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A B S T R A C T   

Quantitative susceptibility mapping (QSM) has been successfully applied to study changes in deep grey matter 
nuclei as well as in lesional tissue, but its application to white matter has been complicated by the observed 
orientation dependence of gradient echo signal. The anisotropic susceptibility tensor is thought to be at the origin 
of this orientation dependence, and magnetic susceptibility anisotropy (MSA) derived from this tensor has been 
proposed as a marker of the state and integrity of the myelin sheath and may therefore be of particular interest 
for the study of demyelinating pathologies such as multiple sclerosis (MS). Reconstruction of the susceptibility 
tensor, however, requires repeated measurements with multiple head orientations, rendering the approach 
impractical for clinical applications. 

In this study, we combined single-orientation QSM with fibre orientation information to assess apparent MSA 
in three white matter tracts, i.e., optic radiation (OR), splenium of the corpus callosum (SCC), and superior 
longitudinal fascicle (SLF), in two cohorts of 64 healthy controls and 89 MS patients. The apparent MSA showed 
a significant decrease in optic radiation in the MS cohort compared with healthy controls. It decreased in the MS 
cohort with increasing lesion load in OR and with disease duration in the splenium. All of this suggests demy-
elination in normal appearing white matter. However, the apparent MSA observed in the SLF pointed to potential 
systematic issues that require further exploration to realize the full potential of the presented approach. Despite 
the limitations of such single-orientation ROI-specific estimation, we believe that our clinically feasible approach 
to study degenerative changes in WM is worthy of further investigation.   

1. Introduction 

Multiple sclerosis (MS) is a chronic inflammatory demyelinating 
disease of the central nervous system (Frischer et al., 2009). Its patho-
logical hallmark is the presence of focal lesions in the white matter 
(WM) of the brain and spinal cord associated with myelin loss, axonal 
injury, and inflammation (Lassmann, 2008). Such WM lesions are 

routinely assessed by magnetic resonance imaging (MRI) for both 
diagnosis and disease monitoring. There is increasing evidence that 
diffuse inflammatory processes also occur in the radiologically normal- 
appearing white matter (NAWM) (Comi et al., 2004; Granberg et al., 
2017), associated with impaired iron metabolism (Hametner et al., 
2013) and demyelination (Liu et al., 2015; Rahmanzadeh et al., 2021). 
Specific contrast techniques in MRI, such as phase gradient echo (GRE) 
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imaging and quantitative susceptibility mapping (QSM), have shown 
delicate sensitivity to both iron accumulation (Schweser et al., 2010; 
Langkammer et al., 2012) and myelin sheath status (Liu et al., 2011; 
Schweser et al., 2011, 2012; Lee et al., 2012; Li et al., 2012a). In 
particular, QSM has been used extensively to assess magnetic suscepti-
bility of MS lesions and perilesional tissue (Chen et al., 2014) as well as 
iron deposition in grey matter (Langkammer et al., 2013). However, 
applying this method to WM is challenging due to the apparent orien-
tation dependence of the recovered susceptibility (Lee et al., 2010; Denk 
et al., 2011). In this context, the magnetic susceptibility tensor (ST) has 
been proposed as an explanation for this orientation dependence of the 
scalar apparent magnetic susceptibility (AMS) (Lee et al., 2010), leading 
to the development of a number of approaches to estimate this tensor 
(Liu 2010; Li et al., 2012b; Wisnieff et al., 2013) and to the proposition 
that the orientation dependence of the apparent magnetic susceptibility, 
χapp, varies proportionally to the sine square of the fibre-to-field angle (Li 
et al., 2012a). 

Upon minor transformations (see appendix A of Sibgatulin et al., 
2021), this angular dependence can be expressed as. 

χapp(θ) = (χ‖ − χ⊥)cos2θ+ χ0, (1) 

where θ is the fibre-to-field angle, χ‖ and χ⊥ are components of the 
radially symmetric assumed fibre susceptibility tensor, and χ0 is a term 
that subsumes all orientation-independent contributions to AMS, 
including any orientation-independent contributions from myelin. 
Notably, W. Li et al. proposed that both χ‖ and χ⊥ are proportional to the 
volume fraction of myelin lipids and that the difference χ‖ − χ⊥ — 
termed magnetic susceptibility anisotropy (MSA) — can serve as a 
marker for myelination (Li et al., 2012a). 

Importantly, magnetic susceptibility anisotropy is a property of the 
susceptibility tensor at a given location (e.g., voxel) and as such is only 
accessible when AMS is obtained at the same position for different ori-
entations of the fibre with respect to the main magnetic field. For ap-
plications where only a single head orientation acquisition is possible, 
we propose to estimate the apparent MSA (δχ) in an entire white matter 
tract by using the inherent distribution of fibre-to-field angles in that 
tract to formulate the estimation of δχ as a regression problem (along 
with the isotropic apparent magnetic susceptibility χiso, which is a tract- 
averaged counterpart of χ0): 

χapp(θ) = δχ cos2θ + χiso. (2) 

We anticipate that in this way, at least some of the microstructural 
changes associated with MS that are expected to manifest biophysically 
in the components of the local susceptibility tensor can be captured with 
clinically feasible imaging while using a scanning protocol that is 
tolerable for patients. If such a simplified approach to a macroscopic 
description of what are indeed complicated processes at the molecular 
level is able to reliably target important microstructural changes asso-
ciated with this disease, this could become a sensitive marker that 
proves useful in the clinical context. 

To reiterate our approach, in contrast to Equation (1), the relation-
ship between χapp and δχ in Equation (2) is thus not defined on a voxel 
basis using the voxel-specific MSA value, but in the least squares sense, 
where δχ and χiso are considered as regression coefficients of the rela-
tionship in Equation (2) applied to the complete white matter tract 
under consideration. 

