA results showed that BIOCARTA
GLYCOLYSIS PATHWAY, HALLMARK GLYCOLYSIS, and
REACTOME GLYCOLYSIS were significantly enriched in LUAD,
which illustrated that glycolysis is involved in the tumorigenesis
of LUAD (Figure 1A). According to the GSEA results, 255

FIGURE 2 | Flow chart of this study. TCGA, the Cancer Genome Atlas; GSEA, Gene set enrichment analysis; GEO, Gene Expression Omnibus; ceRNA, competing
endogenous RNA.
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TABLE 1 | Differentially expressed 43 glycolysis-related genes in
lung adenocarcinoma.

Gene logFC p-Value

AK4 2.715034922 7.20E-19

ALDOA 1.305042167 4.72E-27

ARTN 2.852516381 3.05E-20

AURKA 2.774021978 2.56E-31

B4GALT2 1.343368752 4.97E-30

BIK 2.110407599 5.42E-22

CASP6 1.078872032 3.68E-29

CENPA 3.788018525 5.06E-32

CHPF 1.364021632 6.47E-23

CHST4 2.346104416 0.001681461

CLDN3 2.124060254 2.24E-16

CLDN9 2.329920729 1.02E-05

COL5A1 2.156022426 1.99E-21

CTH 1.276548971 1.36E-16

DCN −1.320135715 4.60E-22

DEPDC1 4.013012326 4.16E-33

DPYSL4 1.386936886 2.34E-07

EFNA3 3.173820767 2.88E-35

EGLN3 3.142581934 2.02E-21

FKBP4 1.263390415 1.29E-22

G6PD 1.459631279 1.89E-05

GAPDH 1.829232597 3.29E-30

GAPDHS 1.828856472 0.00091541

GFPT1 1.299877995 3.08E-30

GMPPA 1.144487386 2.94E-32

GOT1 1.104965663 4.22E-22

GPR87 4.126336521 1.17E-11

HS6ST2 3.800469853 8.00E-27

HSPA5 1.017535778 5.09E-29

IER3 1.104634685 3.94E-10

KIF20A 3.308652489 9.18E-34

LDHA 1.474350133 3.71E-30

MIF 1.324714347 1.23E-20

MIOX 4.340627063 6.58E-24

NDC1 1.17473284 2.58E-26

NUP155 1.482451556 2.84E-30

PFKP 2.274356882 1.22E-26

PGM2L1 2.023614728 6.49E-29

PKP2 1.601542975 1.97E-05

SLC25A10 2.306031843 1.61E-31

SLC25A13 1.218425746 3.39E-29

SPAG4 3.033804993 3.77E-34

TGFA 1.56113819 1.43E-13

glycolysis-related genes were extracted and visualized by a heat
map (Figure 1B). The information of 255 glycolysis-related genes
is summarized in Supplementary Data Sheet 2. In addition, the
flow diagram of this study is illustrated in Figure 2.

Screening the Prognostic Value of
Glycolysis-Related Genes in LUAD
To elucidate the relationship between the glycolysis-related genes
and the prognosis of LUAD, we assessed the prognostic values
of these 255 glycolysis-related genes using the Kaplan–Meier
plotter database and found that only 43 genes were significantly

associated with overall survival (all p < 0.05) (Table 1) (43
representative figures are shown in Supplementary Figure 1).

Consensus Clustering of
Glycolysis-Related Genes Identified Two
Clusters of LUAD
Glycolysis plays crucial roles in the biological processes of LUAD,
so we next visualized the expression levels and correlation
of 43 prognostic glycolysis-related genes (Figure 3). Then,
we constructed glycolysis subgroups of LUAD with different
biological characters based on 43 glycolysis-related genes.
Unsupervised consensus clustering analysis indicated that k = 2
was the optimal number of clusters (Figures 4A–C) and principal
component analysis (PCA) was used to verify the classification
by 43 glycolysis-related genes (Figure 4D). Finally, a total of 534
patients were divided into cluster 1 and cluster 2, and the results
showed that cluster 1 was associated with worse overall survival in
LUAD patients compared with cluster 2 (p < 0.001) (Figure 4E).
The specific TCGA patient ID of each cluster is displayed in
Supplementary Data Sheet 2.