In a previous work (Sibgatulin et al., 2021), the applicability of the 
model underlying Equation (2) was assessed in several tract-based white 
matter regions-of-interest (ROIs) in a cohort of healthy subjects. 
Although AMS showed an unexpected dependence on the fibre-to-field 
angle in some ROIs (likely due to the ill-conditioned dipole inversion 
process), the apparent magnetic susceptibility in at least two ROIs — i.e., 
optic radiation (OR) and the splenium of corpus callosum (SCC) — 
agreed well with previously reported results (Li et al., 2012b; Wisnieff 
et al., 2013; Zhang et al., 2021). Given that the limits of applicability 

even for the voxel-wise model in Equation (1) have not yet been fully 
clarified, this agreement is taken as an indication of the applicability of 
the ROI-based model to the two aforementioned ROIs. In contrast, the 
observation in the superior longitudinal fascicle (SLF) did not clearly 
match the current expectation. However, due to the robustness of the 
result, SLF is included in this work for completeness and as a potential 
counterexample. 

In the present work, we aim to apply our approach (Equation (2)) in a 
cohort of patients with MS to assess both apparent magnetic suscepti-
bility anisotropy (δχ) and isotropic apparent magnetic susceptibility 
(χiso). Based on our previous analysis in healthy subjects, we focused on 
three anatomic regions of interest: OR, which showed robustly positive 
δχ in all healthy subjects studied; SLF, which demonstrated remarkably 
robust but unexpectedly negative δχ; and SCC, which showed positive δχ 
values in all but a few subjects. Both the tensor-derived MSA, (χ‖ − χ⊥)
(Equation (1)), and the apparent MSA, δχ (Equation (2)), have been 
proposed as markers for myelination (Li et al., 2012a), with the latter 
successfully applied to corticospinal tracts in a small cohort of paediatric 
cerebral palsy patients (Zhang et al., 2021). However, to our knowledge, 
neither apparent MSA (δχ) nor tensor-based MSA have been used to 
study NAWM in a large cohort of MS patients, presumably due to the 
significant experimental inconvenience associated with tensor-based 
MSA and the challenge of estimating apparent MSA. As indicated 
above, we hypothesise that δχ reflects previously reported demyelin-
ation in the NAWM of MS patients (Enzinger et al., 2015; Rahmanzadeh 
et al., 2021), similar to what is hypothesized for tensor-derived MSA (Li 
et al., 2012a). The change in isotropic AMS in patients is less easy to 
predict, as demyelination should lead to an increase in χiso (i.e., to a less 
diamagnetic χiso), whereas decreased iron levels (Hametner et al., 2013) 
may lead to a decrease in χiso (i.e., to a less paramagnetic χiso) compared 
with the matched control cohort. 

Thus, the main objective of this work is essentially to demonstrate 
that apparent MSA is able to capture potential microstructural changes 
in specific NAWM regions in patients with MS. 

A note to the reader: In the following, the terms apparent magnetic 
susceptibility anisotropy, apparent MSA, and δχ are used interchangeably. 
The same applies to apparent magnetic susceptibility, AMS, and χapp; and 
finally to isotropic apparent magnetic susceptibility, isotropic AMS, and χiso. 

2. Methods 

2.1. Cohorts 

The study included a cohort of 64 volunteers without known 
neurological conditions (aged 24–66 years, mean age 35 years, 36 fe-
male) and a cohort of 89 patients with relapsing-remitting MS (RRMS) 
(aged 19–65 years, mean age 38 years, 64 female) who underwent a 
routine examination at the Department of Neurology, Medical Univer-
sity of Graz, using a predefined MRI protocol (see below). Clinical 
disability was assessed using the expanded disability status scale EDSS 
(Kurtzke 1983) and ranged from 0 to 5 with a median score of 1. Disease 
duration spanned 1 to 32 years with a median of 9 years (see Supple-
mentary Figure S1). All subjects were examined once, and the images 
were subjected to visual quality assessment. The two cohorts were 
recruited and scanned at two different sites with identical MRI systems, 
imaging protocols, equipment and software versions. In accordance with 
the Declaration of Helsinki, the study was approved by the appropriate 
local ethics committees, and all participants provided written informed 
consent. 

2.2. Data acquisition and processing 

MRI data were acquired on 3 T MRI systems (Siemens Prisma) using a 
20-channel head-coil. A detailed description of data acquisition and 
processing has been published previously (Sibgatulin et al., 2021) and is 
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briefly summarized below. 
Two 3D multi-echo gradient-echo (GRE) sequences were acquired 

with flip angles of 6◦ (PDw) and 35◦ (T1w), TR = 37 ms, TE1–5 =

8.12–29.4 ms, ΔTE = 5.32 ms, and voxel size of (1 × 1 × 1) mm3, TA =
8 min 26 s, FOV = LR: 168 mm, PA: 224 mm, IS: 192 mm. Diffusion 
properties were obtained with two diffusion-weighted echo planar im-
aging (EPI DWI) scans with reversed phase-encoding polarities (each 
with multi-shell diffusion scheme with four different b-values and 104 
directions; multi-band readout, voxel size of (1.5 × 1.5 × 1.5) mm3, TA 
= 6 min each, FOV = LR: 210 mm, PA: 210 mm, IS: 144 mm. In addition, 
fluid-attenuated inversion recovery (FLAIR) imaging was applied (TR =
10,000 ms; TE = 95 ms; TI = 2,500 ms; voxel size = (0.9 × 0.9 × 3.0) 
mm3, TA = 4 min 22 s, FOV = LR: 180 mm, PA: 240 mm, IS: 132 mm) for 
lesion identification and segmentation. 

DWI data were pre-processed using FSL (topup and eddy_openmp 
(Andersson et al., 2003; Andersson and Sotiropoulos 2016)). Fractional 
anisotropy (FA) and mean diffusivity (MD) were determined by fitting 
the data to the diffusion tensor model (Mrtrix3 (Tournier et al., 2019)), 
while the fibre-to-field angle θ was determined by constrained spherical 
deconvolution from the first peak of the orientation distribution func-
tion (ODF) (Tournier, Calamante, and Connelly 2007). The ratio be-
tween the amplitudes of the second to the first peak of ODF was 
calculated and used as a complementary measure to FA for WM 
anisotropy (further referred to as peak quotient, PQ). FA, PQ, and θ maps 
were transformed into the space of the GRE acquisitions by registering 
MD maps to the first echo of the T1w GRE sequence using Aladin from 
NiftyReg (Ourselin et al., 2001). 

The white matter mask was obtained by combining Freesurfer seg-
mentation (Desikan et al., 2006) of a synthetic T1w contrast (generated 
from the two GRE images using mri_synthesize, TR = 20 ms, FA = 30◦, 
TE = 5 ms) with the five-tissue-type segmentation from Mrtrix3 (Smith 
et al., 2012) followed by binary erosion with a sphere (r = 2 mm). Voxels 
with crossing fibres were excluded from the WM mask based on FA < 0.6 
and PQ > 0.3. In MS patients, lesion masks were obtained using nicM-
Slesions (Valverde et al., 2019) from FLAIR and T1w images (both im-
ages were registered to MNI space for each subject; the network was 
trained de novo on 220 MS subjects with semi-automatically generated 
labels). The obtained lesion masks were additionally dilated (r = 1 mm) 
to minimise possible segmentation or alignment issues and removed 
from the patients’ WM masks (the resulting mask is hereafter referred to 
as the normal appearing white matter (NAWM) mask). 

Within such (NA)WM masks, the following three tract-based regions- 
of-interest (ROI) were selected: optic radiation (OR), splenium of corpus 
callosum (SCC), and superior longitudinal fascicles (SLF). Optic radia-
tion and SLF were determined directly from the diffusion data using 
Tractseg (Wasserthal et al., 2018), and the three components of SLF 
were combined (Wang et al., 2016). The splenium of the corpus cal-
losum was defined as the intersection of the dilated Freesurfer label for 
the posterior corpus callosum and the commissural fibres segmented by 
Tractseg (see appendix B in Sibgatulin et al., 2021 for details). Fig. 1 
illustrates the choice of the ROIs together with the corresponding fibre- 
to-field distributions in a single subject. 

PDw GRE images were rigidly registered to the T1w GRE images 
using Aladin (Ourselin et al., 2001). The relative frequency differences 
were obtained from the unwrapped phase data (3D path-following al-
gorithm (Herráez et al., 2002) from scikit-image (version 0.16.1; Van 
der Walt et al., 2014)) of the PDw GRE scan, which were appropriately 
scaled and averaged over the last three echoes. Background frequency 
contributions were removed using V-SHARP (Schweser et al., 2011; Wu 
et al., 2012), and dipole inversion was performed using iLSQR (STI 
Suite; W. Li et al. (2015)). The resulting AMS values were referenced to 
the cerebrospinal fluid in the lateral ventricles. Phase data processing is 
described in more detail in Sibgatulin et al. (2021). 

2.3. Data analysis 

For each subject, values of AMS and fibre-to-field angle θ were 
extracted from each of the three tracts (limited to the (NA)WM mask and 
with crossing fibres excluded as indicated above). For visualisation, data 
from each ROI were binned independently into 10 equally populated 
bins based on the deciles of θ for each subject, yielding an average AMS 
(θ) curve per ROI per subject (Fig. 2). 

Estimation of δχ and χiso, comparison of the two cohorts, and 
correction for a number of covariates were combined in a single 
Bayesian multilevel linear model (applied to each ROI independently). 
The model’s complete specification is given in the appendix (Equa-
tions A1–12), while Equation (3) summarises its structure: 

χvoxel
app = χsubj

iso + βisoAOsubj + τcoh
iso DDsubj

+ λcoh
iso LLsubj

+(δχsubj + βδχAOsubj

+ τcoh
δχ DDsubj

+ λcoh
δχ LLsubj

)cos2θvoxel, (3) 

where superscripts indicate the level of the respective variable. 

Fig. 1. Distributions of fibre-to-field angles θ in a healthy volunteer for both the selected three white matter ROIs (eroded) and the WM mask (with crossing fibres 
excluded). The anatomical reference is provided by the synthetic T1w contrast. Each subfigure represents an average over a slab of 8 mm thickness. The orange 
arrows indicate the direction of B→0. 
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Importantly, both δχ and χiso (as they were defined in Equation (2)) were 
assumed to hold identical linear relationships with age (at onset) (AO), 
disease duration (DD), and lesion load (LL). Their age (at onset) 
dependence βiso/δχ was assumed to be identical for both cohorts, while 
the dependences on disease duration and lesion load were defined 
within cohorts separately (thus superscript coh). Finally, χsubj

iso and δχsubj 

represent subject-specific isotropic AMS and apparent MSA adjusted for 
age, disease duration, and lesion load of the subject. As specified in 
Equations A5–6, these subject-specific parameters were modelled as 
samples from cohort-specific normal distributions defined by the 
respective means (μcoh

iso/δχ) and standard deviations (σcoh
iso/δχ). Note that the 

dependencies on disease duration and lesion load in the HC cohort are 
nominal, as these values are set to 0 for each HC by definition. Due to 
this, τHC

iso/δχ and λHC
iso/δχ are not reported for clarity. 

This model ascribed the effect of healthy ageing to the subjects’ age 
at examination in the HC cohort and the age at onset in the MS cohort, 
hereafter referred to as age (at onset) and considered a single predictor. 
It was referenced to 30 years (median age of the HC cohort) and scaled 
by 10 years (standard deviation of age of the HCs). Disease duration was 
also measured in decades and set to 0 for HCs by definition. Lesion load 
was defined as the total volume of the lesions in a given ROI relative to 
the volume of the ROI (see Supplementary Figure S1 for the distribu-
tions). Before fitting, χapp was standardised (demeaned and scaled by the 
standard deviation) across all subjects within each ROI independently. 
The model coefficients reported below were rescaled back to ppm. All 
described data scaling was performed to improve the performance of the 
employed inference algorithm. 

The model was implemented in numpyro (0.6.0, Bingham et al., 
2019; Phan et al., 2019) and the joint posterior distribution of the model 
parameters was sampled using Markov chain Monte Carlo (MCMC). 
Having the posterior represented by its samples allowed us to calculate 
the distribution of the effect size, η, defined as. 

η =

(
μMS

iso/δχ − μHC
iso/δχ

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

[(σMS
iso/δχ)

2
+ (σHC

iso/δχ)
2
]/2

√ (4) 

This marginal posterior distribution and its 95% highest density in-
terval (HDI) were reported as a mean to assess the significance of the 
difference between the two cohorts (Kruschke 2013). 