Validation of Expression of 43
Glycolysis-Related Genes, Consensus
Clustering, and Prognostic Value Using
an Independent Cohort
In order to verify the feasibility of grouping, the gene expression
profile of GSE72094 was used for further analyses. The heatmap
plot was visualized to further exhibit the distribution of 43
prognostic glycolysis-related genes (Figure 5A). As shown in
Supplementary Figure 2, the expression of 42 of 43 prognostic
glycolysis-related genes was significantly elevated and one gene
was downregulated in LUAD tissues compared with adjacent
normal lung tissues in GSE72094 (both p < 0.05). Meanwhile,
qRT-PCR was also used to verify the expression of these
genes. As expected, the results showed that 39 of the 43 genes
showed the consistency with the above results, while four
genes showed that there is no significance between 16HBE
and H1299 (Supplementary Figure 3), which could be caused
by the difference between tissue and cell lines. Furthermore,
unsupervised consensus clustering analysis and PCA results
showed that these two clusters are meaningful and can be
verified using GSE72094 (Figures 5B–E). The survival analysis
revealed that the joint of glycolysis and gene expression of 43
genes had a significant correlation with the prognosis of LUAD
patients (Figure 5F).

Construction of a 43-Glycolysis-Related
Signature
After screening 43 genes, we also constructed a ceRNA network to
explore potential upstream mechanisms which may account for
the worse overall survival in cluster 1. Using the limma R package
according to the standards (p < 0.05, | logFC| > 1), a total of 186
DElncRNAs (Supplementary Data Sheet 2) and 150 DEmiRNAs
(Supplementary Data Sheet 2) were identified in LUAD.
Firstly, the miRNAs targeted by 43 glycolysis-related genes
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FIGURE 3 | The landscape of 43 glycolysis-related genes in LUAD. (A) The expression levels of 43 glycolysis-related genes in LUAD. The red color means tumor
tissues and the blue color means the non-tumor tissues. Genes are in rows; samples are in columns. (B) Vioplots of 43 glycolysis-related genes in LUAD, p < 0.05
was considered to be statistically significant. Blue is normal tissues and red is tumor tissues. (C) Spearman correlation analysis of 43 glycolysis-related genes in
LUAD. The red color means positive correlation and the blue color means negative correlation. LUAD, lung adenocarcinoma.

were predicted via miRTarBase and miRDB. After overlapping
the results, a total of 33 DEmiRNAs (Supplementary Data
Sheet 2) were identified from TCGA; the Kaplan–Meier plotter
database displayed that 16 (Supplementary Figure 4 and Table 2)
of 33 DEmiRNAs were significantly associated with overall
survival (all p < 0.05). Then, 61 DElncRNAs (Supplementary
Data Sheet 2) targeted by 16 DEmiRNAs were predicted via
StarBase and 13 (Supplementary Figure 5 and Table 3) of 61
DElncRNAs have prognostic values (all p < 0.05). Eventually,
we constructed a 43-glycolysis-related ceRNA network in LUAD,
including 13 DElncRNAs, 16 DEmiRNAs, and 43 glycolysis-
related genes (Figure 6).

Identification and Functional Enrichment
Analysis of the DEGs in Each Cluster
To further comprehend the relationship between glycolysis
subgroups of LUAD and different patient prognoses, we identified

the DEGs in each cluster from TCGA. A total of 384 DEGs
(Supplementary Data Sheet 2), including 94 upregulated genes
in cluster 1 and 290 upregulated genes in cluster 2 were
screened by the limma R package on the basis of p < 0.05
and | log2(FC)| > 1. Those upregulated DEGs in cluster 1 are
downregulated in cluster 2, which means that the rest of the
unmentioned downregulated DEGs in cluster 1 are also elevated
in cluster 2. In fact, from different perspectives, the DEGs are
also different. For this reason, we only displayed and discussed
the upregulated genes in each cluster for their different prognosis.
To better realize the function of clustering, we further performed
functional enrichment analysis. Upregulated DEGs of cluster 1
were mainly enriched in immune-related biological processes,
such as complement activation, classical pathway, humoral
immune response mediated by circulating immunoglobulin,
and immunoglobulin-mediated immune response (Figure 7A).
More specifically, the immune-related functions in cluster 2
mainly include cell chemotaxis, myeloid leukocyte migration,
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FIGURE 4 | Identification of consensus clusters of glycolysis-related genes in LUAD from the TCGA database. (A) Consensus clustering matrix for k = 2.
(B) Consensus clustering CDF for k = 2–9. (C) Relative change in the area under the CDF curve for k = 2–9. (D) PCA of the 43 glycolysis-related genes in LUAD.
(E) Survival curves of each cluster in LUAD. LUAD, lung adenocarcinoma; TCGA, The Cancer Genome Atlas; CDF, cumulative distribution function; PCA, principal
component analysis.