3. Results 

3.1. Orientation dependence of apparent magnetic susceptibility 

Fig. 2 shows the dependence of χapp on fibre-to-field angle θ in the 

regions-of-interest considered (along with the average distributions of 
θ). Notably, the distribution of the fibre-to-field angles in OR and 
especially SCC is very limited, as expected, covering just one-third of the 
entire angular range. Moreover, an average MS patient tends to have 
noticeably fewer voxels available in the OR due to the common local-
isation of lesions in this tract. 

3.2. Comparison of isotropic AMS and apparent MSA across two cohorts 

Fitting the model from Equation (3) (or more specifically Equation-
s A1–12) results in a joint posterior distribution of three groups of 
parameters:  

1. population level effects of age (at onset) (βiso/δχ), disease duration 
(τMS

iso/δχ), and lesion load (λMS
iso/δχ);  

2. χsubj
iso and δχsubj, capturing individual variations that could not be 

explained by the aforementioned effects of age or disease;  
3. the means (μcoh

iso/δχ) and the standard deviations (σcoh
iso/δχ) summarizing 

the distribution of χsubj
iso and δχsubj. 

We start with the second group of parameters to illustrate the rela-
tion between the individual δχsubj estimates and the inferred cohort-level 
distributions. Fig. 3 presents the marginal posterior probability distri-
butions of δχsubj for subjects grouped in their respective cohort (per row). 
Recall that the model in Equation (3) assumed that the δχsubj values were 
drawn from cohort-level normal distributions, described by μcoh

iso/δχ and 
σcoh

iso/δχ (cf. Equations A5–6). The marginal posterior distributions of μcoh
iso/δχ 

are shown and discussed further in Fig. 4, while samples from the joint 
posterior were used to generate a number of cohort-level distributions 
shown in Fig. 3 (filled). An equivalent representation of the marginal 
posterior for χsubj

iso is shown in Supplementary Figure S2. 
As mentioned above, previous research strongly suggests that δχ of 

white matter fibres is positive (notably, this prior knowledge was not 
included in the priors of the model, cf. Equation A10). In the light of this, 
Fig. 3 highlights individual subjects with negative maximum a posteriori 
(MAP) δχsubj estimate (all subjects in the SLF case). While δχsubj has a 
consistent sign in OR and SLF for almost all subjects, its estimates appear 
much more scattered in the splenium, especially in the MS cohort (note 
the axis spanning three times the range of values observed in OR). This 
dispersion of the cohort-level distributions is captured by their respec-
tive standard deviations, σcoh

iso/δχ , shown in Supplementary Figure S3. 
Their respective means μcoh

iso/δχ , which allow comparison of the two co-
horts, are shown in Fig. 4 (and are also reported in Supplementary 

Fig. 2. Orientation dependence of apparent magnetic susceptibility in different WM ROIs for the two analysed cohorts. Thin transparent lines correspond to in-
dividual subjects, while the thick lines with the error bars indicate the averaged trends with two standard deviations. The histograms represent the distributions of θ 
in each ROI, averaged across the subject in the respective group (scaled consistently across the subfigures). 
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Fig. 3. Marginal posterior distributions of δχsubj (in black or grey) for the healthy controls (top row) and the MS patients (bottom row). Subjects represented by black 
lines are characterised by a negative maximum a posteriori (MAP) estimate. Sampled cohort-level distributions are shown in colour. The red vertical lines indicate δχ 
= 0 ppb. The scale of the x-axis is shared across the cohorts, but not across the ROIs. 

Fig. 4. Marginal posterior distributions of the cohort means μcoh
iso (top row) and μcoh

δχ (bottom row). Dashed vertical lines represent the maximum a posteriori estimate, 
while solid horizontal lines indicate the 95% HDI (i.e., credible interval of the estimated mean, and not a measure of the cohort-level distribution spread). 

Fig. 5. Marginal posterior distributions of the effect sizes. Dashed vertical lines represent the MAP estimate, while solid horizontal lines indicate the 95% HDI. The 
solid vertical lines show the location of μMS

iso/δχ − μHC
iso/δχ = 0. All subfigures share the same x-axis scale. 

R. Sibgatulin et al.                                                                                                                                                                                                                              



NeuroImage: Clinical 35 (2022) 103059

6

Table S1). 
Note that Fig. 4, along with the subsequent figures, reports marginal 

posterior distributions of the estimated parameters, together with their 
MAP estimates and the 95% Highest Density Interval (HDI), the nar-
rowest range of values containing 95% of the probability mass. The 
latter can be seen as the Bayesian counterpart of the 95% confidence 
interval, and its position with respect to zero is considered as evidence 
for or against the effect in question. 

The means reported in Fig. 4 can be viewed as expected values of χiso 
and δχ for healthy and MS subjects aged 30 years old (in addition, in the 
case of the MS cohort, at disease onset and without lesions in the cor-
responding ROI). For both χiso and δχ the estimated means tend to agree 
in SLF, while showing consistent differences between the cohorts in OR 
and SCC. 

Given that the posterior is a joint distribution of all parameters from 
Equations A1–12, and each sample from the posterior includes a com-
bination of μcoh

iso/δχ and σcoh
iso/δχ consistent with the data, the effect size can 

be conveniently estimated using Equation (4) (shown in Fig. 5). Using 
this definition, we find that only δχ in OR can be confidently considered 
different between the two cohorts (with the MAP effect size of − 0.6 and 
only 1.2% of marginal posterior probability above 0). Besides, both χiso 
and δχ show the same trends of change between the cohorts in OR and 
SCC, whereas δχ in SLF shows the opposite sign of the effect (μMS

δχ > μHC
δχ ) 

compared with OR and SCC. 

3.3. Effects of age, disease duration, and lesion load 

As mentioned earlier, to separate the effects of healthy ageing and 
disease duration in the MS cohort, we included two predictors in the 
linear model from Equation (3) (age at disease onset and disease dura-
tion) and assumed that the effect of age at onset is comparable to that of 
healthy ageing in the control cohort (represented by βiso and βδχ). 