leukocyte chemotaxis, and neutrophil chemotaxis (Figure 7C).
The results of KEGG enrichment analysis showed that cluster
1 and cluster 2 were mainly enriched in metabolism-related
signaling pathways (Figures 7B,D). Moreover, the functional
annotation of DEGs displayed that 10 GO terms were statistically
significant (p< 0.05) (Figures 7E–H and Tables 4, 5). To identify
the biological modules of DEGs in cluster 1, the PPI network
was generated by using STRING and visualized by Cytoscape
software. The cytoHubba plugin will sort genes by core degree
through a variety of algorithms, and genes with high degrees tend
to be hub genes. Then, the top 10 hub nodes were identified
by the cytoHubba plugin, including HIST1H3B, HIST1H1B,
HIST1H1D, HIST1H1E, HIST1H4C, HIST1H2BL, HIST1H2AH,
HIST1H2BO, HIST1H3E, and HIST1H2AM (Figure 7I).

Identification of the Mutation Profile
Features From Each Cluster
The simple nucleotide variation data of 561 LUAD samples were
downloaded from TCGA and processed by VarScan software. The
landscape of mutation data was visualized using the “maftools”

package. Mutation profile features indicated that missense
mutation was the most common type in Variant Classification,
single-nucleotide polymorphism formed the nucleus of variant
type, and C>A accounted for more components than other
single-nucleotide variants in cluster 1 and cluster 2. The top 10
mutated signatures were visualized by a horizontal histogram,
and the results showed that the mutated SPTA1 (29%) and
KEAP1 (29%) are unique in cluster 1 among the top 10
mutated genes, as well as USH2A (27%) and KRAS (24%)
in cluster 2, which may be the underlying mechanism of
grouping (Figures 8A,B). Besides, the variant allele frequency
(VAF) of LUAD is visualized in Figures 8C,D and a lollipop
plot displayed these unique mutation points on the protein
structure (Figures 8E,F). A waterfall plot displayed the mutation
information in each sample, and in cluster 1, seven genes were
mutated by >30%: TP53 (58%), TTN (56%), RYR2 (40%),
MUC16 (38%), ZFHX4 (38%), CSMD3 (37%), and LRP1B (32%).
In cluster 2, five genes were mutated by >30%: TP53 (44%),
MUC16 (39%), TTN (38%), CSMD3 (34%), and RYR2 (32%)
(Figures 9A,B). Besides, mutated oncogenic pathways were also
visualized in each cluster (Figures 9C,D).
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FIGURE 5 | Validation of the gene expression and grouping in GSE72094. (A) Heat map of 43 glycolysis-related genes between LUAD and normal tissue.
(B) Consensus clustering matrix for k = 2. (C) Consensus clustering CDF for k = 2–9. (D) Relative change in area under the CDF curve for k = 2–9. (E) PCA of the 43
glycolysis-related genes in LUAD. (F) Survival curves of each cluster in LUAD. LUAD, lung adenocarcinoma; TCGA, The Cancer Genome Atlas; CDF, cumulative
distribution function; PCA, principal component analysis.

Identification of Immune Cell Infiltration
Signatures of Each Cluster
The functional enrichment analysis showed that DEGs were
involved in cell chemotaxis and immune-related biological
processes, which lead us further to analyze the correlation of

TABLE 2 | Differentially expressed miRNA targeted by 43 glycolysis-related genes
with prognostic value in lung adenocarcinoma.