Fig. 6 shows the marginal posterior distributions of such effect in 
each ROI. Both χiso and δχ showed a significant response to age (in the 
sense of the 95% HDI excluding the 0) in almost every ROI. In particular, 
χiso increases with age, showing a significant increase in the OR and SCC 
(by 1–5 and 3–7 ppb / 10 years, respectively) and a trend toward an 
increase in SLF (78% of the probability mass is above βiso = 0). In 
contrast, δχ decreases significantly with age in OR (by 0–5 ppb / 10 
years) and to a greater extent in SCC (by 1.1–10 ppb / 10 years), whereas 
it increases significantly in SLF (albeit only by 0.5–2 ppb / 10 years). 

Complementary to the effect of healthy ageing, represented by βiso/δχ , 
the effect of disease duration is captured by τMS

iso/δχ , shown in Fig. 7. 
Among all ROIs, only SCC shows a significant decrease in δχ with disease 

duration (although the 95% HDI spans a wide range between 3 and 22 
ppb). At the same time, SLF shows the opposite pattern of response to 
disease duration, whereas OR shows virtually no response at all. 

Finally, Fig. 8 shows the effect of lesion load. Most notably, in OR, δχ 
decreases significantly in the presence of lesions by 0.5–6 ppb / 10 % 
lesion load, whereas χiso tends to increase by 0–4 ppb / 10 % lesion load. 
The effect of the lesion load in SCC and SLF, however, shows the 
opposite trend for both χiso and δχ (more pronounced in SLF). 

The significant effects reported above are summarized in Supple-
mentary Table S2. 

4. Discussion 

In this study, we examined apparent magnetic susceptibility in three 
white matter fibre tracts in healthy volunteers and MS patients to 
explore the potential of the apparent magnetic susceptibility anisotropy, 
δχ, for indicating demyelination in normal-appearing white matter. 

It is generally accepted that the apparent magnetic susceptibility in 
grey matter is primarily determined by the presence of tissue iron 
(Langkammer et al., 2012; Deistung et al., 2013), whereas the inter-
pretation of QSM values in white matter is more challenging due to the 
opposing susceptibility effects of iron and myelin sheaths (Liu et al., 
2011; Schweser et al., 2011; Lee et al., 2012). 

Our hypothesis underlying the study was that the apparent magnetic 
susceptibility anisotropy, δχ, is sensitive exclusively to the integrity and 
amount of myelin present. Such exclusive sensitivity cannot be attrib-
uted to the isotropic AMS, χiso, because it includes the effects of iron as 
well as any residual — but orientation-independent — contributions 
from myelin sheaths in addition to other tissue components. 

Importantly for the following discussion and in line with the inter-
pretation of magnetic susceptibility anisotropy by Li et al. (2012a), the 
apparent MSA should be positive, with lower values indicating stronger 
myelin degradation. This is also consistent with previously published 
results (Lee et al., 2010; Wharton and Bowtell 2012, 2015; Li et al., 
2012a; Li et al., 2012b). From this perspective, negative MSA values 
would indicate a significant change in the susceptibility tensor of myelin 
lipids, which does not seem readily plausible. Negative MSA estimates, 
however, have been reported for both tensor (Li et al., 2012b; Wisnieff 
et al., 2013) and apparent MSA (Xiao et al., 2014; Lancione et al., 2017; 
Sibgatulin et al., 2021) and were considered artefactual (Li et al., 2012b; 
Wisnieff et al., 2013; Sibgatulin et al., 2021). We discuss the possible 
origin of this observation below. 

Fig. 6. Marginal posterior distributions of the effects of healthy ageing, captured by βiso (top row) and βδχ (bottom row). Dashed vertical lines represent the MAP 
estimate, while solid horizontal lines indicate the 95% HDI. Solid vertical lines highlight the location of βiso/δχ = 0. The scale of the x-axis is shared within each row. 
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4.1. Range of estimated χ iso and δχ values 

The distribution of apparent MSA estimated in individual subjects 
(δχsubj) varies qualitatively among the three ROIs but appears to be 
consistent across both cohorts (see Fig. 3). In both cohorts, the apparent 
MSA is predominantly positive in OR and negative in SLF, while it covers 
the largest range of values in SCC. Given the presumed role of MSA, the 
negative estimates of apparent MSA do not appear to be biophysically 
justified, but even in SCC, they cannot be dismissed as outliers, as is 
evident from their distributions in Fig. 3. Such distributions may indi-
cate systematic errors in the estimation of δχ and must be considered 
when interpreting the differences between the two cohorts. 

As for the SLF, not a single subject in either cohort showed a positive 
apparent MSA, suggesting that δχ may be systematically misestimated 
throughout the entire ROI. Nevertheless, we included this ROI in our 
analysis for completeness due to its prominent size as well as the 
observed robustness of the results. 

The marginal posterior distributions of the age-corrected mean 
apparent MSA in the HC cohort (μHC

δχ ) in OR (MAP = 27 ppb, 95% HDI =
24–309 ppb) and SCC (MAP = 21 ppb, 95% HDI = 14–26 ppb) appear 
comparable to, but slightly larger than, previously published estimates 
of MSA (6–12 ppb in the human corpus callosum ex vivo at 7 T (Lee et al., 

2010), 22 ppb in human WM in vivo at 3 T (Li et al., 2012a), 16 ppb in 
human WM in vivo at 7 T (Wharton and Bowtell 2012), 5 and 10 ppb in 
human posterior thalamic radiation and SCC respectively, measured at 
7 T in vivo (Li et al., 2012b), or 17 ppb in porcine optic nerve at 7 T 
(Wharton and Bowtell 2015)) as well as apparent MSA (10 ppb across 
multiple WM tracts measured in vivo (Xiao et al., 2014) or 14 ppb and 21 
ppb in corticospinal tract of paediatric cerebral palsy patients (Zhang 
et al., 2021) measured at 3 T). Such differences likely result from dis-
crepancies in the processing pipeline, such as the extent of background 
field removal, but such discrepancies should affect the scale of AMS 
globally and affect all ROIs identically. 

Direct comparison of the isotropic AMS with previously published 
bulk magnetic susceptibility values is generally not straightforward. 
However, based on the distributions of fibre-to-field angles in OR and 
SCC, χiso tends to agree well with the mean AMS in the corresponding 
ROI. For SLF, with its relatively homogeneous distribution of θ, the mean 
AMS is expected to be comparable to χiso + δχ/2 ≈ − 30 ppb. All values 
appear to be in the correct order of magnitude when compared with 
previously reported white matter susceptibility values. In addition, Li 
et al. (2012b) reported mean magnetic susceptibilities (estimated from a 
tensor reconstruction of multiple head orientation acquisitions) of pos-
terior thalamic radiation < SCC < corona radiata (anterior and 

Fig. 7. Marginal posterior distributions of disease duration, captured by τMS
iso (top row) and τMS

δχ (bottom row). Dashed vertical lines represent the MAP estimate, while 
solid horizontal lines indicate the 95% HDI. Solid vertical lines highlight the location of τMS

iso/δχ = 0. The scale of the x-axis is shared within each row. 

Fig. 8. Marginal posterior distributions of the effect of the lesion load in each ROI, represented with of λMS
iso (top row) and λMS

δχ (bottom row). Dashed vertical lines 
represent the MAP estimate, while solid horizontal lines indicate the 95% HDI. Solid vertical lines highlight the location of λMS

iso/δχ = 0. The scale of the x-axis is 
shared within each row. 
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superior), which is in good agreement with the observed ranking of χiso 
(OR < SCC < SLF, see Fig. 4). 

4.2. Limitations of the approach to estimating apparent MSA 

Before turning to a comparison of the results obtained in the two 
cohorts, we briefly discuss the assumptions made in the present analysis 
and the corresponding limitations. 

The approach used in this paper (as well as in Sibgatulin et al., 2021) 
is based on the relation between the apparent magnetic susceptibility 
and the underlying tensor MSA considered by Li et al. (2012a). This 
model: 1) assumes that the field perturbations produced by lipid mole-
cules in the myelin sheath can be consistently described as a convolution 
of a scalar apparent susceptibility (AMS) with the dipole kernel used in 
QSM and 2) implies that such an AMS captures the anisotropic effect in 
its orientation dependence described in Equation (1). This model is 
attractive because of its simplicity and has been referred to in a number 
of papers (Lee et al., 2011; Lancione et al., 2017; Zhang et al., 2021; 
Sibgatulin et al., 2021), but its applicability is not yet fully clear. Thus, 
the present work should be viewed as an attempt to empirically find out 
where limitations of the model are, while a better theoretical under-
standing of these limitations is still needed. 

4.2.1. Susceptibility reconstruction 
First and foremost, the most challenging aspect of quantitative sus-

ceptibility mapping as well as susceptibility tensor reconstruction is the 
inherently ill-posed nature of the field-to-source inversion step. For any 
single acquisition, the components of the susceptibility tensor, which are 
perpendicular to the given B→0 direction do not contribute to the 
observed field variation (Liu 2010) and undergo a rather ill-conditioned 
inversion process (Wisnieff et al., 2013). In any of the proposed tensor 
reconstruction approaches (Liu 2010; Li et al., 2012b; Wisnieff et al., 
2013) both issues are addressed by acquiring and combining phase in-
formation at different sample orientations with respect to B→0. 

Wisnieff et al. (2013) simulated the error propagation in the recon-
struction of a cylindrically symmetric tensor with 2 components, and 
showed that 3 uniformly distributed sampling angles (i.e., angles 
defining the orientation of the object with respect to B→0) yield an ac-
curate reconstruction of tensor-based MSA. However, the set of 
anatomically possible head orientations covers only a relatively narrow 
range of sampling angles, leading to substantial misestimates of different 
tensor components (and thus MSA) in different fibre orientations (un-
derestimation of MSA in orientations parallel to B→0 and overestimation 
in perpendicular orientations). It is important to emphasize that the ill- 
conditioned nature of reconstructing the susceptibility tensor from a 
finite set of sample orientations has been shown to lead to systematic 
θ-dependent biases in the estimated tensor components (Li et al., 2012b; 
Wisnieff et al., 2013). It is thus reasonable to assume that any contri-
bution of the two tensor components (χ‖ and χ⊥) to AMS is subject to 
similar θ-dependent errors. Although the scalar QSM reconstruction 
makes such a connection much less transparent, it is conceivable that the 
estimation of apparent MSA, performed across a range of fibre-to-field 
angles, can result in complex biases in δχ. To our knowledge, no study 
has yet been conducted on error propagation in the estimation of 
apparent MSA, which would be most valuable for the interpretation of 
the observed results. It would be especially interesting with regard to the 
negative δχ observed in SLF, as in an experiment with three head ori-
entations, Wisnieff et al. reported negative tensor MSA results: a fraction 
of estimates in SCC and all estimates in the genu of the corpus callosum 
(GCC), while all ROIs showed positive values when more orientations 
were used. 

This possible relation to the results from the studies addressing the 
susceptibility tensor points to a rather fundamental issue with the in-
verse problem, potentially shared by different inversion algorithms. 
Although comparison of different approaches to QSM was not a major 

part of this study, we have additionally considered the effect of 
substituting iLSQR for rapid two-step dipole inversion (RTS; Kames 
et al., 2018). The general pattern of the AMS orientation dependence 
remains unchanged as indicated in Supplementary Figure S4 by the 
trend averaged across the cohort of healthy subjects. 

4.2.2. Aggregating across ROIs 
Additional limitations may arise from the approach that aggregates 

AMS and fibre-to-field angle θ over the extent of a given WM track. In 
particular, this approach assumes that AMS does not exhibit spurious 
variations over the ROI under consideration. This assumption may not 
hold for WM areas bordering boundaries with strong susceptibility 
variations (e.g., the internal capsule, which runs near the strongly 
paramagnetic globus pallidus, or the GCC, which lies near the lateral 
ventricles and frontal sinuses (Wisnieff et al., 2013)). Given the vari-
ability in head orientation and individual anatomy, confounding AMS 
distributions with structured artefacts caused by imperfect dipole 
inversion may be a plausible source of random variation in the AMS 
orientation dependence (and consequently in the estimated δχsubj) in the 
SCC. However, this perspective does not provide a satisfactory expla-
nation for the very robust negative δχ in SLF — a large anatomical region 
that appears to be relatively distant from sources of strong field 
variations. 