miRNA logFC p-Value

hsa-miR-30c-2-3p −3.325704214 2.12E-67

hsa-let-7c-5p −2.194435086 2.46E-40

hsa-miR-140-3p −1.549497992 7.23E-39

hsa-miR-142-3p 2.498761697 7.28E-33

hsa-let-7b-5p −1.360489619 1.59E-24

hsa-miR-301a-3p 2.030243634 7.99E-24

hsa-miR-9-5p 3.956683282 2.32E-23

hsa-miR-30a-5p −1.873152127 2.29E-23

hsa-miR-1-3p −2.442236467 1.07E-21

hsa-let-7e-5p −1.446526872 1.01E-19

hsa-miR-218-5p −1.437453438 2.73E-18

hsa-miR-30d-5p −1.26709302 1.77E-15

hsa-miR-30b-3p −1.244337848 8.36E-15

hsa-miR-17-5p 1.08451682 4.84E-14

hsa-miR-331-3p 1.06147245 2.66E-13

hsa-miR-642a-5p 1.453390931 6.31E-11

TMB with immune signatures in each cluster. Based on the
CIBERSORT algorithm, we revealed the proportions of different
immune cells in specific patients in each cluster. The percentage
of 22 types of tumor-infiltrating immune cell in each cluster
was visualized (Figures 10A,B). Subsequently, we indicated the
differential abundance of immune cells in the low-TMB and
high-TMB groups via violin plots. Memory resting CD4+ T
cells (p = 0.03), resting mast cells (p = 0.044), and neutrophils

TABLE 3 | Differentially expressed lncRNA with prognostic value in
lung adenocarcinoma.

lncRNA logFC p-Value

FENDRR −4.550706947 1.41E-118

LINC01963 −1.401218255 1.71E-36

LINC02035 −1.129015688 6.75E-34

LINC00511 3.04763667 1.41E-26

C22orf34 −1.357168404 2.94E-26

LINC00261 −2.602384791 2.46E-19

CYTOR 1.2223348 7.67E-15

PWAR6 −1.219476944 8.20E-12

SNHG12 1.046959907 5.49E-11

LINC00665 1.542732963 1.98E-07

FAM30A 1.509315396 8.09E-07

HAGLR −1.114891174 4.65E-06

MIAT 1.180474479 8.91E-05
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FIGURE 6 | Construction of a ceRNA network. A flow diagram of a 43-glycolysis-related-gene ceRNA network in LUAD. ceRNA, competing endogenous RNA;
LUAD, lung adenocarcinoma; DEmiRNAs, differentially expressed miRNAs; TCGA, The Cancer Genome Atlas; DElncRNAs, differentially expressed lncRNAs.

(p = 0.002) showed higher infiltrating levels in the low-TMB
group in cluster 1 (Figure 10C). Moreover, the infiltration levels
of memory B cells (p = 0.044), plasma cells (p = 0.048), activated
memory CD4+ T cells (p < 0.001), resting NK cells (p = 0.008),
M1 macrophages (p < 0.001), and activated mast cells (p = 0.019)
were higher in the high-TMB group in cluster 2, However,
monocytes (p = 0.021), resting dendritic cells (p < 0.001), and
resting mast cells (p < 0.001) showed a higher infiltrating level in
the low-TMB group (Figure 10D).

DISCUSSION

Lung adenocarcinoma is one of the prevalent malignant
tumors with increasing incidence, mortality, and poor prognosis

(Nakamura and Saji, 2014; Hirsch et al., 2017). Meanwhile,
LUAD displayed unique metabolic characteristics with high
glycolytic activity, which is one of the most crucial hallmarks
of cancer (Hanahan and Weinberg, 2011). It is reported
that PPP1R14B-AS1 overexpression was associated with poor
prognosis in LUAD (Yang et al., 2020). Inhibition of glycolysis
could regulate the cell survival of LUAD (Farah et al.,
2012). However, the relationship between glycolysis-related gene
signatures and LUAD prognosis is still unclear so far. In
this study, 43 differentially expressed glycolysis-related genes
were related to the overall survival for LUAD patients. An
appropriate recognition of tumor subgroups is necessary as it
may affect patients’ prognosis and consideration of molecular
detection. On the basis of 43 prognostic genes, we classified two
subgroups of LUAD (cluster 1 and 2) by applying unsupervised
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FIGURE 7 | Functional enrichment analysis of DEGs in LUAD. (A,C) GO terms of DEGs in cluster 1 and cluster 2. (B,D) KEGG pathways enriched for the DEGs in
cluster 1 and cluster 2. (E,F) The correlation between statistically top 10 DEGs and their GO terms in cluster 1 and cluster 2. (G,H) Functional analysis of the genes
with higher expression using GO terms in cluster 1 and cluster 2. The outer circle means the expression (logFC) of DEGs in each enriched GO terms: Blue dots
indicated the upregulated DEGs. The inner circle means the significance of GO terms (log10-adjusted p values). All p < 0.05 was considered to be statistically
significant. (I) Hub genes selected via cytoHubba. GO, Gene Ontology; DEGs, differentially expressed genes; LUAD, lung adenocarcinoma; KEGG, Kyoto
Encyclopedia of Genes and Genomes.

consensus clustering, which had different clinical prognosis
values. Therefore, we analyzed the possible mechanisms of
different prognosis from multiple perspectives.