Besides said spurious variation of AMS, genuine variation in the 
underlying tensor MSA across the ROIs may as well confound the pro-
posed estimation of apparent MSA, especially if both MSA and fibre-to- 
field angle are correlated in a given ROI. This constitutes a fundamental 
limitation of the approach and turns the estimated apparent MSA, 
loosely speaking, into a kind of weighed average for the underlying 
MSA. Nevertheless, we find it unlikely that aggregation over a genuine 
(e.g. positive) MSA distribution can lead to a qualitatively inaccurate (e. 
g. negative) aMSA. 

4.2.3. Reliance on the diffusion data 
Besides the many pitfalls of susceptibility reconstruction, additional 

sources of potential errors may lie in the calculation of the fibre-to-field 
angle maps, as the latter are obtained from a complex processing of 
diffusion MR data. It should be pointed out that in this study, as in many 
other diffusion-guided approaches (Li et al., 2012b; Wisnieff et al., 2013; 
Bao et al., 2021), fibre orientation was considered error-free, which 
cannot be assumed universally. However, for the high FA voxels 
included in the analysis, this seems to be an acceptable assumption (see 
Methods 2.2). 

4.2.4. Myelin contribution in χiso 
Finally, while δχ is thought to be primarily related to the amount and 

state of myelin, the effect of the latter on the isotropic AMS, χiso, cannot 
be disentangled from a paramagnetic contribution of tissue iron without 
considering additional parameters. Myelin water fraction has been 
shown to be a useful proxy for myelin concentration in models of 
orientation dependence of R*

2 (Lee et al., 2017) and could be a valuable 
addition to the outlined approach. Alternatively, R′

2 was recently used as 
an independent measure of the local field dispersion to separate positive 
and negative contributions to AMS (Shin et al., 2021). 

4.2.5. Anisotropic cerebral vasculature 
Another potential source of magnetic field perturbation that has not 

been considered in this work, is the venous blood vessels. Such a 
contribution is generally neglected due to the small volume fraction of 
the vascular network. With a number of studies suggesting that blood 
vessels in WM are predominantly parallel to the WM tracts (Nonaka 
et al., 2003; Hernández-Torres et al., 2017), and the fact that such 
contributions depend on the angle between the vessel and the main 
magnetic field (Sedlacik et al., 2007), we point to the possibility that the 
venous network may influence the extracted apparent magnetic 
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susceptibility anisotropy in a WM ROI. However, additional research in 
this direction is certainly needed, and currently we do not have a viable 
modelling approach as to whether the addition of a venous contribution 
to susceptibility, for example, could at least partially explain the unex-
pected observation in the SLF. 

4.3. Effects of ageing and disease progression 

The isotropic AMS shows a significant increase with healthy ageing 
in both OR and SCC. This increase is consistent with previously pub-
lished findings of an age-dependent increase in magnetic susceptibility 
in adult white matter (W. Li et al., 2014). Furthermore, the rate of 
change of χiso in HC, ranging from a statistically non-significant 0.8 ppb/ 
10 year in SLF to 3 ppb/10 year in OR to 5 ppb/10 year in SCC, appears 
to be of the same order of magnitude as the linear increase of AMS in 
adults (1–3 ppb/10 year in SCC and OR) reported by W. Li et al. (2014). 
The authors associated such an increase in AMS with age with demye-
lination, which inevitably contributes to both δχ and χiso. It should, 
however, be noted that the isotropic part of AMS is potentially affected 
by a number of factors that occur together in normal ageing, such as 
myelin degradation and increases in tissue iron concentration. Both 
factors lead to an increase in isotropic AMS, which seems to be consis-
tent with the observed behaviour of χiso in OR and SCC. Furthermore, 
Hametner et al. (2013) reported a decrease in age-corrected iron con-
centration in NAWM in chronic MS. Although this change in iron con-
centration cannot be directly compared to the change in χiso with disease 
duration (i.e., τMS

iso ) due to the expected concomitant decrease in the 
myelin concentration, it may be associated with the observed weaker 
response of χiso to disease duration in OR and SCC, as well as the 
decreasing trend in SLF (i.e., in all ROIs τMS

iso < βiso). 
Comparison of the apparent magnetic susceptibility anisotropy (δχ) 

across the two cohorts (via μMS
δχ − μHC

δχ and the respective effect size) 
shows a significant decrease in AMS in OR of patients with RRMS (effect 
size of − 0.6) and such a trend in SCC. Furthermore, δχ decreases 
significantly with age (at onset) in both ROIs, additionally with disease 
duration in SCC, and with increasing lesion load in OR. Given the hy-
pothesized relationship between δχ and myelin (Li et al., 2012a; Zhang 
et al., 2021), it is conceivable that the observed decrease in apparent 
MSA — whether with healthy ageing or disease progression — is asso-
ciated with deterioration of myelin sheaths in NAWM, at least in OR. 
Specifically, the observed strong δχ response to lesion load in OR may 
echo previously reported axonal damage and demyelination in perile-
sional NAWM (Singh et al., 2017). 

Interestingly, in the cohort of MS patients studied, OR appears to be 
most strongly affected by lesions (as measured by the ROI fraction, see 
Supplementary Figure S1), which may explain the observed sensitivity 
of apparent MSA in OR to the effect of lesion load, especially when 
compared with the other ROIs. 

This result appears to be consistent with findings of Yu et al. (Yu 
et al., 2019), who studied a cohort of RRMS patients and reported 
significantly increased radial diffusivity (RD) and decreased FA in the 
forceps major, which includes the SCC and is directly adjacent to the 
optic radiation. The authors interpreted these findings as indicative of 
demyelination (for which increased RD is considered a particularly 
specific predictor (Bennett et al., 2010)) and axonal loss. Consistent, 
moreover, is the fact that neither Yu et al. nor our study found a sta-
tistically significant difference between the cohorts with AMS or 
isotropic AMS (μcoh

iso ), respectively. Yu et al. suggested that this discrep-
ancy between RD and magnetic susceptibility might be explained by a 
concomitant decrease in tissue iron content that masks the effect of 
demyelination on AMS. Such a change in iron was not uniquely identi-
fied in either study but is consistent with previously reported results 
(Hametner et al., 2013). 