A subgroup-specific molecular study transforms the biological
characteristics of LUAD into clinical prognostic subgroups to

find potential biomarkers. Patients with different subgroups of
LUAD had significantly different survival prognoses. In the
present study, survival analysis results showed that cluster 1
was associated with worse overall survival for LUAD patients
(p < 0.001). To explore the underlying upstream molecular
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TABLE 4 | The top 10 gene ontology (GO) terms of differentially expressed genes in cluster 1.

Category ID Term Genes adj_pval

BP GO:0006958 Complement activation, classical pathway IGHV1-18, IGHV1-3, IGHV3-48, IGLV6-57, IGHV3-72, IGHV3-35,
IGHV3-15, IGHV1-58, IGHV4-34, IGHG3, IGLV3-25

2.53E-11

BP GO:0002455 Humoral immune response mediated by
circulating immunoglobulin

IGHV1-18, IGHV1-3, IGHV3-48, IGLV6-57, IGHV3-72, IGHV3-35,
IGHV3-15, IGHV1-58, IGHV4-34, IGHG3, IGLV3-25

3.63E-11

BP GO:0006956 Complement activation IGHV1-18, IGHV1-3, IGHV3-48, IGLV6-57, IGHV3-72, IGHV3-35,
IGHV3-15, IGHV1-58, IGHV4-34, IGHG3, IGLV3-25

1.12E-10

BP GO:0006910 Phagocytosis, recognition IGHV1-18, IGHV1-3, IGHV3-48, IGHV3-72, IGHV3-35, IGHV3-15,
IGHV1-58, IGHV4-34, IGHG3

1.35E-10

BP GO:0016064 Immunoglobulin-mediated immune
response

IGHV1-18, IGHV1-3, IGHV3-48, IGLV6-57, IGHV3-72, IGHV3-35,
IGHV3-15, IGHV1-58, IGHV4-34, IGHG3, IGLV3-25

9.18E-10

BP GO:0019724 B cell-mediated immunity IGHV1-18, IGHV1-3, IGHV3-48, IGLV6-57, IGHV3-72, IGHV3-35,
IGHV3-15, IGHV1-58, IGHV4-34, IGHG3, IGLV3-25

9.18E-10

BP GO:0006911 Phagocytosis, engulfment IGHV1-18, IGHV1-3, IGHV3-48, IGHV3-72, IGHV3-35, IGHV3-15,
IGHV1-58, IGHV4-34, IGHG3

2.08E-09

BP GO:0050853 B cell receptor signaling pathway IGHV1-18, IGHV1-3, IGHV3-48, IGHV3-72, IGHV3-35, IGHV3-15,
IGHV1-58, IGHV4-34, IGHG3

3.02E-09

BP GO:0099024 Plasma membrane invagination IGHV1-18, IGHV1-3, IGHV3-48, IGHV3-72, IGHV3-35, IGHV3-15,
IGHV1-58, IGHV4-34, IGHG3

3.02E-09

BP GO:0010324 Membrane invagination IGHV1-18, IGHV1-3, IGHV3-48, IGHV3-72, IGHV3-35, IGHV3-15,
IGHV1-58, IGHV4-34, IGHG3

4.57E-09

Note. BP, biological process.

TABLE 5 | The top 10 gene ontology (GO) terms of differentially expressed genes in cluster 2.

Category ID Term Genes adj_pval

BP GO:0019932 Second-messenger-mediated signaling PTH1R, EDNRB, S1PR1, ATP1A2, CD36, TMEM100, ADRB2, ADGRE1,
PTGFR, CALCRL, CXCR2, ADGRE3, CXCR1, MT1M, ADRB1, FPR1,
FPR2, RAPGEF4, LRRK2, RAMP2, NPR1, CASQ2, RAMP3, LGR5,
AGTR1, MYOZ1, PDE2A

6.75E-08

BP GO:0072503 Cellular divalent inorganic cation
homeostasis

PTH1R, EDNRB, MT1A, SLC39A8, S1PR1, ATP1A2, CCL14, CD36,
PLA2G1B, PTGFR, CXCR2, CAV1, CXCR1, MT1M, CALB2, KCNK3,
CCL23, FPR1, FPR2, CASQ2, RAMP3, AGTR1, CAV2, FGF2, GRIA1

4.66E-06

BP GO:0003018 Vascular process in circulatory system EDNRB, ATP1A2, CD36, ADRB2, CXCR2, CAV1, ADRB1, CLDN5,
RAMP2, NPR1, AGTR1, ANGPT1, FABP5, SLIT2, PDE2A

1.30E-05

BP GO:0031623 Receptor internalization WNT3A, SNAP25, RSPO1, CD36, CALCRL, CXCR2, CAV1, CXCR1,
RAMP2, RAMP3, ANGPT1, GRIA1

1.30E-05

BP GO:0019935 Cyclic-nucleotide-mediated signaling PTH1R, EDNRB, S1PR1, CD36, ADRB2, ADGRE1, PTGFR, CALCRL,
ADGRE3, ADRB1, RAPGEF4, RAMP2, NPR1, RAMP3, LGR5, PDE2A

1.30E-05

BP GO:0051480 Regulation of cytosolic calcium ion
concentration

PTH1R, EDNRB, S1PR1, ATP1A2, CD36, PLA2G1B, PTGFR, CXCR2,
CAV1, CXCR1, CALB2, KCNK3, FPR1, FPR2, CASQ2, RAMP3, AGTR1,
CAV2, FGF2, GRIA1

1.30E-05

BP GO:0006898 Receptor-mediated endocytosis WNT3A, SNAP25, RSPO1, SFTPD, CD36, ADRB2, CALCRL, CXCR2,
MSR1, CAV1, CXCR1, APOA1, FPR2, RAMP2, RAMP3, ANGPT1, CAV2,
GRIA1, MARCO

1.49E-05

BP GO:0007188 Adenylate cyclase-modulating G
protein-coupled receptor signaling pathway

VIPR1, PTH1R, S1PR1, ADRB2, ADGRE1, PTGFR, CALCRL, ADGRE3,
ADRB1, FPR1, FPR2, RAMP2, RAMP3, LGR5, MARCO, PDE2A

1.61E-05

BP GO:0006874 Cellular calcium ion homeostasis PTH1R, EDNRB, S1PR1, ATP1A2, CCL14, CD36, PLA2G1B, PTGFR,
CXCR2, CAV1, CXCR1, CALB2, KCNK3, CCL23, FPR1, FPR2, CASQ2,
RAMP3, AGTR1, CAV2, FGF2, GRIA1

2.44E-05

BP GO:0055074 Calcium ion homeostasis PTH1R, EDNRB, S1PR1, ATP1A2, CCL14, CD36, PLA2G1B, PTGFR,
CXCR2, CAV1, CXCR1, CALB2, KCNK3, CCL23, FPR1, FPR2, CASQ2,
RAMP3, AGTR1, CAV2, FGF2, GRIA1

3.45E-05

BP, biological process.

mechanism which may account for the worse overall survival in
cluster 1, we constructed a gene signature related to glycolysis,
including 13 DElncRNAs, 16 DEmiRNAs, and 43 glycolysis-
related genes and then verified the prognostic value of this gene

signature in LUAD (all p < 0.05). In addition, the difference of
gene expression level, immune infiltration signatures, and gene
mutation infiltration signatures, and gene mutation information
in cluster 1 was compared with that in cluster 2. The
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FIGURE 8 | Summary of mutation profiling of LUAD in the MAF file. (A,B) Statistical calculations of mutation types in cluster 1 and cluster 2. (C,D) VAF of LUAD in
cluster 1 and cluster 2. (E,F) Lollipop plot of special mutated genes in cluster 1 and cluster 2. MAF, minor allele frequency; LUAD, lung adenocarcinoma; VAF, variant
allele frequency.

transformation of metabolic pathways is usually regulated by
specific gene expression, and genetic signatures composed of
multiple genes have been developed to predict the prognostic
value of clinical cancer patients. According to the different

clusters, we screened that 94 DEGs were enriched in immune-
related biological processes in cluster 1. The top 10 hub
genes were selected to help identify subgroups, and we found
that histone modifications, one of epigenetic modifications,
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FIGURE 9 | Visualization of the mutation profile signature in each cluster. (A,B) Waterfall plot of mutation profiles in cluster 1 and cluster 2 in LUAD samples. The
comments below mean the mutation types. The bar chart on the right shows the distribution of mutant types in the top 30 genes. (C,D) The oncogenic pathways of
mutant genes in cluster 1 and cluster 2. TMB, tumor mutation burden; LUAD, lung adenocarcinoma.