In SCC, the observed difference in mean δχ (see Figs. 3–5) seems to be 
due to a substantial proportion of MS subjects showing strongly negative 

apparent MSA, which is problematic from a biophysical perspective, as 
discussed above. Similarly, the apparent MSA in SLF remains negative in 
both cohorts and is thus difficult to interpret biophysically. Interpreta-
tion of the trend observed in SLF toward a decrease in the absolute value 
of δχ in the MS cohort (effect size of 0.2) as well as with age and 
increased lesion load, would require a better understanding of the 
mechanisms determining the negative apparent MSA in SLF. 

4.4. Related work and possible future directions 

It is worth noting the relation of the proposed orientation-resolved 
approach to the comparison of AMS values across the two cohorts, as 
presented, e.g., by Yu et al. (2019). The latter, while much simpler to 
perform, aggregates AMS values across the range of fibre orientations 
found in a given tract-based ROI, but this may mask potential differences 
between the two cohorts. Hernández-Torres et al. (2015) reported an 
improvement in discrimination between MS patients and healthy con-
trols by correcting R*

2 for its orientation dependence. The authors argued 
that such an orientation dependence of the relaxation rate constant in-
troduces innate dispersion of R*

2 histograms, hiding small differences 
between the cohorts. We observed a similar effect when the statistical 
analysis presented in this paper was modified to exclude any consider-
ation of orientation dependence (i.e., without the bsubjcos2(θvoxel) term in 
Equation A2). The resulting age- and disease progression-corrected AMS 
values revealed an effect of the same sign as reported in Fig. 5 for χiso, 
but of smaller magnitude, suggesting confounding by the effects of 
orientation dependence. This analysis was not included in the present 
manuscript in order to focus on the more physically meaningful repre-
sentation of AMS by the components in Equation (2). 

Interestingly, the orientation dependence of R*
2 reported by 

Hernández-Torres et al. appeared to be reduced in the MS cohort, 
although no significant difference was observed between the groups 
(possibly due to the effect of crossing fibres, which were not excluded). 
In contrast, in the present study, it is the orientation dependence of AMS 
reflected in δχ that shows the most striking difference between the MS 
patients and the healthy subjects, while the orientation-independent 
component, χiso, only suggests an increasing trend in the MS cohort. 
This observation is consistent with the hypothesis of concurrent iron and 
myelin loss, both of which would lead to a decrease in orientation- 
independent R*

2, but would cancel out in their effect on χiso. This sug-
gests a potentially interesting future direction of incorporating the 
orientation dependence model from Equation (2) into an approach to 
separate AMS into positive and negative contributions (Shin et al., 
2021). 

Finally, as shown in Sibgatulin et al. (2021), the orientation depen-
dence of AMS, observed in many other WM regions, does not appear to 
be consistent with Equation (2), leaving the question of the applicability 
of the proposed analysis in these ROIs open and largely dependent on 
further critique of the model in Equations (1) and (2) (specifically, its 
completeness and applicability of single orientation QSM to be used as 
input for apparent MSA estimation). This question was explored in more 
detail in sections 4.1 and 4.6 of Sibgatulin et al. (2021). 

5. Conclusion 

In this study, we investigated changes in apparent magnetic sus-
ceptibility in NAWM in a cohort of RRMS patients considering suscep-
tibility anisotropy and using clinically feasible single-orientation 
acquisitions. In the MS cohort, the apparent magnetic susceptibility 
anisotropy (δχ) showed a significant decrease in OR and a decreasing 
trend in SCC. Moreover, δχ in OR decreased with increasing lesion load 
in the ROI, whereas δχ in SCC decreased with disease progression. 

The presented approach appears to be limited by the stability of δχ 
estimation in SCC and by the possibility of a systematic misestimation of 
AMS when using single-orientation acquisition (as reflected by a 
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robustly negative sign of δχ in SLF). Despite the limitations of ROI- 
specific estimation, we consider our single-orientation approach to 
study degenerative changes in WM to be valuable and worthy of further 
investigation because of its clinical feasibility. 
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Appendix 

Complete specification of the Bayesian multilevel linear model used in the study 

χvoxel
app ∼ Normal

(
μvoxel, σsubj) (A1)  

μvoxel = asubj + bsubj⋅cos2(θvoxel) (A2)  

asubj = χsubj
iso + βiso⋅AOsubj + τcoh

iso ⋅DDsubj + λcoh
iso ⋅LLsubj (A3)  

bsubj = δχsubj + βδχ ⋅AOsubj + τcoh
δχ ⋅DDsubj + λcoh

δχ ⋅LLsubj (A4)  

χsubj
iso ∼ Normal

(
μcoh

iso , σcoh
iso

)
(A5)  

δχsubj ∼ Normal
(

μcoh
δχ , σcoh

δχ

)
(A6)  

βiso/δχ ∼ Normal(0, 0.5) (A7)  

τcoh
iso/δχ ∼ Normal(0, 0.5) (A8)  

λcoh
iso/δχ ∼ Normal(0, 1.5) (A9)  

μcoh
iso/δχ ∼ Normal(0, 1) (A10)  

σcoh
iso/δχ ∼ HalfNormal(2) (A11)  

σsubj ∼ HalfNormal(1) (A12) 

Equations A(1)–(4) represent the likelihood of the linear model and are summarised in Equation (3), whereas Equations A5–12 state the priors 
imposed on the model’s parameters. The priors in Equations A7–10 are weakly informative, i.e., they are defined by normal distributions with zero 
mean. Note that such weakly informative priors do not constrain the shape of the posterior distribution (or its marginals), and are chosen to indicate 
the target range of the parameter space, while still allowing the data and the likelihood term to drive the update of the posterior. 

The use of the normal distribution for the likelihood in A1 reflects the assumption of the noise in the observations (i.e., χvoxel
app ) following a Gaussian 

distribution with zero mean and standard deviation σsubj, which itself is given a prior specified in A12. HalfNormal is the positive half of a normal 
distribution with zero mean and as such is characterised only by its standard deviation. The values for all standard deviations in the model were 
selected after a series of prior predictive simulations to ensure that the model captures the variance observed in the data (see Supplementary Figure S5 
for an example of prior and posterior predictive distributions). Equations (A5 and A6) show centred parametrisation of hierarchical priors, which was 
automatically decentred (Gorinova et al., 2020). 

Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.nicl.2022.103059. 
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