FIGURE 10 | Illustration of immune cell infiltrates features between low-TMB and high-TMB groups in each cluster. (A,B) The percent of 22 types of tumor-infiltrating
immune cell in cluster 1 and cluster 2. (C,D) The difference of 22 types of immune cells between high and low TMB groups in cluster 1 and cluster 2. The higher
TMB and lower TMB were shown in red and green. TMB, tumor mutation burden.

participated in the occurrence of cancer, which also could
be regarded as a prognostic biomarker (Dworkin et al.,
2009). Among these top 10 hub genes, HIST1H3B/C-K27M-
mutated tumors exhibit a pro-angiogenic/hypoxic signature in
diffuse intrinsic pontine gliomas (Castel et al., 2015). Copy

number variations of HIST1H1B were connected with cellular
development and proliferation in melanoma (Fidalgo et al.,
2016). The expression of HIST1H2AH was higher in esophageal
squamous cell carcinoma tissues than in adjacent non-tumorous
tissues (Wang et al., 2019). Ten histone-coding genes here might
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regulate tumorigenesis to affect prognosis in cluster 1 for
LUAD patients.

Compared with a single prediction model, the effect of
analysis results combined with multiple perspectives can provide
a more accurate prediction. Mutation was regarded as a therapy
target to improve the prognosis of multiply tumors. Previous
researches have reported that targeting SGLT2 may intercept
LUAD progression at early stages (Scafoglio et al., 2018).
SETD2-mutated LUAD patients exhibited poor recurrence-free
survival (Kadara et al., 2017). In this study, we found that
the mutated SPTA1 (29%) and KEAP1 (29%) are unique
in cluster 1 among the top 10 mutated genes, as well as
USH2A (27%) and KRAS (24%) in cluster 2. Furthermore,
dysregulation of signaling pathways can also change in cancer
metabolism to affect patients’ prognosis (Huang et al., 2016).
For example, inactivation of the Hippo pathway is connected
with the occurrence of various tumors (Panciera et al., 2017).
Notch can promote glycolytic metabolism in T cell acute
lymphoblastic leukemia (Palomero et al., 2007). Overexpressed
SKA3 correlates with poor prognosis through the EGFR-
PI3K-Akt axis in LUAD (Hu et al., 2020). Overexpression
of CHAP2 may inhibit LUAD cell proliferation and correlate
with high survival rate via the WNT signal pathway (Shang
et al., 2019). In this study, the enrichment pathways of
mutant genes are mainly WNT, PI3K, NOTCH, and Hippo
signaling pathways in each cluster, which demonstrated that
mutated genes contribute to different prognostic effects of LUAD
through these pathways. However, the detailed mechanisms need
further investigation.

The highly acidic microenvironment produced by tumor
glycolysis may affect the infiltration of immune cells to
varying degrees, eventually leading to immune escape and
tumor progression (Gill et al., 2016; Cascone et al., 2018).
Meanwhile, immune cell infiltration has a double feature to
affect tumor progression, not only inhibiting the occurrence
of tumor but also playing a pro-tumor role (Terlizzi et al.,
2014). It is reported that lymphocyte infiltration has been
connected with improved survival in NSCLC (Zeng et al.,
2016). Mutated genes may generate neoantigens that increase
lymphocyte infiltration in the tumor microenvironment. In this
study, we found that the high TMB group has higher fractions
of memory B cells (p = 0.044), plasma cells (p = 0.048),
activated memory CD4+ T cells (p < 0.001), resting NK
cells (p = 0.008), M1 macrophages (p < 0.001), and activated
mast cells (p = 0.019) in cluster 2, which indicated that
glycolysis-related cluster 2 with high TMB contributed to an
immunomodulatory tumor microenvironment. These results
indicated that TMB could affect the immune cell infiltration

signatures and high TMB tends to cause the chemotaxis of
immune cells in LUAD.

CONCLUSION

In conclusion, this study is the first to report a 43-
gene prognostic signature related to glycolysis in LUAD.
Furthermore, we constructed a complicated signature,
among which the combination analysis of TMB and tumor-
infiltrating immune cells was used to assess prognosis
in different tumor subgroups of LUAD. Our study may
provide a novel sight to realize the mechanisms of
glycolysis and identify original gene targets for LUAD
patients in the future.
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